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Abstract:
This arƟcle describes interacƟve methods that can ease
difficult manipulaƟon tasks in Search & Rescue opera-
Ɵons. We discuss the requirements that are necessary for
a telemanipulaƟon system to be successfully used. These
include not just correctness of generated moƟon but also
ergonomy, mobility and interacƟvity of the operator’s in-
terface. We show that grippers with one or more degrees
of freedom can be intuiƟvely controlled by different inter-
face mechanisms, supported by 3D vision systems. Tests
are performed both in the simulaƟon environment and
with real grippers. A pracƟcal pipeline for a direct control
and learning the system is also presented.

Keywords: Intefraces, Human-Robot InteracƟon, ROS, Vi-
sion Systems

1. IntroducƟon
Successful gripping and manipulation is a key

ability in exploratory and rescue tasks. Such opera-
tions require cooperation between people and robots,
thereby giving the operator the ability to work in dan-
gerous and/or inaccessible environments where ex-
perience, cognitive skills and decision making ability
is needed [35].

However, telemanipulation in rescue or explo-
ration tasks can be very complicated and stressful for
operators. Robots are usually used in places where
direct human activity is difϐicult (traversing through
rubble), dangerous (inside a nuclear reactor) or im-
possible (outer space). Additionally, the operator’s
cognitive ability is limited by the range andmodalities
of a robot’s sensors and transmission bandwidth. For
the successful telemanipulation in exploratory or res-
cue tasks, the robot’s control systemmust be equipped
with a number of properties ranging from features re-
lated to the nature of the task; through to human psy-
chology, preferences and skills; and up to ergonomy.
Wehave compiled a list of themost important features
– collected into the three categories described below.
Although these requirements concern the whole con-
trol system, in this article we focus only on the task of
the gripper control.

Certainty and conϐidence. Those operators who
trust their control interfaces can use their robots
with higher speeds and in more aggressive maneu-
vers which results in a much faster realization of the
task. It also lessens operators’ fatigue because they do
not need to always add a safety margin in their deci-
sion making. Instead of focusing on basic robotic be-

haviours, they can work at the higher level of task ab-
straction, such as planning of the whole route.

By contrast, a low level of trust, especially in a
stressful situation could result in failure of the whole
mission. For example, the ϐirst robot used in explor-
ing the Fukushima reactor –Quince –was immobilised
when the operator became distrustful of the robot’s
automated path planning algorithm and switched to
manual control mode, allowing the robot to become
entangled in its own power tether [38].

Robot designers can increase conϐidence through
well chosen and clearly presented feedback informa-
tion about the state of the mission (i.e. gripping stage,
encountered problems, expected problems), and colli-
sion prediction and prevention.

Limited training. Currently, mobile ϐield robots
are mostly used by teams of experts for very spe-
cialised tasks such as bomb diffusion or deep sea ex-
ploration. This, by itself, requires an enormous proϐi-
ciency, experience and skills. Robots could be used in
a much wider range of exploratory and rescue tasks.
This would, however, require a simple interface so
that the training was unnecessary or restricted to a
minimum. Sometimes in rescue situations, it is nec-
essary that the equipment is run by untrained people
who happen to be available at the time. This might be
a case of mass usage of robots—possibly controlled
by amateurs. For example, during the Fukushima
catastrophe, robots were controlled by previously un-
trained workers of the power plant who had to learn
on the go [28,38].

Ergonomy, feasibility and cost. There are sys-
tems today that provide operatorswith full immersion
– through virtual reality (VR) and force/tactile feed-
back. However, these systems are expensive and hard
to use in real rescue scenarios where the operator is
also involved in other mission tasks. In such a situa-
tion, the operator must be able to modulate his or her
focus [5].

As rescue and exploration tasks usually take a long
time, users should not be forced to perform unnatural
movements (e.g. very small and precise or very large)
too frequently or to keep an uncomfortable posture.

In the rescue scenario, an operator usually wants
to be near the centre of the action so the control inter-
face should bemobile and robust. Operatorsmay have
towork in very conϐined spaces. Long term costs of the
interface should also beminimisedwhich suggests us-
ing commercial off-the-shelf (COTS) elements that do
notwear out easily and are easily repaired or replaced.

The interface should give the operator the ability
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to fully use the gripper-manipulator capabilities. The
robot should be controllable in its full workspace with
full agility and without noticeable delays.

The above assumptions are realised to varying de-
grees by currently used gripper and control systems
of rescue-exploratory robots. The next two sections
present some state-of-the-art solutions while section
4 explains how our proposals address our assump-
tions.

2. Grippers Used in Mobile Control
Grippers used in mobile manipulation work in a

completely different environment to industrial grip-
pers and, therefore, they have to be universal, im-
pact resistant and robust. Some typical examples are
shown in Fig. 1.

Grippers with one degree of freedom (1 DOF) have
some indisputable advantages: low price, availability,
ease of control, robustness and strength. However,
universal 1 DOF grippers cannot manipulate objects
in complex ways while dedicated 1 DOF grippers have
limited task range. Therefore, a manipulator needs to
provide all necessary degrees of freedom to perform
the task and the control interface has to be prepared
accordingly. In our opinion, the best solutionwould be
treating bothdevices as an integrated system– the sin-
gle controller should steer both the gripper and ma-
nipulator.

Underactuated grippers such as Velo (shown in
Fig. 1b), Barret Hand [40], or FetchHand have a larger
number of joints than actuators, and use tendons and
springs in the drive system. These mechanical link-
agesmake thegripper’s ϐingerswraparoundanobject,
making the gripmore stable throughamore even force
distribution. Because of mechanical ϐit to the object’s
shape (even without a precise knowledge of contact
forces), gripping is easier, especially when the object’s
shape is not known in advance.

Ability to entwine an object is usually limited to
speciϐic sizes of objects, otherwise the grips are sub-
optimal.With some typesof grips this is not possible at
all. Therefore, the operator must be aware of the grip-
per’s limitations. This is compensated by a compara-
bly lower price and a less complicated control system
than in the case of fully actuated, dexterous grippers.

Dexterous, multi-ϐinger grippers give operators
the widest control of the gripping process. They have
several degrees of freedom, ranging from the 7 DOF
– Schunk SDH and 12 DOF – NASA Robonaut (shown
in Fig. 1c) to the 13 DOF – DLR/HIT Hand-2 [16, 20].
A dexterous gripper can be thought of as a group of
manipulators working in a shared workspace. Their
controllers are fairly advanced, being built with FPGA
units and DSP processors, and having CAN, USB, Eth-
ernet or RS232 communication. To effectively ex-
ploit their actuation capabilities, they have a range of
proprioceptive sensors: temperature, position, torque
and a range of exteroceptive sensors: tactile matrices,
vision systems and distance sensors [4,11,16,20].

Designers use a variety of approaches choosing
the shape of grippers and the distribution of drives.

Designers use a variety of approaches, choosing the
shape of the grippers and the distribution of drives.
Finger drive motors can be located inside ϐingers and
are usually accompanied by high ratio gears. When
drives are outside the ϐingers (e.g. in a forearm), forces
are transferred through the tendons, as in Shadow
Hand [7]. Dexterous grippers or hands can be anthro-
pomorphic – their proportions, number of ϐingers and
placement would be similar to a human’s or some-
times not. In this case, we usually ϐind three ϐingers,
placed around the palm.

The dexterity of these artiϐicial hands gives the
operator the ability for inter-ϐinger object manipu-
lations – regrasping, ϐinger gaiting, in-grasp manipu-
lation, rolling and sliding. They also give additional
agility which may be necessary to grasp objects when
there is some obstacle in themanipulator’sworkspace
[23]. They also require the most advanced methods
of control because ϐingers must be controlled concur-
rently in a coordinated fashion.

In our research and experiments we have used
the Schunk Dexterous Hand 2 (SDH-2). It has non-
anthropomorphic structure with 7 DOF. Each of three
identical ϐingers has two joints actuated by BLDC mo-
tors with harmonic drives. An additional motor with a
worm gear located in the palm actuates symmetrical
rotation of two ϐingers.

3. Current Control Interfaces
Joysticks,radio remote controls, teach pendants

and gamepads are themost frequently used devices to
control exploratory and rescue robotics. Most of them
originate either from RC community where they are
used to control model vehicles or from gaming comu-
nity used in a wide range of computer games. Such
controllers have various buttons, levers, and sticks
providing a robust control of large number of func-
tions. Most advanced versions of RC controllers have
bi-directional data ϐlow with telemetry functions [13]
and are available in robust, anti-shock housings and
are capable of controlling large industrial machin-
ery such as cranes or telehandlers [2]. Gaming con-
trollers such as PlayStation Controller or Wii Remote
are also widely used for mobile robot control because
of their ergonomy and familiarity as many users, even
from military, are experienced in computer gaming
[5]. Special consoles for teleoperation tasks with mo-
bile robots are also available, giving users, in addition
to buttons and joysticks, large screen for display of
camera images and vehicle information [39].

Teleoperation of manipulators and grippers by
moving various axes (or modifying the Cartesian co-
ordinates) was considered even in the ϐirst telemanip-
ulation experiments (handling radioactive materials)
as slow and awkward, leading to the design of linked
master-slave robots and haptic controllers [36, Ch. 31,
p. 782].

In master-slave conϐigurations the operator di-
rectly, throughmovement of his hand holding the con-
troller’s handle, controls orientation and position of
the manipulator’s gripper or tool. If the manipula-
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(a) one degree of freedom gripper on
Foster-Miller TALON [31]

(b) underactuated, Velo gripper fromWillow
Garage [1]

(c) dexterous, mulƟfinger gripper of
NASA’s Robonaut [30]

Fig. 1. Various gripper types used in exploratory and rescue roboƟcs

tor is equipped with torque/force sensors a bilateral
control and force feedback can be incorporated. Mod-
ern, commercially available haptic controllers such as
Omega devices from Force Dimension provide the bi-
directional control with high number of degrees of
freedom (7 in case of the Omega 7). In mobile ma-
nipulation they have been used for tasks ranging from
telesurgery via unmanned aerial vehicle to teleopera-
tion of multiple robots [22,37].

While master-slave controllers are widely used in
telesurgery, they are less popular in mobile manipula-
tion scenarios. Main reasons are: the cost (e.g., Omega
devices cost more than 20 000 USD, more affordable
Novint Falcon around 200 USD but offer only 3 DOF)
and size of the workspace limited by kinematic struc-
ture of the controller [12,32].

Many modern robots, can be controlled through a
graphical user interface on the computer. The opera-
tor can see the robot with its environment and move
the robot using a mouse in various ways – controlling
each joint with sliders and moving robot in inverse
kinematicsmode, or semi-autonomously by indicating
surfaces to grab [19]. For control of dexterous grippers
by computer mouse input, dimensionality reduction
can be implemented for grasp planning [6].

Themost advanced option is themaster-slave con-
trol with virtual reality, which can be particularly ef-
fective when there is haptic feedback provided to the
user. VR immerses operator in robot’s environment.
This type of systems are used to control humanoid
robots (Robonaut [16], Tops [35]), because joint map-
ping, in this case, can be done one to one.

4. Proposed Interfaces
We have developed several interfaces that are

based on integrated vision systems such as Kinect and
Leap Motion. Their APIs allow for precise tracking of
the position and orientation of the human’s hand or
other objects.

We have focused our research on tools to support
an intuitive and precise approaching and gripping an
object. As grippers of different kind require different
interfaces, so that they could be fully utilized, we have
designed different interfaces for gripperswith one de-
gree of freedom and different for dexterous grippers
with multiple degrees of freedom.

Our goals in designing interfaces described in sub-
sections below were directly connected to postulates
in section 1, in particular:
1) An untrained user should be able to pick up an ob-

ject such as a tool using our interface
2) A grip should be of good quality, i.e. stable and ad-

equate to the task
3) Interface should be of a marginal cost compared to

a cost of mobile robot
4) Interface could be used in an environment similar

to Fukushima scenario, i.e. crammed room or out-
side

5) Operator shouldbe able tomovehis attention away
from the task

6) Operator’swork environment should allowhim for
multi hour work

4.1. Visual Gripper
Visual gripper is a software tool for controlling po-

sition, orientation and gripper opening-closing. Oper-
ator uses a mockup gripper that is tracked by the vi-
sion system to control a real gripper placed on a ma-
nipulator (Fig. 2).

Our solution exploits LeapMotion’s ability to track
“tools” deϐined as elongated, straight objects. For each
such “tool” API provides its position and a direction
vector with sub-millimeter precision.

For testing this interface we have constructed a
simple prop mechanism, that corresponded geomet-
rically (though not visually) to the actual gripper, and
that would be easily detectable by the vision system.
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Fig. 2. Visual Gripper controlling gipper’s model through mechanical gripper mockup with 1 DOF [18]

For such kinematic structure, imitating gripper with
1 DOF (see Fig. 3), Leap Motion gives coordinates of
points O1 and O2, and respective direction vectors z1
and z2. Based on these information, we can calculate
length of vector ||a|| and using previously measured
dimensions of a mock up mechanismwe can calculate
the angle of jaw opening β.

Position and orientation of the mechanism can be
unambiguously determined using two perpendicular
vectors: z1 and x1 = (z1 × a)/||z1 × a|| and coordi-
nates of the point O1. Homogeneous transformation
matrix from sensor’s coordinate frame to the frame
located in the point O1 can be described by (1). Sim-
ilar calculations can be made for the corresponding
point on the second jaw of the mechanism. Addition-
ally, knowing the angle β, we can determine the posi-
tion and orientation of the center of mechanismO3 in
the sensor’s coordinate frame. Therefore, we obtained
the fully functional interface with 7 degrees of free-
dom, to possibly control any manipulator with a grip-
per.

M =

[
x1 z1 × x1 z1 O1

0 0 0 1

]
(1)

We have implemented “Visual Gripper” in the ROS.
Program, as one of ROS nodes, retrieves sensor data
fromLeapMotion (orientation and position of tracked
elements), realises previously described algorithm
and formats data in away that canbe visualised inRviz
(one of the ROS tools). In the current implementation
the gripper’s model moves freely in space as shown in
Fig. 2, but the same data can be used to solve inverse
kinematics for a speciϐicmanipulator holding the grip-

per. Video demonstration of the interface can be ac-
cessed at [48].

Using a prop input devices is an idea with a long
history in human computer interaction, especially in
gaming with examples such as lightgun [3] or prop
stick [24]. In area of robotics various haptic interfaces
used prop tools (such as prop pen in Phantom Omni
haptic controller) for more precise control.

Integrated vision systems have been used to con-
trol different mobile manipulators with grippers.
Kinect has been used to teleoperate upper body limbs
of Nao robot withWii Remote controlling jaw opening
of nao hands [42]. Leap Motion ver. 2 can be used for
gripper-manipulator pair control, because its API pro-
vides direct information about human’s hand open-
ing [26]. A two-hand control interface formanipulator
with 3-ϐingers gripper has been developed by Gibaru
et al. [14].

Telemanipulation using props meets well our
speciϐications, in case of 1 DOF gripper. Users can eas-
ilymanipulate position and orientation just bymoving
prop. Gripper affordances, its limits on gripper open-
ing and its controls are also clear. This reduces need
for training and gives users trust in what the system
will be doing.

Our interface is also extremely affordable. Con-
troller itself requires only a Leap Motion sensor (less
than 100 USD) and a prop gripper – which can be
made from some LEGO parts or 3D printed. This is not
the casewith full mechanicalmaster controllers. Com-
pared to game controllers it provides a much better
conceptualmodel of gripper control andmore ϐlexibil-
ity.

Finally, interface can easily be used in ϐield opera-
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Fig. 3. A diagram of the mechanical gripper mockup with characterisƟc elements

tions. The operator needs only to access a laptop com-
puter for visualisation and a 50 cm cube free space to
operate the prop.

4.2. MulƟ-finger Gripper Control – Hybrid Controller

Designing a gripper control interface for multi-
ϐinger, dexterous grippers using only vision systems
is a very challenging task, due to such phenomena
as self-occlusion [49]. However, integrated vision sys-
tems are still extremely useful – as they can very pre-
cisely track position andorientation of objects in 3Das
well as give information about users movements and
gestures. In our study, we have achieved best results
using hybrid approach, where readings from the sen-
sor glove were supplemented with information from
the vision system (Leap Motion or Three Gears).

Our SDH gripper control system uses two sources
of information: readings from ϐlexion sensors
mounted in the sensor glove and data from the
vision system. Rotation angles of gripper’s ϐingers
are controlled by ϐlexion of operator’s ϐingers while
the position and orientation of entire Schunk Hand
and the mode of operation can be changed based on
vision sensor. The block diagram of the proposed
control system is shown in Fig. 4, while a detailed de-
scription of its various functions is given in following
subsections.

4.3. Related Work

Mapping between human hand and robotic hand
can be done in several ways. They can be divided to
a few types: joint-to-joint mappings, ϐingertip map-
pings, mappings through virtual objects and pose
mappings.

Joint to joint mappings can be efϐiciently used
when the kinematic structures of human hand and
robot gripper are similar. In such case joints of the hu-
man hand are directly associated to joints of the robot
gripper. This is usually possible only when robot hand
structure is anthropomorphic [35]. In case of differ-

ent number of joints a dimensionality reduction can
be used [6].

Fingertipmapping assumes that although thehand
structure can be different operator wants to have ϐin-
gertips of his own hand and that of the gripper’s ϐin-
gers in the same position (or scaled proportionately)
– so that he could grasp an object (this approach as-
sumes ϐingertips as contact points). In case of differ-
ent number of ϐingers a notion of virtual ϐingers can
be used [21,34].

Mapping through the virtual objects algorithm
matches the mappings in the way that similar objects
(sphere, cylinder) could be grasped using humanhand
and a gripper. In Grifϐin et. al [17] authors assume that
object is held by thumb and the index ϐinger. Algo-
rithm then recreates the same relations between such
virtual object and gripper’s ϐingers (with workspace
matching). Gioioso et. al, extendvirtual spheremethod
with the idea of synergies [15], using paradigmatic
hand’s synergies as an input vector [15].

Pose mapping methods try to correlate human
hand poses and robot hand poses through the recog-
nition of grip. Authors of [43] use neural networks for
recognition and ϐixed joint mappings after each grip
is recognised. In [9] model based approach using Hid-
den Markov Models is used, where grasp is classiϐied
through characteristic dynamic changes in ϐingertip
positions or armmovement trajectories.

4.4. Controlling Dexterous Gripper Through Grip Recog-
niƟon

Humans have excellent, “built in” ability to use
their hands in manipulation and can optimally choose
grasps subject to task, object and their ownhands con-
straints. In our system we want operators to use their
abilities even if the gripper they are controlling is of
different structure than human hand.

A different structure of the gripper canmean that a
similar task will require a different pose, but with the
similar properties such as compliance, force or form
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Fig. 4. Diagram of the hybrid controller and photograph of the test stand

closure, or manipulability [8] to that of human’s hand.
According to Napier [29] grip – posture of hand

chosen for the grasp is mainly inϐluenced by goal of
the task, while size or shape of objects are used by hu-
mans only to tune the chosen pattern. This means that
through recognizing grips we will be able to recog-
nize the intent of user and use this information to pro-
vide accuratemapping function. Through this function
changes in users posturewill still have an effect on po-
sition of gripper joints.
4.5. Mapping FuncƟon Between 5 Fingers of the Human

Hand and Three Fingers of SDH
Controlling robot joints with the sensor glove

seems be very attractive – it offers an intuitive op-
eration and uses natural human’s ability to precisely
manipulate with own hand. This type of control is
often used when controlling anthropomorphic grip-
pers with similar structure to human’s kinematics (eg.
Robonaut hand); then the simple master-slave (1:1)
mapping can be applied. With grippers of a different
structure and number of ϐingers, such as SDH, a prob-
lem of mapping is more complicated.

The SDH has 7 degrees of freedom, therefore, hu-
man hand has enough agility to control it through
some movements, but its kinematics is different than
human’s hand (except the number of the ϐingers, they
have different ϐlexion ranges, and human cannot ro-
tate ϐingers around the base of the palm). First of our
approaches assumed arbitrary choice of ϐingers to fur-
ther directly control gripper’s movement [45]. In our
second approach, we propose here themapping based
on recognizing the user’s intention. It is still based on a
detection of grip types, but then the obtained informa-
tion is blended to a single behavior using some char-
acteristic features rather than the strict classiϐication.

The preliminary tests with recognising several
speciϐic grip types showed a problem when a hand
pose was classiϐied into two grips with the similar

certainty. Particularly, precision grip had been mis-
taken as lateral and wedge grips [44]. In such case,
some rapid and frequent switching between gripper
poses could be observed, which is highly unintuitive
and frustrating to the user.

The solution comes with the second part of our
proposal: blending the mapping. Instead of the dis-
crete switching to the grip type that has the biggest
value of the classiϐication function in the moment, we
calculate ϐinger movements using a weighted sum of
mapping matrices with the algorithm described be-
low.

Sensor data acquired from the sensor glove
(namely readings from ϐlex sensors) are ϐiltered to ob-
tain vector v (size 10x1). The Support Vector Classi-
ϐier generates a new vector with values of member-
ship function of each v to each class [44].Whichmeans
that for T = 7 considered grips, we calculate for each
k = 1..T , according to equation (2), a distance from
a point with coordinates v to the decision hyperplane
(i.e., the signed number, where a positive value means
the inside of space limited by decision hyperplane).
This hyperplane crates two sets of points: belonging
to the learned set of grips and not belonging to it (one-
versus-all classiϐication).

fk(v) =
N∑
i=0

αiyiK(vi, v) + ρ (2)

whereK is a Kernel,αi Lagrangemultiplier, vi sup-
port vector, ρ free term, yi a membership class of a
support vector to a grip (1 – vector is a member, -1
– vector is not a member). For T = 7 possible map-
ping types, corresponding to different grips, we calcu-
late values of kernel functions forN = 70 support vec-
tors.

We have used a LIBLINEAR implementation of SVC
classiϐication with linear kernel, through scikit-learn
package [33]. It uses one-vs-the-rest strategy for mul-
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ticlass classiϐication. Implementation details and ex-
act formulation of classiϐication problem can be found
in [10].

Based on the values of membership function, we
build a vector of normalised membership weights f̌,
which k-th element has a form (3):

f̌k =
exp(fk)
T∑

j=1

exp(fj)

(3)

Vector of SDH gripper control signals u can be cal-
culated using formula (4).

u =
T∑

k=1

f̌kΘkv∗ (4)

Where Θk is a matrix of coefϐicients for the k-
th grip (size 7x11, where the number of rows corre-
sponds to the number of DOF of the SHD gripper) and
v∗ is an extended by a free term vector v. Since vec-
tor v∗ is constant for a given state of the glove we can
substitute 5

F =
T∑

k=1

f̌kΘk (5)

and transform equation (4) to the form (6):

u = Fv∗ (6)

which gives a smooth transition between themap-
pings, and further seamless transition between poses,
and therefore more intuitive gripper operation. Video
presentation of the glove controlwith grip recognition
and smooth transitions between different grips can be
accessed at [46].

Vector u consists of reference joint positions, be-
ing a direct command for a low level PD tracking con-
troller of the gripper. Its stability is realised through
the standard PD tuning procedure.

4.6. IniƟalizaƟon of Gripper Mapping Through Sparse
Methods

To calculate a pose of the gripper, it is necessary
to determine appropriate values of the coefϐicient ma-
trix Θk . We have employed a machine learning pro-
cedure for this matter: we have gripped objects with
our SDH using a particular grip and in the same time
posing a hand in the sensor glove in a way that would
be equivalent to this grip (compare Fig. 6). After a few
experiments (and having a number of data collected)
we can proceedwith an initialization of the coefϐicient
matrix, that could be further calibrated for particular
user needs (as described in the next sub-section).

A pose in each grip is a function of ϐlexion of user’s
joints but as movement of ϐingers in particular grip is
highly correlated a ordinary least squares regression
method for ϐinding coefϐicients inmatrixΘk could lead
to estimates with large variance and reduced accu-
racy. It is preferable that the mapping would use only

most representative features therefore increasing ro-
bustness – as accidental movement in joints that are
not representative would not change grippers pose.

To algorithmically ϐind such mapping, instead of
arbitrary choice of features we have used a LASSO
(Least Absolute Shrinkage and Selection Operator) re-
gression [41]. It is a variable selection method for re-
gression that minimizes residual sum of squares sub-
ject to a l1 norm constraint.

θk,i = argmin
θ
{

N∑
n=1

(xi,n−θv∗n)2}s.t.
11∑
j=1

|θj | ≤ t (7)

where θk,i is i-th row of the matrix Θk , xi,n is an an-
gle position of gripper’s joint i for the k-th grip, corre-
sponding to the data vector v∗n collected from the sen-
sor glove, θj is the j-th element of θ, t is a maximum
value of a sum of absolute values of coefϐicients.

As the sum of absolute values of regression coefϐi-
cients must be less or equal to a determined value t,
resulting mapping will have a number of coefϐicients
equal to zero, and hence, Θk is a sparse matrix, as
shown in Fig. 5.

We have implemented this learning procedure us-
ing a scikit-learn python package with the version of
LASSO model that uses a coordinate descent to ϐit the
model [33].
4.7. Online CalibraƟon of Mapping the Grips

If the mapping is not ideal – for example there is
new operator, with different hand sizes – mapping
can be corrected by this operator using the calibration
procedure:
1) The user speciϐies which grip (k number) will be

calibrated. His or her hand must be preset to the
pose corresponding to this grip (e.g., Fig. 6 shows
calibration of the spherical grip). Readings from
the sensor glove are collected to vector v and after
adding free term we obtain the vector v∗,

2) User makes the correction p for joint i of the SDH
gripper by moving this joint to the new position
(e.g., using keyboard, mouse or joystick),

3) This correction changes current mapping row-
vector θk,i according to equation (8).

θk,i(n) = (1− λβ) · θk,i(n− 1) + βp · (v∗)T (8)

where: θk,i is the i-th row of the matrix Θk , λ ∈
[0, 1

β ) is the regularisation parameter, β - the learning
rate factor, and (·)T denotes the transpose of the ma-
trix.

The consecutive corrections p minimizes on-line
the quality function (stochastic gradient descent algo-
rithm) described by equation (9):

J(θk,i) =
1

2M
(

M∑
n=1

p2 + λ
11∑
j=1

θ2k,i,j) (9)

where: M is a number of corrections, j indicates
elements of vector θk,i.
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Fig. 5. Example of sparse matricesΘk, being the result of LASSO regression, white indicates nonzero coefficients;
verƟcal axis – SDH joints, horizontal axis – measurements from a sensor glove related to parƟcular joints in the
human’s hand

Fig. 6. CalibraƟon of the spherical grip (from leŌ): hand and gripper open, hand and gripper at the beginning of the
calibraƟon process (large discrepancies in the pose of two fingers), spherical grip aŌer calibraƟon

Minimisation a regularised form of a quality func-
tion leads to simple vectorsΘk with only few nonzero
coefϐicients.

Using our approach, the operator can adjust grip-
per mappings every time when mapping of the glove
readings to the pose of the gripper does not perfectly
correspond to his/her intentions. This gives necessary
ϐlexibility for a range of situations fromchanging oper-
ators to changing sensors. Calibration process, from a
completely uncalibrated (without prior initialization)
start, is shown in Fig. 7.

4.8. Gestural Control

Wepropose to use gestural interactions as away to
additionally control gripper. Gestures, provide a way
to pass symbolic commands to the system through
movement and pose of hands. Using speciϐic move-
ment to control machines has become very popular
with advent of smartphones and tablets with touch-
screens – using ϐingers the user can not only click but

Fig. 7. CalibraƟon process using stochasƟc gradient
descent.

also swipe, drag, pinch or rotate to generate speciϐic
behaviors of the computer system.

48



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 9, N◦ 1 2015

Using integrated vision system, we have also ac-
cess to the hand gesture recognizer that categorises
gestures and also provides information about direc-
tion, speed, position of gesture and some additional
information unique for particular gesture (e.g., angle
of hand rotation or “strength” of hands grip).

Mapping functions described in previous sections
give an intuitivemethod to control a gripper inmobile
manipulation task. However, for reasons described in
Section 1 it is very desirable to safely pause or stop
manipulation process. In the paper [5] authors con-
cluded that without a way to interrupt manipulation
process, controlling is extremely tiring and stressful
as the manipulator all the time follows any operator’s
move. Moreover, the whole process is more prone to
mistakes and slower.

To relieve the operator, we have introduced sev-
eral control modes that can be changed using oper-
ator’s free hand (in mid-air, without taking eyes off
the object), as shown in Fig. 4. There are three modes
of operation: gripper control, model control (prepara-
tion) and stop. Any movement of the gripper can be
planned and tested on themodel, before actuallymov-
ing the real SDH, we have called our solution Shadow
Hand [49].

Similar solution is used in the telemanipulation
of the space robot Robonaut, where three modes –-
freeze, thaw, and index are switched by voice com-
mands [16]. Operator also can change modes with-
out losing focus on the object (as in our solution) but
voice commands can be problematic in high noise en-
vironment of rescue tasks. Additionally hand move-
ment gives information that can be easier to interpret
– speed of hand movement is easier to control by the
operator than for example, pitch of his/her voice.

To successfully create a gestural interface that
would have features explained in chapter one we had
to take into account several aspects of the design:

Using limited number of familiar gestures. Ges-
tures as a symbolic method of communication are
based on memorisation, that is they depend on users
knowledge and background [25]. To be able to use a
gesture, usermust know it beforehand, therefore if we
want our interface to beusedwithout (orwith limited)
prior training all used gestures must be easy to mem-
orise and in limited number, otherwise users will be
prone to become tired and make mistakes [27]. Cur-
rently we are using swipe gesture to changemode and
grab gesture to stop Fig 8.

Clear and reliable feedback. Gestures are inter-
pretable, so there is a risk that the system will misin-
terpret commandoruserwill sendwrong command. A
working systemwill provide feedback statingwhether
the commandwas understood andwhat is the current
status of the system. In our approachwe use voice sig-
nal – program says that state has changed and what is
current value. Different states show also different col-
ors on the screen.

A clear delineation of differentmodalities. If di-
rect control of the gripper and gestures are done in
the same time and in the same space, it could lead to

Fig. 8. Swipe gesture used to change gripper control
mode.

confusion and unintended movements. In our system,
the gestural interface is limited to the hand that is not
using sensor glove and the movement has to be done
in some particular space. Therefore, there is limited
chance that user would move his/her hand only in or-
der to change the state of machine and as a result also
change gripper’s pose or vice-versa bymoving hand in
glove, change gripper’s mode.

We have used LeapMotion API’s gesture recogni-
tion. System can robustly recognise number of ges-
tures, its speedanddirection [49]. Basic gestural infor-
mation is passed to ROS node that decides, basing on
gesture probability (information that is also produced
by LeapMotion API)whethermode should be changed
and to what – that is based on a state machine.

Videopresentationof hybrid control interfacewith
direct and gestural control can be accessed at [47].
Four work modes, gripper control, manipulator con-
trol, simultaneous control and freeze are accessed
through gestures, while second hand equipped with
sensor glovedirectly controls gripperposition andori-
entation (through visual tracking of hand position)
and grip pose through grip recognition and mixing of
mappings.

Program communicates through ROS using topics
as well as produces adequate sounds using PyGames
python library. Information of a current state and a
change of state can be also seen as a text on a screen
and change of color in program GUI.

5. Summary and Further Work
We have presented our solutions for intuitive and

practical control of mobile grippers. They meet most
of the requirements for control interfaces in res-
cue/exploratory robotics.

In our further work we will be using feedback in-
formation from tactile sensors mounted on the grip-
per for more interactive grasps. We plan to examine
ways of communicating feedback without full force
control.
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Our main goal is to test interfaces with real users.
For that matter we are working with users of rescue
robots and we are building a test stand for telemanip-
ulation task.
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