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Abstract:

The paper proposes an architecture for a control system
of an autonomous robot as well as an architecture for a
multi-robot system in which the robots cooperate in or-
der to accomplish client’s tasks. The solution is based on
the SOA paradigm and an ontology as a way of repre-
senting an environment, and is specified at the Informa-
tion Technology level. This approach is focused on intu-
itive cooperation with a human and automation of a task
execution, as well as automation of handling exceptions
and changes in the environment. For the purpose of the
test scenarios, a sample ontology was created, which al-
lows the human user to define tasks to be performed by
a robot. Additionally, a simulation environment was de-
signed and implemented in Unity. It allows for automatic
generation of the visual representation of information
defined in the ontology, and for testing the effectiveness
of the proposed architecture in different types of scenar-
ios with variable sets of services (devices).

Keywords: ontology, multi-robot system, environment
representation

1. Introduction

The aim of the RobREx project is to develop a set of
technologies and appropriate architecture necessary
for the production of autonomous service and terrain
robots, in particular rescue and exploration robots.
Test tasks should include: penetration, inspection and
intervention. They require the creation of an appropri-
ate ontology (a priori knowledge about the structure
of the environment) to build the environment models
and their particular instances, i.e. maps. For example, a
robot should "know” that it is located in a building and
not in a forest, i.e. it should be familiar with the over-
all structure of the building. Then the robot percep-
tion (associated with map updating) will be focused
on recognizing specific types of objects such as corri-
dors, stairs, doors, and furniture.

Common (for humans and robots) representation
of the environment enables, on the one hand, easy def-
inition of tasks to be performed by a robot, and on the
other hand, processing and execution of these tasks
in the environment. The formal structure of the rep-
resentation is crucial because it allows for automatic
processing of its instances (i.e. maps), so they can be
understood by the robots. The representation is based
on the general idea proposed in [13,14] as a formal ap-
proach to object-oriented programming language for
robots. It has been extended by an additional hierar-

chy between objects and abstract objects (such as a
space with its attribute being the air temperature in
this space). The separation of the process of creating
maps from the representation of the environment it-
self is crucial. Naturally, there is a priori knowledge
about the overall structure of the representation; peo-
ple have this knowledge and they can enter it into
the system by means of friendly graphical interfaces.
The robot receives knowledge about the environment,
usually in the form of a partial map (the overall struc-
ture of its surroundings), which can be updated and
refined by the robot itself depending on the require-
ments associated with the performed tasks. A general
and universal structure of representation for a wide
class of possible environments is needed. The concept
of such a structure has a close relationship with the
notion of ontology found in Computer Science. The
classical definition of ontology [5] is as follows: an
ontology is an explicit specification of a conceptual-
ization; It is a formal description of concepts and of
relations between these concepts. Conceptualization
should be understood as an abstract, simplified model
of the world needed to achieve complex goals. This
model is created by identifying the important concepts
related to these goals and may include, for example,
objects, their attributes and relations that occur be-
tween objects. Model specification must be formal (i.e.
definitions of terms and relation must be unambigu-
ous) to allow for its automatic processing, and must
be common, because it has to support cooperation in a
multi-robot environment.

The ontology is a set of concepts and relations
that occur between them, i.e. objects and their at-
tributes, and the relations between objects. Each ob-
ject is of a certain, pre-defined type. The object type
is defined by attributes that objects of this type have,
and by the internal (hierarchical) structure of such
objects, which may consist of sub-objects and rela-
tions between these sub-objects. An elementary type
has no internal structure (so is defined only by a set
of attributes), and a complex type has such a struc-
ture. Ontology is defined as a hierarchical collection of
types of objects (see [1]). Primary attributes and pri-
mary relations are the key elements of which object
types are constructed. The object itself, as an instance
of its type, is defined by assigning specific values to
its attributes and by specifying relations. Primary at-
tributes and primary relations must be measurable
and recognizable by sensory devices in the system. In
addition to classical approaches to the representation
of an environment in robotics (i.e. metric, topologi-
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Fig. 1. Visualization of the test environment

cal and hybrid) object-oriented approaches are also
proposed (e.g. [3, 11]). They focus on creating maps
of simple geometric shapes or objects, such as lines
or wall. Cognitive approaches (e.g. [2, 4, 6,7, 12]), in
turn, attempt to mimic human perception. There are
other, (but not directly for applications in robotics),
more complex approaches, e.g. BIM (Building Informa-
tion Modeling) and SIS (Spatial Information Systems).
These approaches are based on automatic mapping
with very little (or no) a priori knowledge about the
environment.

The proposed approach assumes that the robot
has a priori knowledge in the form of an ontology,
which defines a general representation of the envi-
ronment through the subordination relations between
object types (e.g. overall structure of an estate or a
building), but its instance, a map, specifies details, i.e.,
how many floors the building has, what are the dis-
tributions and dimensions of the rooms on the floors,
and so on. Robot has (usually) a partial map, which
it has to update and refine (learn about) through the
recognition of objects based on their characteristics
and relations.

A similar approach to providing knowledge for
a robot is represented by the KnowRob [9] project.
It allows for the acquisition and merging of knowl-
edge from multiple heterogeneous sources. In both ap-
proaches, relations can be inferred from the values
of object attributes, but in the proposed solution one
can also define them in a more general way, e.g., only
needs to specify that a jar is in a cabinet. It is not nec-
essary to know the exact position. It can be detected
by the robot during the task realization. Relations can
also be define and store in this form in the ontology.
This allows for easier and more intuitive task defining
by people by declaring the desired situation through
those relations.

The combination of object-oriented concepts and
cognitive maps [6, 11], context learning [8] and a pri-
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ori knowledge in the form of ontologies, can be the ba-
sis for the construction of new algorithms for object
recognition.

Updating and refinement of maps (contextual
learning) should be done automatically through recog-
nition of objects based on their attributes and rela-
tions. The learning process involves determining the
context dynamically and determining the probability
of occurrence of specific types of objects in this con-
text. The context is understood as the general struc-
ture of the environment (a subset of the possible types
of objects), in which the robot is currently located. It is
reasonable to assume that the robot knows the prob-
ability distribution (determined on the basis of recent
experience) of several possible types. For example, the
robotlocated in a building (an object of building type),
has only a probability distribution (for rooms, corri-
dors, elevators, etc.) suggesting where exactly in the
building it is currently located. In addition, the recog-
nition of objects (e.g. objects in a room: desks, chairs,
etc.), the robot should have also a probability distribu-
tion (conditional, depending on previously processed
data from the sensors) for the occurrence of objects of
these types. For example, when the robot moves in the
direction of a strong light source, it should expect, with
a high probability, that the data from the camera will
create an image of a window. Consequently, it should
segment the image in order to find attributes and rela-
tions that describe an object of window type. There is
extensive literature on recognition and context learn-
ing (e.g. [8,10]). In our innovative approach an ontol-
ogy (a priori knowledge) is applied as a basis for the
context construction which results in a new quality in
the design of efficient algorithms for recognition and
learning.

The basis of the method used by a robot to learn
how to recognize objects, is a dynamic context as
the current state of the robot environment. Thus, the
learning process involves estimating of:
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(1) the probability distributions for the types of envi-
ronments in which the robot can currently be, and

(2) the probability distributions of possible types of
objects that the robot can currently recognize.
These estimations depend on the a priori knowledge,
i.e. the ontology, and robot experience acquired in the
past. The learning process should be integrated with

the robot architecture.

2. The Environment Representation

Representation of the environment is an abstract,
simplified model of the world. From many features of
physical objects only those relevant to the realization
of pre-defined classes of tasks are selected. This ap-
plies to the attributes of objects and the relations be-
tween them. This approach refers to a representation
that human uses. The representation is common for
people and devices (robots) because it has to provide
means for automated and reliable cooperation. User
(human) via a graphical interface defines the tasks to
be performed by a robot, that receives the knowledge
about the environment in the form of partial maps
(which it can update and refine).

The hierarchical and object-oriented ontology as
well as maps for indoor and outdoor environments
are based on attributes and relations between objects
forming the environment. The ontology formalism
uses technologies similar to these in OWL (Web
Ontology Language http://www.w3.org/TR/owl-
features/) and is based on XML documents created
according to the pre-defined XSD schemas.

Concept Glossary and Map Repository are devel-
opment tools used, respectively, to define and manage
types of elementary and complex objects, or to define
and manage object maps (mostly partial that may re-
quire additional refinement depending on the capabil-
ities of available devices).

Similarly to OWL, Semantic Web and Web Services,
separate namespaces for attributes, types, and rela-
tionships are created. On the basis of structures de-
fined in Glossary, XSD schemas are generated in order
to validate the data when creating instances of types
in Map Repository. In the prototype implementation
of the system, Glossary is a module of Map Repository

Object types are defined by specifying a set its at-
tributes. An attribute consists of the following data:

- abrief human-understandable name, e.g. length;

- hamespace;

- basictype and range of values that can be assigned to
the attribute (e.g. string, integer, floating point, etc.);

- the type of measurement unit (e.g. length, weight,
money, time);

- optionally, a human-understandable description.
The second basic concept used while constructing on-
tology is a relation between objects. The relationship
is defined by specifying:

- a human-understandable name, e.g. ”is on”;

- namespace,

- arguments of the relation and their types;

- evaluation of relation between objects is done by
evaluating relations between attributes of these ob-
jects;

- optionally, a human-understandable description.
Based on the defined attributes and relations one can
construct new complex structures, i.e., types and ob-
jects - instances of these types.

Object type consists of a set of attributes and, op-
tionally, other object types (so it contains sub-types)
and also inherit after a specified base type. Inheritance
means that, in addition to its own attributes and sub-
types, it also has attributes and sub-types of the inher-
ited type.

In the test scenario (see Fig. 1), a closed jar filled
with granules is placed in a cabinet. The goal of the
robot task is to transfer the granules form the jar to
a bowl on a table. The necessary steps include locat-
ing the cabinet, opening its door, removing the jar and
unscrewing it, locating a bowl, pouring the content of
the jar into the bowl and then closing the jar, putting
the jar back into the cabinet and closing its door.

For the purpose of the scenario, complex types
(shown in Fig. 2 in the form of data structures)
were created. All objects that can be positioned in
a global coordinate system must inherit the type
PlacedMapObject, which has three attributes (Posi-
tionX, PositionY, PositionZ) corresponding to the po-
sition in three-dimensional coordinate system. Object
orientation is described by the remaining attributes
(AngleX, AngleY, AngleZ). Two basic geometric shapes,
Cuboid and Cylinder, were defined. Jar and JarClousure
inherit the Cylinder type. Table contains (aggregates)
five objects of type Cuboid representing its legs and its
tabletop. Cabinet consists of six objects of type Cuboid
(left, right, bottom, top and back side of a cabinet with
a single shelf), Open attribute (indicating whether the
cabinet is open), and an object of Door type. The Door
object inherits the Cuboid type and aggregates an ob-
ject of Handle type. This type includes information
necessary to infer the type of grip, which a robot has to
use in order to open the door. Room is the type of the
highest object in the object map hierarchy in the test
scenario. It has (in addition to its own structure) ref-
erences to all previously mentioned objects defined as
relations of type Isin. In the object map there are also
examples of other relations such as: IsEdgeGlued (e.g.
two walls of the room), IsOn (e.g. a bowl is on the ta-
ble), IsAttachedTo (the handle is attached to the door).

3. The System Architecture

The proposed system architecture (see Fig. 3) was
designed according to SOA (Service Oriented Architec-
ture) paradigm. The capabilities of devices (here, au-
tonomous robots) are treated as services (they also in-
clude tasks such as searching and recognizing).

From the system point of view, it is important to
know how to invoke a service (i.e. what kind of input
parameters are required and what kind of output pa-
rameters are produced), and not how the service is ex-
ecuted.
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Fig. 2. The data structure of the environment representation. The black arrows represent inheritance, and the orange

arrows represent aggregation

Services are registered in Service Registry in the
form of their interfaces which include information
such as service type, network address, range of work,
input / output parameters, validity period of the en-
try. The data stored in Registry is used by Task Man-
ager, which allows the customer to define, in a declar-
ative way, a task by describing the initial situation (op-
tional) and the final situation. Situations are described
by specifying relations between relevant objects de-
fined in Repository. Then an appropriate abstract plan
is chosen from a pool of existing plans or is generated

automatically. The abstract plan is defined as a series
of types of services.

A service is executed by appropriate Service Man-
ager, which can be seen as a broker between a device
and the system. Each device provides a set of func-
tions (behaviors) which are being invoked during ser-
vice execution. The plan of the service execution (a se-
ries of invocations of device functions, conditions, and
queries to Repository) is being assigned while defin-
ing the service. Service Manager, after receiving a task,
accomplishes it by executing an appropriate plan, and
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Fig. 3. The system architecture

updates the object map (stored in Repository), if there
were changes in the environment caused by the de-
vice. If the service cannot be realized (e.g., the relation
described in the task initial situation is no longer true),
an appropriate message is sent to Task Manager. Then
it can attempt to reconfigure the abstract plan by us-
ing different types of available services, and continue
with the task execution. The tasks are defined by users
in a declarative manner. The user describes the situa-
tion she/he wants to become true after completing the
task. In addition to defining the final situation, she/he
can also specify the initial situation. A sample task may
look as follows:

- initial situation: granules are in the jar,

- final situation: granules are in the bowl.

The user, while defining the task, chooses the ap-
propriate objects from the object map. The objects
are identified by their Name attribute. Task Manager
chooses an abstract plan that can convert the initial
situation to the final situation. The plan may consist
of one or more steps in the form of service types. The
sample task can be realized by one service of type
move_content. In the arrangement phase, Task Man-
ager queries the Service Registry for a set of services
of that specific type that can realize this particular task
(the single step of the plan). Then, TM sends arrange-
ment requests to each of the services found. Based
on their responses, it chooses the optimal one for the
task. The selection criteria may include, for example,
the estimated time of task execution, or amount of re-
quired resources. Task Manager invokes the selected
service, which in turn, replies with description of sit-
uation after executing the task. If the situation is not
equivalent to the final situation of the task, Task Man-
ager may try to invoke another service of the appropri-
ate type, or use an alternative plan. Actions taken by
Task manager in these situations depend on its poli-
cies of handling exceptions and transactions.

Service Manager, after agreeing to execute the task
in the arrangement phase and invocation, realizes
given task by proceeding according to a service execu-
tion plan. The plan is defined as a series of queries to
Repository and robot functions (its skills) and for the
move_content service may look as follows (see Fig. 4):

1) query Repository for information about object
specified in the initial situation (the object from

which the content has to be moved),
2) set the robot arm in the default position,
3) move to the location of the initial object,
4) grab initial object with the arm,

5) query Repository for information about object
specified in the final situation (the object to which
the content has to be moved),

6) move to the location of the final object,
7) turn the arm over the final object.

The plan also includes conditional statements (real-
ized as an invocation of robot perception) which allow
for checking if a particular situation (described by re-
lations between objects) is true in the robot surround-
ings. Depending on its result another step is taken or
an exception is returned (describing the current situ-
ation related to the task being executed). Invoking the
above functions with appropriate parameters leads to
achieving the final situation of the task, but the service
execution plan may also include returning the initial
object to its original location (see Fig. 5).

get object1 = set the arm in the move to given
from Repository default position = location
step 1 step 2 step 3
. object1 return
grab object1 ! Frrrmd] — exception ‘
step 4
I
get UbjE'C_IZ object2 = return
from Repository found exception
step 5
|
move to given X
location = turn the arm
over object?
step 6 step 7

Fig. 4. Diagram representing a sample plan of a
move_content service execution. Green squares
represent queries to Repository, blue squares —
invocation of a robot function, orange diamonds —
invocation of a robot perception

Functions of the robots may be implemented in
various technologies and on various hardware, there-
fore dedicated modules are required to run them. Once
developed, a module can be used later to run other
functions created in the same technology or for the
same type of hardware.

A service execution plan should also handle excep-
tions, i.e. reactions to failures. An example of an excep-
tion may be a situation in which there is no jar in the
cabinet, or the jar is empty. Service Manager should
update the object map in Repository and send infor-
mation about the current situation to Task Manager. In
turn, it decides what the robot should do next, and how
to proceed with the task. In this context, the learning
process (i.e. estimating the most likely situation) on
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Fig. 5. Realization of the sample task in the simulation
environment; a) grabbing the initial object, b)turning
the robot arm over the final object, c)driving to the
original location of the initial object, d) returning the
initial object to its original position.

the basis of previous and current observation is par-
ticularly important.

A simulation environment is developed in Unity
3D. It will serve as a platform for testing and validat-
ing proposed specifications of the environment repre-
sentation (ontology), the architecture of a multi-robot
system at the level of IT, and learning algorithms.

The simulation environment will be developed in
order to implement more complex scenarios involving
multiple services (devices). They will also include cog-
nitive services (such as searching and map updating)
which allow for observing and adjusting to changes in
a dynamic environment. Ultimately, experiments will
be carried out in a real environment and on real de-
vices represented by theirs Service Managers.

4. Conclusions

The paper presents the problems associated with
the representation of the robot’s environment and
possible solution in the form of an ontology. Along
with the architecture of the multi-robot system, it sup-
ports automation of accomplishing complex tasks de-
fined by ahuman in an environment of cooperating de-
vices.

In comparison with the existing approaches, it is
more focused on intuitive cooperation with human
and automation of a task execution, as well as automa-
tion of handling exceptions and changes in the envi-
ronment during the task execution.
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