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Abstract:
The paper presents a two-stage, global planning al-
gorithm for the waypoint-following task realized by a
unicycle-like robot in a cluƩered environment. It assumes
moƟon execuƟon with the VFO (Vector Field Orienta-
Ɵon) controller. The planner is a result of a controller-
driven design process and exploits parƟcular properƟes
of the VFO controller. Emphasis has been put on the
plan safety in the sense of maximizing the distance from
the obstacles. In the first stage of planning, an A*-like
pathfinding algorithm is used to find a safe geometric
plan (i.e. a polyline) in a two-dimensional occupancy grid.
During the second stage, a sequence of waypoint po-
siƟons is selected from the geometric plan and refer-
ence orientaƟons at the waypoints are planned. Orien-
taƟon planning exploits properƟes of the VFO controller
used for subsequent moƟon execuƟon. Proposed two-
stage algorithm admits changes of robotmoƟon strategy
(forward/backward movement) and has lower computa-
Ɵonal cost than the full configuraƟon space search. Per-
formance of the algorithm can be intuiƟvely tuned with
provided design parameters.

Keywords: VFO control, waypoint-following, unicycle-
like robot, combinatorial search, controller-drivenmoƟon
planning

1. IntroducƟon
Motion planning for systems with nonholonomic

constraints is a topic recently explored by many re-
searchers all around the world. Signiϐicance of this
topic stems from the fact that many wheeled mobile
robots and the vast majority of road vehicles are sub-
ject to nonholonomic constraints. Efϐicient and theo-
retically sound motion planning in the cluttered en-
vironment is paramount to effective automation of
wheeled vehicles. While many of the existing motion
planners achieve this goal to some extent, they all
come with some limitations, which are outlined in the
short survey of motion planners presented below. A
complete survey ofmotion planning algorithms can be
found in [4,15,17].

Availability of powerful computing units has stim-
ulated the development of sampling-based motion
planners. Among them, the most successful are
Rapidly Exploring Random Trees [13, 16] and their
variations referred to generally as Rapidly Exploring
Dense Trees (see [17]). Those algorithms are appli-
cable to a wide range of systems and perform well
in high-dimensional conϐiguration spaces with no ef-

ϐicient collision checking procedures available. This
versatility is achieved by means of probabilistic sam-
pling in the problem space and particular method
of extending the tree of possible solutions. Unfortu-
nately, those algorithms are non-deterministic, i.e. two
runs with equal boundary conditions may not result
in the same solution. Moreover, they are not strictly
complete, but rather asymptotically complete, which
means that there is no guarantee of ϐinding a solution
in ϐinite time. Their Voronoi bias property leads to con-
vergence problems in environments containing nar-
row passages and in the neighborhood of boundary
conditions. Many of those problems can be ϐixed sys-
tematically (see [10]) or heuristically (see [1]) bymak-
ing speciϐic trade-offs. Most of these algorithms rely
on numerical simulation of system’s evolution for ex-
ploring the problem space and make use of no other
system-speciϐic information.

Theothermajor class ofmotionplanners is formed
by grid-based algorithms, which model the problem
space as a multidimensional lattice. That lattice is
searched systematically for a feasible path with algo-
rithms such as Dijkstra, Value Iteration, A* or their
variations [2, 5]. Effectiveness of the planner depends
on choice of the search space and specialization of the
search algorithm. Many search spaces were proposed,
some of them are: control spaces, conϐiguration space
grids with dynamic neighborhoods [8], state lattices
constructed with motion primitives [25] and simpli-
cial decompositions searched continuously [27]. Spe-
cialization of search algorithms is achieved mainly by
redeϐinition of movement costs in the grid and sim-
ple customization of heuristic functions (see [14]).
Some variations of grid-based planners include plan-
ners searching in the preprocessed decompositions of
the problem space such as hierarchical grids, visibil-
ity graphs, etc. Grid-based planners are usually res-
olution complete, i.e. they will always ϐind a solution
in ϐinite time if the grid resolution is sufϐiciently high.
They are deterministic by construction and excel in
low-dimensional problem spaces. Their convergence
rate may be affected by topology of the environment,
but not asmuch as in the case of sampling-based plan-
ners.

Some planners using genetic algorithms [3], math-
ematical programming [12] or other not mentioned
before forms of global optimization can be found. The
vast majority of motion planners is designed to gen-
erate a plan in the form of control signals (e.g. piece-
wise constant control actions or sinusoidal controls),
parametric paths or trajectories. Only a handful of al-
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gorithms employ a plan description in the form of
waypoints [3, 11, 12, 23], despite its advantages such
as lower memory requirements, human readability of
the plan or opportunities for easier replanning and ex-
ecution of the plan.

To achieve the aforementioned advantages, we
propose a two-stage global controller-driven planner
generating a sequence of waypoint positions and ref-
erence orientations at those positions dedicated for
a unicycle driven by the VFO (Vector Field Orienta-
tion) control law. It is designed to exploit the speciϐic
beneϐicial properties of the VFO controller used for
motion execution. During the ϐirst stage of planning,
an occupancy grid of positions with robot direction-
dependent neighborhood is searched with a orange
specialized A*-like algorithm. Previous efforts such as
[7] have shown that such specialization can lead to
faster planning. In our case the specializationwas per-
formed in a controller-driven manner, i.e. with use of
the knowledge about motion execution process spe-
ciϐic to the VFO control law. Novel motion cost-to-
go and cost-to-come deϐinitions are proposed along
with simple, yet effective neighborhood pruning rules.
At the beginning of the second stage waypoint posi-
tions are chosen based on the results of the ϐirst stage.
The second stage of planning is then completed by an
analytic procedure computing reference orientations
to ensure collision-free and sufϐiciently smooth exe-
cution of the waypoint sequence with the VFO con-
troller. Resulting planner works in various environ-
ments andperforms searches in only two-dimensional
problem space as opposed to the three-dimensional
conϐiguration space of a unicycle. Moreover, it auto-
matically plans changes of the motion strategy (for-
ward/backwardmovement) and guarantees collision-
free motion execution in the closed-loop system if the
VFO controller is used. Performance of the planner can
be customized to speciϐic applications with

The paper is organized as follows. In Section 2 we
state the problem under consideration. Section 3 con-
tains information about the VFO controller necessary
to understand the waypoint planning process. Sec-
tion 4 provides a high level view of the planning pro-
cess. Section 5 provides rationale behind choice of the
search algorithm and an in-depth description of mod-
iϐications resulting from specialization of the search.
In Section 6, the second, semianalytic stage of plan-
ning is described. Section 7 contains a brief discussion
of computational complexity issues. In Section 8 we
present simulation results verifying feasibility of the
proposed planner and ϐinally we conclude with some
closing remarks and future plans in Section 9. This
work is an extension to the conference paper [6].

2. Problem Statement
The following assumptionsare made:

A1. The motion environment is structured, i.e. it is fully
known before the planning process begins. Only
static obstacles are considered.

A2. Robot’s footprint is bounded by a rectangular area
of width ar and length br as shown in Fig. 1.

A3. The motion environment is described with a binary
occupancy grid. Grid cells have the width and height
of ϕ [m]. The grid has passages no narrower than
wk = 2

(
ϕ
2 + or

)
[m], where or ,

√
a2r + b2r is the

radius of a bounding circle of the robot shown in
Fig. 1.

A4. The robot has unicycle kinematics described by the
equation:

q̇(t) =

1 0
0 cos θ(t)
0 sin θ(t)

u(t), u(t) ,
[
ω(t)
v(t)

]
, (1)

where t denotes time, q̇(t) is the conϐiguration ve-
locity vector of the robot, q(t) ,

[
θ q∗⊤(t)

]⊤ de-
scribes robot’s conϐiguration, q∗(t) ,

[
x(t) y(t)

]⊤
is the position vector, θ(t) denotes orientation an-
gle of the robot, x(t) and y(t) are coordinates of the
robot’s guidance point as shown in Fig. 1 and u(t)
is the vector of control signals consisting of the an-
gular velocity ω(t) and longitudinal velocity v(t) of
point P .

A5. Motion execution is performed by the VFO con-
troller in the version for thewaypoint-following task
described in details in [23].

A6. External disturbances and measurement noises can
be neglected.
Assumption A1 seems restrictive at ϐirst glance,

but it proves to be reasonable in many applica-
tions targeted by the presented planner. For exam-
ple, robots inspecting buildings in dangerous condi-
tions can be easily equippedwith an up to datemap of
the building. It is also possible to periodically repeat
the planning process with an updated environmen-
tal map. Passage width in assumption A3 is chosen in
such a way that a narrowest passage in the occupancy
grid can be traversed by the robot taking into account
the enclosing circle of it’s rectangular footprint and
the discretization error introduced by the grid. The
unicycle model from the assumption A4 serves as a
generic robot-body kinematics for restricted-mobility
vehicles. Thus, as a consequence, proposed algorithm
could be applied to robots with more complex kine-
matics, e.g. car-like robots (see [22]). An application
to skid-steering robots is also possible (see [20]). As-
sumption A5 is extensively discussed in Section 4.

Planning the waypoint-following task consists of
ϐinding three sequences:

Q , {qd1; qd2; . . . qdN}, (2)
Σ , {σ1;σ2; . . . σN}, (3)
M , {µ1;µ2; . . . µN}, (4)

whereqdi =
[
θdi xdi ydi

]⊤
, i = 1, . . . , N is an i-th

waypoint conϐiguration, Q is the set of waypoint con-
ϐigurations, Σ is the set of motion strategy variables
(1 for forward motion, −1 for backward motion), and
M is the set of waypoint relative directing coefϐicients.
Motion strategy variables determine whether the par-
ticular waypoint should be realized by forward or
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backward motion of the robot. Ability to plan changes
in motion strategy helps in challenging environments,
as will be shown in Section 8. The anticipated path
drawn by the robot duringmotion execution is shaped
by relative directing coefϐicients from setM , which in-
ϐluence themanner in which the robot approaches the
waypoint (see Section 3). Sets Q, Σ and M should be
such that motion execution of the plan with an initial
condition q0 will be collision-free andwill complete in
ϐinite time under assumptions A1-A6. Motion execu-
tion is collision free if ∀t > 0 : C∗R ∩ C∗obs = ∅, where
C∗obs is the subset of position space occupied by obsta-
cles according to the occupancy grid from assumption
A3, and C∗R is the subset of position space occupied by
the enclosing circle of the robot’s footprint according
to assumptionA2.Motion execution ends in ϐinite time
if

∃ tN <∞ : ∀t ≥ tN ||q∗
dN − q∗(t)|| ≤ ϵN , (5)

where || · || denotes an Euclidean norm and ϵN > 0 is
a prescribed vicinity of zero.

o

Fig. 1. A unicycle-like robot with a rectangular
footprint ar × br and guidance point P(x, y)

3. A Brief IntroducƟon to the VFO Control Law
The waypoint-following control task is treated as

a sequence of set-point control tasks, as in [23]. The
controller switches to the (i + 1)-st waypoint when
the robot enters an ϵi ball centered at the currentway-
point, i.e. when ||q∗

di − q∗(t)|| ≤ ϵi. Let us consider
execution of a single motion segment - the movement
between (i− 1)-st and i-th waypoint.

The VFO control law is decomposed into the push-
ing control v(t) and the orienting control ω(t). The
orienting control aligns the conϐiguration vector of
the robot with the convergence vector ϐield hi(t). The
pushing control moves the robot along the direction
resulting from the inϐluence of the orienting control
on the system. Such separation results in the follow-
ing control law for a unicycle during execution of the
i-th motion segment:

ω , hai(t) = kaeai(t) + θ̇ai(t), (6)
v , σiρ̄i(t) cos eai(t), (7)

hi(t) =

[
hai(t)
h∗
i (t)

]
,

hai(t)
hxi(t)
hyi(t)

 , (8)

eai(t) , θai(t)− θ(t), (9)
θai(t) , Atan2c(σihyi(t), σihxi(t)) ∈ R1, (10)
h∗
i (t) , kpe

∗
i (t) + v∗

i (t), (11)

θ̇ai =
ḣyihxi − ḣxihyi

h2
xi + h2

yi

, h2
xi + h2

yi ̸= 0, (12)

e∗i (t) , q∗
di − q∗(t), (13)

v∗
i (t) , −kpµiσi||e∗i (t)||

[
cos(θdi)
sin(θdi)

]
, (14)

µi =
ηi
kp

, (15)

ρ̄i(t) ,
{
U2

||h∗
N (t)||

||h∗
N (tN−1)|| for i = N,

U2 otherwise,
(16)

where a design parameter ka > 0 is the orienting con-
trol gain, θai is the auxiliary orientation, eai denotes
the auxiliary orientation error, ρ̄i(t) ≥ 0 is the longitu-
dinal velocity proϐile, ti is the time of switching to the
(i+1)-st waypoint,U2 = const > 0 is a design param-
eter,hi(t) is the convergence vector ϐieldwith position
components hxi(t), hyi(t) and an orientation compo-
nent hai(t), σi ∈ {1,−1} is the decision variable de-
termining the motion strategy (forward or backward
movement), a design parameter kp > 0 is the pushing
control gain, e∗i (t) denotes the position error,v∗

i (t) de-
notes the virtual velocity vector with a directing coef-
ϐicient ηi ∈ (0, kp), and ϐinallyµi ∈ (0, 1) is the relative
directing coefϐicient. Deϐinition of the velocity proϐile
ρ̄i(t) is the same as the one proposed in [23]. It has no
inϐluence on the planning process described in this pa-
per. Operator Atan2c : R × R 7→ R is a continuous
version of the standard Atan2(·) : R×R 7→ (−π, π]
function, which is deϐined in [21]. Auxiliary orien-
tation θai is determined by the position component
h∗
i (t) of the convergence vector ϐield.
Consider that eai(t) = 0 =⇒ θ(t) = θai(t). It

means thatwhen eai(t) = 0, the conϐiguration velocity
of the robothas the samedirectionand turnas the con-
vergence vector ϐield hi(t). The purpose of the orient-
ing controlω is to achieve such a convergence. It canbe
seen from thedeϐinition ofω that the auxiliary orienta-
tion error eai converges to zero exponentially fast de-
pending on ka. Value of the pushing control v depends
on the application-speciϐic velocity proϐile function ρ̄i,
motion strategy σi and the auxiliary orientation error.

The relative directing coefϐicientµi changes the in-
tensity of the so called directing effect. When the di-
recting effect is intensiϐied, the magnitude of virtual
velocity v∗

i (t) increases and the auxiliary orientation
θai(t) converges faster to the waypoint orientation
θdi(t). This effect is shown in Fig. 2 and discussed fur-
ther in [21]. The ability to shape the path drawn by
the robot using the relative directing coefϐicient µi is
crucial in the second stage of the proposed planning
algorithm, which is described in Section 6.
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Fig. 2. Influence of the relaƟve direcƟng coefficient µi

on the path drawn by the robot during the VFO
set-point control process

4. A Controller-driven Planning Strategy
The motion plan is only as good as it’s execution,

since the only path we are really concerned with in
practice is the path drawn by the robot, as opposed to
the planned one. Controllers possessing speciϐic prop-
erties, such as the VFO controller, can substantially re-
duce the complexity of the planning process by tak-
ingover someof theplanner’s responsibilities. This re-
duction in complexity of the solution is achieved in our
case thanks to the directing effect mentioned earlier.
A particular manner of approaching to the waypoint
can be speciϐied naturally without placing additional
waypoints in the plan. In light of the above beneϐits, we
propose a dedicated planner designed to exploit spe-
ciϐic properties of the closed-loop systemwith theVFO
controller, hence the name controller-driven planning
strategy.

The controller-driven planning process shown in
Fig. 3 proceeds as follows. First is the combinato-
rial stage, which consists of ϐinding a collision-free
path (in the sense of graph theory) in the occupancy
grid representing the environment. Linear interpola-
tion between positions of cells in the grid belonging
to the solution of the search forms a piecewise rec-
tilinear geometric path. That geometric path will be
called the geometric plan in the sequel. While the al-
gorithm of searching the occupancy grid for geomet-
ric plan is conceptually similar to many other plan-
ners, it is heavily specialized here to provide results
most convenient to process during the second plan-
ning stage. Worth noting that the shape of the geo-
metric plan implicitly determines the motion strat-
egy (forward/backward movement) during execution
of consecutivemotion segments. Proposed controller-
driven planner is somewhat similar to the hierarchical
geometric motion planners. In both cases a geomet-
ric plan is generated as an intermediate step, as in-

dicated by red rectangles in Fig. 3. Blue rectangles in
Fig. 3 highlight areas using knowledge about the mo-
tion execution stage. In contrast to hierarchical geo-
metric planners, proposed controller-driven planner
utilizes the knowledge about the motion execution
stage during the second stage of planning denoted by
green rectangles in Fig. 3. As a consequence, genera-
tion of parametric reference paths is bypassed in our
approach by generation of waypoints based upon re-
sults of the ϐirst stage of planning.

Analytic planningprocedure from the second stage
is responsible for ensuring that robot’s motion dur-
ing the waypoint-following task is collision-free and
sufϐiciently smooth under the assumptions A5 and
A6. Thanks to this stage, there is no need to perform
any combinatorial search in the space of orientations.
Nonholonomic constraints of a unicycle are taken into
account only during the second stage of planning. As
a consequence, cell processing during combinatorial
search in the ϐirst stage is relatively fast and simple.
This is crucial for planningperformance, because com-
binatorial search accounts for the majority of time
spent planning. Particularmotion planning stageswill
be described in details in Sections 5 and 6, respec-
tively.

Execute-controller-π-on-the-robot

Stage-I:-Find-a-geometric-path-

Stage-II:-Process-the-path-

to-satisfy-constraints

Design-a-feedback-controller-π-

A-priori-knowledge-about-

constraints-of-the-robot

A-priori-knowledge-about-

dynamics-of-the-closed-loop-

system-with-π-controller

Stage-II:-Compute-waypoint-

positions-and-orientations

Hierarchical geometric planning Controller-driven planning 

Stage-I:-Find-a-geometric-path-

Fig. 3. Comparison of the hierarchical geometric
moƟon planning and the proposed controller-driven
planning approach

5. Stage 1: Planning PosiƟons of theWaypoints
5.1. Combinatorial Search in the Occupancy Grid

Combinatorial search for the best geometric plan
according to a speciϐied edge cost is usually performed
with a variation of the Value Iteration or Dijkstra algo-
rithms. We assume that edge costs in the occupancy
grid, i.e. costs of movement between it’s cells will
be positive. It means that a greedy variation of the
Dijkstra algorithm, namely A*-like algorithm, can be
used. There are speciϐic requirements for the geomet-
ric plan. Namely, it must be relatively short and above
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all safe, i.e. it should lie sufϐiciently far from the occu-
pied grid cells. These requirements, along with guide-
lines speciϐic to the second stage of motion planning,
are reϐlected in the domain-speciϐic modiϐications of
the search algorithm described in Subsection 5.2.

Before describing proposed modiϐications, let us
recall the basics of any A*-like algorithm. The goal of
the search is to ϐind a geometric plan connecting the
start cell (represented by the variable “startNode”)
with the goal cell (represented by the variable “goalN-
ode”). Coordinates of start cell and goal cell are ob-
tained by quantizing the initial condition q0 and the
goal conϐiguration qdN respectively. It is assumed that
the quantization step is ϕ [m]. The search procedure
guarantees eventual checking of all possible solutions
by construction, because all encountered neighbors
are placed in the ordered queue called the “priori-
tyQueue” (lines 1 and 19) and processed in a best-ϐirst
manner. It means that any A*-like algorithm is com-
plete, regardless of the ordering of elements in the
“priorityQueue”. The key for ordering of unprocessed
cells is the “EstimatedCost” variable (line 18) also de-
noted by f , which is deϐined as follows:

f , g + h. (17)

It has two components. The ϐirst one – “CostToCome”
(lines 14 and 17), also denoted by g, represents the
movement cost of the best geometric plan connecting
start cell to the currently processed cell. The second
component is a result of the “heuristic” function (line
18), also denoted by h, representing the heuristic esti-
mate of the movement cost resulting from the traver-
sal of the remaining, yet unknown, portion of the ge-
ometric plan. Cost-to-come and estimated cost-to-go
can be changed ϐlexibly to obtain desired performance
of the algorithm, as long as they are positive. Result of
the search is a semioptimal geometric plan connecting
the initial conϐiguration q∗

0 with the goal conϐiguration
q∗
dN .

5.2. A specialized A*-like algorithm

Proposed search algorithm utilizes a particular
deϐinition of a neighbohood in the occupancy grid. It
is comparedwith the standard omnidirectional neigh-
borhood in Fig. 5. Let us deϐine λ(c) ,

[
λx λy

]⊤ as
a position of cell’s center in the conϐiguration space.
The neighborhood of a cell c is determined by a direc-
tion of the vector dp ,

[
dpx dpy

]⊤
= λ(c) − λ(p),

where cell p is a predecessor of cell c in the current
best path in the graph to currently processed cell c.
Analogically to the deϐinition of cell p, we deϐine pp
as a predecessor of cell p. Neighbor positions and mo-
tion strategy (forward/backwardmovement) at those
positions are directly dependent on current direction
of the path. A set of cell neighbors S , F ∪ B con-
tains neighbors F , {ff , fl, fr} attainable by mov-
ing forward in two diagonal directions and in straight
direction relatively to the direction of dp. Neighbors
B , {bl, br} attainable by moving backwards in two
diagonal directions relatively to the direction ofdp are

also included in the set of neighbors S. Neighbors at-
tainable by straight backward movement are pruned
to prevent the search from unnecessary generation of
cycles in the geometric plan. Thanks to the analysis
conducted in [7], neighbors attainable bymovement in
directions perpendicular to the direction ofdp are also
pruned. Movement in those directions occurs in the
geometric plan only when it is forced by an immediate
neighborhood of an occupied cell while searching for
the shortest geometric plan. As discussed in Subsec-
tion 5.1, in this application we are not concerned with
the shortest geometric plans in the occupancy grid,
but with ones relatively distant from the obstacles.
Moreover, since assumptionA3holds, processed occu-
pancy grid cannot contain passages so narrow that 90
degree turns could be forced. Thus, mentioned neigh-
bors can be safely pruned without losing complete-
ness of the search. Finally, proposed smaller neigh-
borhood implies a 37.5 percent lower branching factor
of the processed graph, since only 5 neighbors in the
grid are considered instead of all 8 usually considered
neighbors (see Fig. 5). Lower branching factor leads to
lower computational cost of the search process.

Choice of the motion strategy during the combi-
natorial search is a consequence of assumed neigh-
borhood deϐinition. The search algorithm labels pro-
cessed grid cells with an additional variable σ ∈
{1,−1} signifying the motion strategy used while
traversing the cell. The same cell can have two entries
in the “priorityQueue”, one for forwardmovement and
one for backwardmovement. The current value ofmo-
tion strategy is maintained during the search. It is
assigned to every cell visited during the search. If a
neighbor from the set B is chosen, current motion
strategy changes to the opposite value. In other cases
current motion strategy remains unchanged. Result-
ing geometric plan contains information aboutmotion
strategy for every relevant cell of the grid. This con-
cept is easier to grasp, when one visualizes the search
process as a search in two interconnected occupancy
grids, as can be seen in Fig. 7.

Combinatorial search is performed in the domain
of robot positions, but information about initial ori-
entation θ0 and goal orientation θdN can be used to
choose a geometric plan most compliant with them.
Generation of such plans helps in simplifying the sec-
ond stage of planning and minimizing the auxiliary
orientation error ea(0) at the beginning ofmotion exe-
cution. Simulation studies have shown that the follow-
ing two simple techniques of neighborhood pruning
are effective, outperforming even very elaborate re-
deϐinitions of motion cost functions. At the beginning
of the combinatorial search one chooses dp to satisfy
Atan2 (dpy,dpx) = θ0. At the end of the combinatorial
search all the neighbors s ∈ S of the currently pro-
cessed cell c satisfying |Atan2 (sy, sx)− θdN | > π

4 are
pruned, as can be seen in Fig. 6.

The last specialization of the search algorithm is
a new deϐinition of the motion costs, namely the cost-
to-come g and the estimated cost-to-go h. They are de-
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1: priorityQueue← ∅
2: startNode←mapToGraph(q∗

0)
3: goalNode←mapToGraph(q∗

dN )
4: priorityQueue.Insert(startNode)
5: visit(startNode)
6: while priorityQueue ̸= ∅ do
7: processedNode← priorityQueue.RemoveFirst()
8: if processedNode== goalNode then
9: return reconstructPath(goalNode)

10: markAsClosed(processedNode)
11: for all neighbor ∈ neighbors(processedNode) do
12: if (wasClosed(neighbor) then
13: continue
14: tentativeCost← processedNode.CostToCome + neighbor.MovementCost
15: if !priorityQueue.Contains(neighbor) || tentativeCost< neighbor.CostToCome then
16: neighbor.Parent← processedNode
17: neighbor.CostToCome← tentativeCost
18: neighbor.EstimatedCost← neighbor.CostToCome + heuristic(neighbor, goalNode)
19: priorityQueue.Insert(neighbor)
20: return SearchFailed

Fig. 4. The iteraƟon process of an A*-like algorithm

ϐined as follows:

h(c, p) , g(c, p) [sf ||q∗
dN − λ(c)|| − 1] , (18)

g(c, p) , mcsc [g(p, pp) + ||λ(c)− λ(p)||] , (19)

sf ,

√
D̂

min(D)
, (20)

sc , 1 +
ks

ϕ exp(min(D))
, ks ≥ 1 (21)

D , {d1, d2, d3, d4} , (22)

D̂ , (d1 + d2 + d3 + d4)

4
, (23)

with

mc ,


0.9 if c keeps current motion direction,
1.1 if c changes the motion strategy,
1.0 otherwise,

(24)

where ϕ is the cell size, g is the cost-to-come from
q∗
0 to λ(c), h is the estimated cost-to-go from λ(c)

to q∗
dN . The safety coefϐicient sc is a measure of cell

safety, which is a nonlinear function of the minimum
element of the setD. SetD contains distances to near-
est occupied cells in the directions dependent on the
vector dp, much like in the case of neighborhood de-
scribed previously (see Fig. 5). D̂ denotes an arith-
metic mean of elements in D. Directional coefϐicient
mc slightly modiϐies the motion cost to favor geomet-
ric plans with lower number of edges and fewer mo-
tion strategy changes. It was chosen empirically, but it
does not depend on topology of the grid. Safety coefϐi-
cient sc is designed in such a way, that cost-to-come
g grows rapidly for cells lying near the obstacles. It
can be seen from equations (18) and (20) that cost-
to-come g is actually scaled by the value of safety coef-
ϐicient sc. It can be easily veriϐied that sc|min(D)=0 = 2

and sc|min(D)→∞ = 0. Moreover, thanks to the term
exp(min(D)), the safety coefϐicient sc decreases fast
and monotonically with respect to the shortest dis-
tance to an obstacle. Worth noting that it is crucial for
sc to beboundedas in the abovedeϐinition. If the safety
coefϐicient sc could grow to arbitrary large values, the
importance of safety in cost-to-come could not be con-
trolled. The importance of plan safety can be tuned
with the safety gain ks ≥ 1. Higher values of ks result
in longer, but safer paths. On the other hand, if ks is so
high, that the coefϐicient sc is dominant in the cost f ,
geometric plan becomes unnecessarily long and num-
ber of processed cells rises signiϐicantly. The scaling
coefϐicient sf , dependent on the mean D̂, is designed
to amplify the effect of the safety coefϐicient sc in wide
passages of the environment.

Remark 1. Tuning of the proposed A*-like search algo-
rithm is performed only by changing the safety gain ks
and cell sizeϕ. All other termsused in (14) are computed
automatically. One could also experiment with different
deϔinitions ofmc.

Deϐinitions (18–23) are a result of extensive em-
pirical studies providing insight into the interactions
between motion costs and other components of the
planner. Proposed speciϐic dependency of both cost-
to-come g and estimated cost-to-go h on the distance
from obstacles results in a global inϐluence of this dis-
tance on the choosen path, as opposed to local inϐlu-
ence present in many existing algorithms (see [2]).
It means that different (precisely: homotopically in-
equivalent) passages in the occupancy grid will be
chosen, depending on their inϐluence on safety of the
geometric plan. The estimated cost-to-goh is inadmis-
sible (see [9]) by design, i.e. it overestimates distance
to the goal. Such a choice can be useful in some sce-
narios as indicated in [19,24]. In this case, the heuris-
tic function hwas designed to better direct the search
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Fig. 5. Proposed direcƟon-dependent neighborhood
(on the boƩom) in the occupancy grid in comparison to
the standard neighborhood (on the top)

when the inϐluence of the safety coefϐicient sc is signif-
icant. In deϐinition (18) estimated cost-to-go is scaled
by the cost-to-come of a particular grid cell, hence it
inherits the useful properties of the cost-to-come out-
lined above. This scaling results in inϐlation of the esti-
mated cost-to-go for cells lying close to obstacles. No-
tice that the scaling coefϐicient sf ≥ 1 inϐlates the esti-
mated cost-to-go for cells lying far from theVoronoi di-
agram of the environment. It means that in broad pas-
sages of the environment, where safety coefϐicient sc
is low, the heuristic function h remains highly depen-
dent on the distance to obstacles with the help of scal-
ing coefϐicient sf . Such adesign results in a lowernum-
ber of processed cells than in the case of algorithms,
which use information about distance from the obsta-
cles only in the deϐinition of cost-to-come.

Remark 2. Proposed choice of inadmissible and in-
consistent heuristic function h results in generation of
semioptimal solutions in terms of a total cost-to-come.
However the task at hand does not require optimal so-
lutions, since we are concerned with ϔinding sufϔiciently
safe and short paths, as opposed to shortest or safest
paths.

Remark 3. The A*-like search algorithm presented in
the paper is complete regardless of chosen heuristic
function h, since eventually all potential feasible so-
lutions will be checked (see the discussion of forward
search [17]). Worth noting that the map area processed
by the search algorithm with our heuristic function is
lower than the area processed by Dijkstra search. This
indicates that the proposed heuristic function is indeed
serving its purpose, which is to guide the search towards
more promising grid cells.

Fig. 6. Neighbor pruning based on the goal orientaƟon

c fp

fl ffff

c

bp

bl

forward movement subgraph

backward movement subgraph

Fig. 7. VisualizaƟon of cells corresponding to different
moƟon strategies in separate subgraphs

5.3. Processing the Results of Combinatorial Search
Thanks to modiϐications described in Subsection

5.2, generated geometric plan lies sufϐiciently far from
the obstacles and has turning points in places, where
the traversed passage changes signiϐicantly (i.e. when
a sharp turn or a sudden transition to a narrow
passage occurs). Moreover, the motion strategy can
change only at turning points of the geometric plan.
Given the above, we propose choosing every turning
point of the geometric plan as a waypoint position.
Waypoints corresponding to turning points of the geo-
metric plan are augmentedwith additional intermedi-
ate waypoints placed on the polyline constituting the
geometric plan in such amanner that subsequentway-
points lie no further away from each other than pre-
scribed distance l. Motion strategy value assigned to a
cell containing an i-th turning point of the geometric
plan is assigned as a value ofmotion strategyσi for the
correspondingwaypoint and all the intermediateway-
points contained in the i-th segment of the geometric
plan.

Remark 4. Distance l should be tuned to achieve de-
sired compromise between low waypoint count and in-
creased safety of motion execution resulting from prox-
imity of subsequent waypoints. Note that, while various
strategies of adding intermediate waypoints could be
employed, the waypoint sequence must contain all the
turning points of the geometric plan.
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6. Stage 2: Planning the Reference Orienta-
Ɵons

6.1. Recursive ComputaƟon of Reference OrientaƟons

In the second stage of planning, an effective ap-
proach to planning desired reference orientations θdi
for waypoints proposed in [23] is utilized. The plan-
ning process begins from the goal conϐiguration qdN
and proceeds back to the initial condition q0. Refer-
ence orientation θdi of the i-th point should be cho-
sen in such a way, that the robot will not turn abruptly
after switching to execution of the (i + 1)-st point.
To achieve this, the auxiliary orientation θai(t) should
be continuous during the whole time of motion exe-
cution. Let us assume, for the purpose of subsequent
considerations, that motion execution is perfect, i.e.
ea ≡ 0 and waypoints are switched precisely at ref-
erence positions, i.e. for ϵi ≡ 0. Under those as-
sumptions, auxiliary orientation will be continuous if
θdi = θai+1(ti), where ti denotes the time instant
when switching to the (i+1)-st waypoint occurs. Con-
sidering that q∗(ti) = q∗

di, the auxiliary orientation
θai+1(ti) can be computed easily from (10) yielding
the desired reference orientation θdi. Computation of
the auxiliary orientation θai+1(ti) requires knowledge
of the relative directing coefϐicientµi+1. Description of
howµi+1 canbe chosen is provided in the next subsec-
tion.

6.2. Determining the RelaƟve DirecƟng Coefficients

Effective choice of the relative directing coefϐicient
µi is paramount to safety and smoothness of the re-
sulting motion plan. It is evident, that if no nonholo-
nomic constraints were present in the system, geo-
metric plan could be used directly. The presence of
kinematic constraints of the unicycle makes the ge-
ometric plan unfeasible, since the robot would have
to stop and turn in place at every turning point of
the plan.In other words, since continuity of the aux-
iliary orientation θai(t) has to be ensured, the geo-
metric plan can only be approximated by the robot’s
path. Relative directing coefϐicients µi should be cho-
sen in such a way, that the resulting robot’s path will
be smooth enough to avoid intermediate stopping or
abrupt turns. At the same time, robot’s path cannot lie
far from the geometric plan to avoid collisions.

Let us analyze the two extreme choices of µi. Fig-
ure 8 (blue path) illustrates the ϐirst choice µi = µai,
where µai is a value of relative directing coefϐicient
guaranteeing that:

θdi−1 = Atan2 (wyi−1, wxi−1) , (25)
wi =

[
wxi wyi

]⊤ , q∗
di − q∗

di−1, (26)

where wi is the position error after switching to the
i-th waypoint assuming perfect motion realization. If
the ϐirst motion segment is analyzed, wi can be con-
structed easily by taking into account the initial ori-
entation θ0. Guaranteeing satisfaction of relation (25)
results in a closest possible ϐit of the path drawn by
the robot to the (i − 1)-th segment of the geometric

plan. The value ofµai can be computed analytically us-
ing the following formulas:

µai ,


µmin if µ̂ai < µmin,

µmax if µ̂ai > µmax,

µ̂ai otherwise,
(27)

µ̂ai ,
wyi − wxictg (Atan2 (wyi−1, wxi−1))

||wi||
. (28)

Additional limits µmin < µai < µmax are im-
posed on the relative directing coefϐicient for two rea-
sons. Firstly, for very high relative directing coefϐi-
cients, maximal curvature of path drawn by the robot
will be high and the path will be similar to a poly-
line. Secondly, µmin imposes a minimal acceptable
smoothness level of robot’s motion. Equation (27) can
be derived in two steps. Firstly the point zi seen in
Figs. 8–10 is computed using simple geometric rea-
soning and then using it’s position, the length of vec-
tor v∗

i (ti−1) is computed (see Figs. 8-10). Secondly,
µ̂ai is computed fromEq. (14) using the expression for
||v∗

i (ti−1)|| derived before.
While in the situation from Fig. 8 choosing

µi = µai is acceptable, it often results in a poor ϐit of
the robot’s path to the i-th segment. Also, it makes no
sense for the ϐirst motion segment. To achieve a clos-
est possible ϐit of the robot’s path to the i-th segment,
one has to set µi to the lowest possible value µmin. It
can be seen in Fig. 10 (blue path) that such extreme
choice reduces length of the virtual velocity v∗

i (t) to a
very small value and effectively forces the robot to fol-
low an almost straight line towards the next waypoint
just like in the geometric plan.

We propose a choice resulting from a compromise
between the two opposing criteria outlined above. It is
illustrated in Fig. 11. The relative directing coefϐicient
µi is computed as follows:

µi ,
||wi||µmin + kf ||wi−1||µai

||wi||+ kf ||wi−1||
, (29)

where kf ∈ (0,∞) is a design parameter signifying a
the priority of the geometric plan during the computa-
tion of the relative directing coefϐicient. Lower values
of kf result in robot’s paths following the geometric
plan more closely, but less smoothly. Formula (29) is
a simple weighted average with weights assigned ac-
cording to the length of particular motion segments.

Choosing large value of kf for traversing narrow
passages could lead to robot’s paths colliding with ob-
stacles. To remedy this problem, we propose a com-
putationally inexpensive collision test performed for
every segment during the second stage of planning.
It can be proven that when eai(t) ≡ 0, a sign of the
angular velocity ω of the robot does not change dur-
ing execution of a singlemotion segment. This fact im-
plies that path drawn by the robot during the execu-
tion of the i-th motion segment is contained within a
triangle constructed from the following points: begin-
ning of the segment q∗

di−1, end of the segment q∗
di and

the point zi shown in Figs. 8–10. That relation holds
regardless of chosen relative directing coefϐicient µi.
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Fig. 8. Planning for the best fit of the path drawn by
the robot in (i− 1)-st moƟon segment
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Fig. 9. Actual complexity of the proposed combinatorial
search as a funcƟon of a geometric plan length

For every motion segment, after computing the rela-
tive directing coefϐicient µi, all cells of the occupancy
grid lying inside of thementioned triangle are checked
for occupancy. If at least one cell is occupied, the al-
gorithm falls back to choosing µmin for this particular
motion segment and the collision check is repeated. If
the second collision check fails, the algorithm signals
failure to generate a feasible motion plan. It means
that the whole motion planning process is not com-
plete for some unfavorable choices of the design pa-
rameters. Placement of additional waypoints men-
tioned in Subsection 5.3 and the speciϐic deϐinition of
grid neighborhood from Subsection 5.2 helps with the
aforementioned issue of collisions. They result in a
more dense waypoint placement in narrow passages
of the environment. Increased number of waypoints
implies an increased number of motion segments and,
as a consequence, increased number of relative direct-
ing coefϐicients µi that can be used to shape robot’s
motion in the second stage of planning. Worth not-
ing, that the proposed strategy results in lower num-
ber of waypoints than an alternative strategy of plac-
ing them in the small ϐixed distance from each other.
Plans with lower number of waypoints are obviously
easier to process, store and execute.
Remark 5. In practice, one should choose sufϔiciently
low values of design parameters kf , µmin and distance
l to guarantee that the path drawn by the robot lies suf-
ϔiciently close to the geometric plan in targeted environ-
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yG q*di-1

v*i

μmin
μai

θdi

(ti-1)

kp

q*di

q*di-2

μminμi=

zi

Fig. 10. Planning for the best fit of the path drawn by
the robot in i-th moƟon segment
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Fig. 11. Planning for a good fit of the path drawn by
the robot in both (i− 1)-st and i-th moƟon segment
(µs =

µai+µmin

2 )

ments.

7. Comments on ComputaƟonal Complexity
The plot aggregating acquired simulation results

in Fig. 9 shows how the proposed combinatorial
search algorithm scales with the length of result-
ing geometric plan. It is evident that the number of
processed cells scales exponentially. That result is
congruent with theoretical computational complexity
bounds of A*-like algorithms provided in [26]. Pro-
cessing of a single cell happens in a constant time in-
terval if one assumes that computational complexity
of ϐinding the set D is O(1). Such assumption is rea-
sonable, since it is possible to ϐind this set in amortized
constant time (e.g. by means of caching).

The second stage of the planning process has the
computational complexityO(N), whereN is the num-
ber of waypoints in the plan. Despite that fact, the
proposed algorithm may not be suitable for fast re-
planning in very big (i.e. bigger than 4000 cells) oc-
cupancy grids due to the nature of the combinatorial
search procedure. In such applications proposed plan-
ner could be used with a hierarchical representation
of the environment to mitigate the issue of long com-
binatorial searches.
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8. SimulaƟon Results
In this section results of selected simulations ver-

ifying effectiveness of the proposed planner are pre-
sented. The following notational convention has been
assumed: triangles denote conϐiguration of the robot
at waypoints, green triangle corresponds to initial
conϐiguration q0, red triangle corresponds to goal con-
ϐiguration qdN , processed occupancy grid cells are
marked with black „+” marks, ϐinally colored curves
show paths drawn by the robot resulting from simu-
lated motion execution with the utilization of the VFO
controller described in Section 3 and [23]. The follow-
ing design parameters are common to all presented
scenarios unless speciϐied otherwise: ks = 1, kp = 5,
ka = 10, ar = 0.2m, br = 0.3m, µmax = 0.95 and
ϵi = 0.001m. For scenarios S1-S6 kf = 5 and µmin =
0.2was chosen. For other scenarios designparameters
were changed to kf = 10 and µmin = 0.3. For maps
used in scenarios S4-S6 resolution ϕ = 0.4mwas cho-
sen. Maps from other scenarios were processed with
ϕ = 0.29m.

Effectiveness of the algorithm is demonstrated in
Fig. 12. Proposed combinatorial search procedure has
processed only a fraction of unoccupiedmap cells. The
global inϐluence of narrow passages on the motion
planning process can be seen in Fig. 14, scenario S4.
Generated plan is longer, but safer than its shortest
counterpart. Inϐluence of the design parameters ϕ and
kf on the path drawn by the robot can be observed
in Fig. 17. Changes in kf have in fact the exact conse-
quences discussed in Section 6. Repeated simulation
of scenario S2 shown in Fig. 15 illustrates the inϐlu-
ence of the safety gain ks on planning of motion strat-
egy (forward/backward motion). Additional changes
in motion strategy (forward/backward motion) have
been planned to achieve a safer traversal of a very
narrow corridor towards the ϐinal waypoint. This sce-
nario shows, that when motion safety is a priority,
the safety gain ks should be set to high values. Low-
ering the value of ks signiϐicantly will lead to a situa-
tion where narrow passages will be chosen by the al-
gorithm to optimize the length of the geometric plan.
Scenario S7 in Fig. 13 contains a typical benchmark „U-
shaped” obstacle (see [17]). A longer, but safer way-
point sequence avoiding narrow passages has been
planned in this case. The „U-shaped” obstacle, which
generates deadlocks formany algorithmsbasedonpo-
tential ϐields, has beenavoidedhere. Scenario S8 inFig.
16 contains another benchmark environment shape,
namely the „zig-zag” pattern (see [17,18]) designed to
test algorithm’s ability to plan smooth travel around
corners intertwined with narrow passages. One can
observe how the motion strategy (forward/backward
motion) changes to traverse a particularly demand-
ing corner and a smooth robot’s path unattainable for
many classic planners focusing on shortest paths. Sce-
nario S9 in Fig. 18 shows performance of the proposed
algorithm in an environment with topology similar
the building of the Faculty of Electrical Engineering
at Poznań University of Technology. The environment
contains very narrow passages intertwined with long,
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Fig. 12. SimulaƟon scenarios S1, S2 and S3 with
different iniƟal and goal configuraƟons
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Fig. 13. SimulaƟon scenario S7

wide passages to test performance of the planner in
more spacious environments. Despite the fact that no
design parameters were specially tuned for this task,
it’s execution succeeded.
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Fig. 17. The influence of design parameters ϕ and kf
on the plan and its execuƟon
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Fig. 18. SimulaƟon scenario S9 uƟlizing the map of the building of Faculty of Electrical Engineering at Poznan
University of Technology
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9. Conlusions
In this paper a global two-stage motion planner

for the waypoint-following task realized in a clut-
tered environment was proposed for a unicycle-like
robot. Structure of the proposed solution is a result
of a controller-driven approach to motion planning
and particular beneϐicial properties of the VFO con-
troller. Simulation studies have shown that the pro-
posed planning algorithm can be effective for vari-
ous topologies of the environment, leading to safe
plans with maximized distances from obstacles. Per-
formance of the planner can be adapted to a speciϐic
application intuitively by tuning the provided design
parameters. Unlike many other planners presented to
date, proposed solution directly takes into account dy-
namics of the closed-loop system evolving during mo-
tion execution stage. In the near future, authors are go-
ing to apply the presented controller-driven method-
ology to motion planning problems in the presence of
motion curvature constraints imposed on the vehicle
motion.
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