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Abstract:
This arƟcle presents the results of a series of experiments
carried out using a Kinect for Windows sensor coupled
with dedicated soŌware. The focus of this study is on the
use of such devices in the field of social roboƟcs. Two
soŌware packages are considered - MicrosoŌ Kinect SDK
and OpenNI coupled with NiTE library. ParƟcular empha-
sis is placed on the parameters affecƟng the social com-
petencies of a robot, such as the speed of detecƟng users,
the accuracy of establishing posiƟon and orientaƟon of a
user or stability of the tracking process. Key character-
isƟcs of the evaluated soŌware packages are idenƟfied
and differences regarding their usage outlined in view of
interacƟon oriented algorithms.

Keywords: RGB-D sensors, social roboƟcs, percepƟon,
human-robot interacƟon

1. IntroducƟon
Until recently, the perceptive capabilities of social

robotswerebasedmainly onRGBcameras.Datawhich
can be extracted froma2D image,with regard to social
robotics applications, include the location and param-
eters of the users’ faces, the color of their clothing or
the character of their gestures. The use of RGB cam-
eras, however, is limited due to their high sensitivity
to light conditions. In addition, processing high reso-
lution images requires vast amounts of computational
power.

Another class of sensors that plays a signiϐicant
role in social robotics is the distance sensor. This class
of sensor encompasses such devices as optical range
ϐinders, sonar arrays or laser scanners. Such equip-
ment is usednot only for classic navigation, but also al-
low the robot to maintain a proper proxemic distance
during interaction with humans.

3D sensors such as stereo cameras havebeen avail-
able on the market for a long time. However, their us-
age was limited due to their low resolution and high
price. The real revolution started in November 2010,
when Microsoft introduced Kinect. In addition to RGB
data, this cheap and compact device provides a de-
tailed depth image in the form of a point cloud. Kinect
was initially created as a controller for the Xbox 360
but over time it began to be used for research pur-
poses, mainly for human posture and balancing anal-
ysis [1], three-dimensional interior mapping [4], ges-
ture detection and recognition [10] or the analysis of
3D facialmodels [5]. Examples of sensor application in
social and service robotics canbe found in [12,16]. The

demand for an inexpensive depth sensor was so huge
that in February 2012 Microsoft introduced a modi-
ϐied development version of the device, called Kinect
forWindows. Kinect ϐinally entered theGuinness Book
of Records as the fastest selling consumer electronics
device.

There has been a multitude of applications of
Kinect in the ϐield of social robotics. Speech recogni-
tion and analysis of its meaning are still the bottle-
neck of human-robot interactions and the visual abili-
ties of robots need to complement these deϐicits. RGB-
D data can be used to maintain appropriate proxemic
distance and eye contact or to communicate with the
robot via prearranged gestures (eg. waving or lifting
the hand). Knowledge about the color and shape of ob-
jects held in the user’s hand can also be useful in the
course of the interaction. Tracking of face orientation
can be used to determine where the user is staring,
which allows the robot to share the user’s attention.

The accuracy of RGB-D sensors, especially Kinect,
was investigated in a number of articles. Their out-
comes conϐirm the high precision of the sensor and
its usefulness in perception of indoor environment.
Kinect proved to be free from large systematic errors
when compared with a laser scanning data [7]. Its
random error increases quadratically and depth res-
olution decreases quadratically with increasing dis-
tance from the sensor, and reaches maximum error of
4 cmandminimumresolution of 7 cmat themaximum
range of 5meters [8]. Both Kinect and Asus Xtion, pro-
vide similar accuracywithout regard to angle between
the optical axis and the test subjects [3].

From the point of view of social robotics, Kinect’s
ability to accurately detect and track human posture
is more important than the precision of determining
position of a single point in the image. This article de-
scribes the course and results of a study aimed at the
veriϐication of Kinect in the context of the robot’s so-
cial competencies. To achieve this goal, a Kinect sen-
sor was integrated with the control system of the so-
cial robot FLASH [2]. The study consisted of several ex-
periments focused on various parameters of the two
main software packages allowing the creation of ap-
plications oriented towards interaction with humans
– Kinect SDK [9] andOpenNI library [11] coupledwith
NiTE software.

2. Kinect
The following tests were carried out using the

Kinect for Windows (as opposed to Kinect for Xbox)
version of the sensor. The range of the device is
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80–400 cm. It utilizes the structured light method
which allows it to obtain an image with a resolution
of 300x200 pixels. This image is then interpolated to a
640x480 resolution at a refresh rate of 30 frames per
second. The resolution of the sensor’s RGB camera is
640×480 at 30 frames per second. It is also possible to
obtain an image with a higher resolution (1280x960)
but the refresh rate drops to 12 frames per second.
An array consisting of 4 microphones is also built into
the sensor which allows it to detect the direction of
sound. Kinect also features a tilt motor and a 3-axis ac-
celerometer.

Currently, a new generation of the sensor is avail-
able – Kinect for Xbox One. The main advantage over
the Kinect for Xbox and Kinect for Windows is the
increased resolution of the RGB and depth image
(1920x1080 and 512x424, respectively). This allows
the detection of not only the limbs, but also ϐingers.
The ϐield of view of the optical system has also been
improved.

As with any other product, there are now alterna-
tives on the market, most prominently Asus Xtion and
Asus Xtion Pro. Until recently, it was possible to buy an
OEMversion,whichwas produced by the company be-
hind depth sensing technology – PrimeSense (Fig. 1).
Currently, the company has been bought by Apple.
2.1. MicrosoŌ Kinect SDK

Microsoft Kinect SDK consists of a set of drivers, li-
braries and sample programs, developed by the man-
ufacturer of the sensor. They allow developers to cre-
ate their own applications in C++, C# and Visual Ba-
sic. This software allows the detection of up to six
users and tracking silhouettes of two of them. These
silhouettes are represented as skeletons consisting of
20 joints. The software allows to switch the sensor into
“near mode”, in which the dead zone is reduced to 40
cm, which allows the sensor to operate in conϐined
spaces. However, this feature comes at a price – the
range of the device is also decreased to 300 cm. This
option is available only for Kinect for Windows ver-
sion of the sensor. Another feature of the SDK, called
“seated mode” allows tracking of silhouettes of sitting
people. Figure 2 presents the visualization of a de-
tected silhouette.Microsoft SDKprovides full access to
the settings of the on-board camera, such aswhite bal-
ance, gain, shutter speed, etc. Besides algorithms dedi-
cated to tracking silhouettes, SDK includes algorithms
enabling detection of simple gestures and facial fea-
tures in3D. It also gives access the tiltmotor of the sen-
sor as well as accelerometer measurements. It is also
worth mentioning that the SDK provides a ready-to-
use implementation of algorithms for detecting sound
direction, and comes with an integrated speech recog-
nition software –Microsoft Speech Platform. Microsoft
Kinect SDK is limited solely toWindows operating sys-
tems.
2.2. OpenNI/NiTE

OpenNI is an open source software developed by
a non-proϐit organization comprised of, among oth-
ers, ASUS (manufacturer of Xtion Pro, alternative to

Kinect sensors) and PrimeSense (manufacturer of the
depth measurement technology used in Kinect sen-
sors). OpenNI serves only as a platform for acquir-
ing data from various RGB-D sensors and presenting
them in a uniϐiedway. This data need to be further pro-
cessed using a wide set of libraries (each tailored for
speciϐic application) cooperating with OpenNI plat-
form. Of particular importance in the ϐield of social
robotics is theNiTEproject. It allows the detection and
tracking of silhouettes of an unlimited number of peo-
ple. The detected silhouettes are represented as skele-
tons composed of 15 joints. NiTE can also be used to
detect basic gestures, track the user’s hand and de-
tect certain body poses. Access to the settings of the
sensor is very limited compared to Microsoft Kinect
SDK. OpenNI software is portable and uses external
drivers for the Kinect sensor (driver supplied by Mi-
crosoft Kinect SDK for operation under Windows and
the Freenect driver for operation under Linux). Figure
2 presents the visualization of silhouette detection.

3. Experiments
In order to evaluate the most signiϐicant parame-

ters of the Kinect sensor, new modules were added
to the existing social robot control system [6]. Their
implementation was based on the above mentioned
projects (Microsoft SDK, OpenNI/NITE). The con-
trol system of FLASH is based on URBI [15] soft-
ware, whose operation relies on dynamically-linked li-
braries calledUObjects, each responsible for executing
a speciϐic set of competencies. TwonewUObjectswere
created – UKinect [14] and UKinectOpenNI2 [13]. Ex-
periments described in the following chapter have
been carried out based on scripts written in urbiscript
language provided by URBI. A complete documenta-
tion of the system can be found on FLASH’s website
[2]. Experiments were carried out using a Kinect for
Windows sensor, connected to a laptop with an i5-
2410M processor, 8 GB of 1333 MHz DDR3 RAM and
an SSD hard drive, running under a Windows 7 64-bit
operating system. Measurements carried out with a
measuring tape were taken as a reference. Their accu-
racy is sufϐicient from the point of view of algorithms
utilized in social robotics. The Reader should note that
ϐigures presented in this section might have axes with
the same units but different scales.

3.1. Square Walk

During the ϐirst study a user was to cross a pre-
set path, shaped as a rectangle. The dimensions of the
path were 1.29x2.58 m and at it’s closest point it was
situated 1.27m from the Kinect. The longer side of the
rectangle was parallel to the Z axis of the sensor, and
the shorter side was parallel to the X axis. An image of
the test room along with the path followed by the user
can be seen in Figure 3a and the expected result of the
measurement is shown in Figure 3b. In order for each
lap to be identical, both the pace and the places where
the user was to put individual steps (points marked
in Fig. 3a) were also predetermined. During the ex-
periment, 4 persons with different body posture and
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Fig. 1. Kinect for Windows, ASUS XƟon Pro, PrimeSense OEM sensor

Fig. 2. Comparison of detected silhoueƩes (starƟng from the leŌ: Kinect SDK, Kinect SDK “Seated mode”, OpenNI/NiTE)

height completed ϐive laps at a speedof 80or 120 steps
per minute.

Figures 4a and 4b represent the projections of the
center of mass of the detected user onto the XZ plane
for each of the four subjects during a single lap. Anal-
ysis of the results suggests that Kinect SDK is capa-
ble of greater accuracy in determining the position
of a user than OpenNI. The dispersion of the results
around the mean is also smaller in the case of Kinect
SDK. Forboth libraries therewereno signiϐicant differ-
ences between the test users, which suggests that the
tests carried out are sufϐiciently reproducible and reli-
able. An important objective of this testwas to identify
the joints (possibly different for both libraries) that
can be tracked to accurately determine the position of
a person, and to investigate how the speedof theuser’s
movement will affect the measurement accuracy.

Figures 5a and 5b represent the path followed by
the user’s head, torso, left and right arm for bothmod-
ules. An important observation is the discontinuity in
head tracking noticeable in Figure 5a. During the ex-
periment, in 330 out of 1472 samples for the slow
walking speed, and 44 out of 1019 samples for fast
walking speed, OpenNI was not capable of establish-
ing the head’s position. This problemdid not, however,
extend to other joints. Additionally, this phenomenon
was not observed when using Kinect SDK.

Joints which according to the authors can accu-
rately determine the position of a person are summa-

rized in Table 1. It presents the average distance from
the reference path and themeasured height for the se-
lected joints.WhenusingOpenNI, thesewereneck and
torso and when using Kinect SDK they include shoul-
der center and back. For both software platforms head
and center of mass was also selected as well as the
point located midway between the right and left arm
(mean taken fromarmpositions). All of thementioned
joints are approximately situated in one line, perpen-
dicular to XZ plane. Their projection onto this plane,
should coincide with the walking path. Gathered data
revealed the joints which reached the best accuracy of
themeasuredposition in the XZplane and the smallest
dispersion of results in the Y axis. For OpenNI, the best
accuracy in the XZ planewas obtained for the center of
mass of the detected character and the position of the
torso. The accuracy of position in the Y-axis was com-
parable for all considered joints, with the exception
of the user’s center of mass, which showed a slightly
higher levels of dispersion. In the case of Kinect SDK,
the best accuracy in theXZplane canbe ensuredby the
center of mass of the detected user. The smallest stan-
dard deviation of the measurements in the Y axis was
observed for the back and center of the segment con-
necting both arms. Based on the data, it can be safely
assumed that walking speed has a negligible inϐluence
on the accuracy of measurements.
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(a) Test room with highlighted path (b) Expected results

Fig. 3. Test path

(a) OpenNI, 2D view (b) Kinect SDK, 2D view

Fig. 4. Path of the center of mass during a single lap, 80 steps per minute (every tenth sample)

3.2. OrientaƟon

The information about the user’s orientation is
crucial from the point of view of human interaction
with a robot. It allows to determine when a person is
facing in the direction of a robot. The exact orienta-
tion is required in order to properly decode many so-
cial cues, especially when the robot is functioning in
multi-agent environment. For comparison purposes,
testwere conductedwhere the user performed30 rev-
olutions in motion, following two paths shown in Fig-
ure 6.

The results of tests usingOpenNI library are shown
in Figures 7a and 7c whereas results obtained with
Kinect SDK can be seen in Figure 7b and 7d. It is ap-
parent that OpenNI correctly determines the orien-
tation of the body, while Kinect SDK always assumes
that the user is facing the device. A thorough analysis
of the orientation in the vicinity of the points where
it is expected to be −π

2 or π
2 (left and right vertex of

the triangle in Figure 6) showed that OpenNI always

properly determined where the user was facing, and
the average error was only 0.0215 π radians for the
ϐirst path and 0.0297 π radians for the second path.
Kinect SDK never properly detected the orientation
when the user’s back was facing toward the device.
This problem possibly originated from Microsoft fo-
cusing on Kinect as game controller. Such usage of the
device would never require the user to be facing away
from the sensor.

3.3. DetecƟon Time

Thenext set of experimentswas devised to analyze
the time in which both libraries detect the presence
of a person, but without any information about user’s
silhouette (henceforth called detection time) and the
time required to begin tracking the detected user’s
skeleton (ie. provide information about positions of
his/her joints, henceforth called tracking start time).
There were 5 variants of the experiment:
1) User standing still 2.4 m from the sensor, whole
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(a) OpenNI, 80 steps per minute (b) Kinect SDK, 80 steps per minute

(c) OpenNI, 120 steps per minute (d) Kinect SDK, 120 steps per minute

Fig. 5. Joint paths during first of the five laps (every fiŌh sample)

Fig. 6. Test paths – points reflect user’s steps, arrows – body orientaƟon

body in the device’s ϐield of view.

2) User stepping left and right, steps 43 cm apart, 100
steps per minute, whole body in the device’s ϐield
of view.

3) User stepping left and right, steps 43 cm apart, 100
steps per minute, body from the neck down in the
device’s ϐield of view.

4) User stepping left and right, steps 43 cm apart, 100
steps perminute, body from the knees up in the de-
vice’s ϐield of view.

5) User stepping left and right, steps 43 cm apart, 100
steps perminute, body from thewaist up in the de-
vice’s ϐield of view.

For each of the variants mentioned above, 30 mea-
surements were performed for both libraries. A mea-
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Tab. 1. Accuracy of determining joint posiƟon based on walking speed (in meters)
Dev. – standard deviaƟon, Pp. v. – peak-to-peak value, spm. – steps per minute

Distance (projection onto XZ) Height (Y value)
Mean Dev. Pp. v. Mean Dev. Pp. v.

OpenNI
Center of mass, 80 spm. 0.0118 0.0529 0.3250 –0.0549 0.0671 0.3126
Head, 80 spm. –0.0110 0.0959 0.5342 0.4271 0.0424 0.3369
Neck, 80 spm. –0.0044 0.0728 0.3944 0.1671 0.0548 0.3325
Torso, 80 spm. 0.0052 0.0608 0.3872 –0.0044 0.0566 0.3496
Mean from both arms, 80 spm. –0.0044 0.0728 0.3944 0.1671 0.0548 0.3325
Center of mass, 120 spm. 0.0083 0.0608 0.3570 –0.0568 0.0794 0.3926
Head, 120 spm. –0.0287 0.1131 0.5689 0.4179 0.0490 0.4892
Neck, 120 spm. –0.0182 0.0877 0.4613 0.1702 0.0557 0.4521
Torso, 120 spm. –0.0120 0.0755 0.4005 0.0073 0.0557 0.4287
Mean form both arms, 120 spm. –0.0182 0.0877 0.4613 0.1702 0.0557 0.4521

Kinect SDK
Centre of mass, 80 spm. –0.0095 0.0990 0.2800 –0.0633 0.0566 0.6814
Head, 80 spm. –0.0514 0.0775 0.4629 0.5397 0.0592 0.3868
Shoulder center, 80 spm. –0.0519 0.0755 0.3788 0.3894 0.0510 0.3904
Back, 80 spm. –0.0540 0.0707 0.3801 0.0615 0.0510 0.2841
Mean from both arms, 80 spm. –0.0340 0.0600 0.4064 0.2865 0.0548 0.4238
Center of mass, 120 spm. –0.0087 0.1082 0.6446 –0.0580 0.0480 0.6032
Head, 120 spm. –0.0598 0.0911 0.5679 0.5383 0.0447 0.4105
Shoulder center, 120 spm. –0.0602 0.0877 0.5133 0.3885 0.0447 0.4020
Back, 120 spm. –0.0626 0.0877 0.5188 0.0621 0.0374 0.2548
Mean from both arms, 120 spm. –0.0402 0.0883 0.5210 0.2835 0.0316 0.3661

surement began with the launch of a new instance of
the application written in urbiscript. This way the his-
tory of user detectiondidnot inϐluence the results. The
moment when the user entered the Kinect’s ϐield of
view was constant (since the user was constantly vis-
ible to the sensor and software tasked with acquiring
data from the Kinect was being restarted) which also
helped eliminate any possible errors. The results are
shown in Table 2.

Analysis of the results shown in Table 2 reveals
a few key differences between OpenNI and Kinect
SDK. OpenNI can neither detect nor track a person’s
skeleton when he/she is standing still. To the authors’
knowledge there can be two reasons that explain this
behavior. Firstly, OpenNI does not use the rough in-
formation about the detected silhouettes provided by
the Kinect sensor (last 3 bits of depth data). Sec-
ondly, OpenNI uses a sequence of frames in order to
detect and track a person as opposed to the detec-
tion/tracking being based on a static image (as is the
case with Kinect SDK). In addition to the observed in-
ability to detect a stationary person, this hypothesis
also ϐinds conϐirmation in observations obtained dur-
ing the usage of the software. Experience shows that
with the fall in the number of processed frames per
second (eg. due to excessive load on the computer) the
efϐiciency of OpenNI drops drastically.

Another important difference is the effect of ob-
struction of the sensor’s ϐield of view on the ability
to detect and track users. OpenNI library copes better
with people seen from the neck down – it can detect

their presence, which is impossible for Kinect SDK.
However, the effectiveness of Kinect SDK is far higher
in situations where only the upper parts of a user’s
body are visible. Such situations are more common,
and information about the upper parts of the body are
much more important in the context of human robot
interaction. SDK was able to quickly detect (after pro-
cessing an average of 20.4 – 24.8 frames) the person
seen from both the knees up and the waist up. This
result was obtained without switching the device into
“seated mode”. Utilizing OpenNI yields worse results -
for the silhouette seen from the knees upwards, detec-
tion time was comparable to when the user was fully
visible, but tracking was achieved on average 24.12s
after detection and had a very large standard devia-
tion.When the userwas only visible from thewaist up,
OpenNI did not manage to detect a silhouette.

During the testswith amoving user, detection time
and tracking start times are small for both libraries.
Studies have shown that OpenNI is slightly faster - an
average of 15 frames to detect human presence and
an average of 27 frames to start tracking. Kinect SDK
required an average of 20 frames for detection and 22
frames for tracking. It shouldbenoted that the timesof
detection and tracking in OpenNI have a much higher
standard deviation those observed for Kinect SDK. In
the case ofMicrosoft software tracking always began 2
frames after detection. OpenNI exhibited no such reg-
ularities.

The last experiment dealing with detection time
and tracking start times was meant to investigate the
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(a) OpenNI, first path (b) Kinect SDK, first path

(c) OpenNI, second path (d) Kinect SDK, second path

Fig. 7. OrientaƟon of user’s body during tests (every third sample)

Tab. 2. Results of detecƟon and tracking start Ɵmes (presented as the number of frames and Ɵme in seconds). A dash
in the corresponding field means that the soŌware failed to detect/track the user.
Dev. – standard deviaƟon

Variant Detection - frame Detection – time Tracking – frame Tracking – time
Mean Dev. Mean Dev. Mean Dev. Mean Dev.

OpenNI
1 – – – – – – – –
2 15.33 2.42 0.73 0.46 26.63 2.52 1.30 0.47
3 13.33 2.31 0.60 0.42 – – – –
4 13.07 2.37 0.63 0.47 556.63 24.00 24.12 19.20
5 – – – – – – – –

Kinect SDK
1 20.97 1.35 1.03 0.55 22.97 1.35 1.11 0.54
2 19.93 0.92 0.92 0.20 21.93 0.92 0.99 0.20
3 – – – – – – – –
4 20.40 1.21 0.99 0.51 22.40 1.21 1.06 0.51
5 24.80 2.49 1.13 0.62 26.80 2.49 1.22 0.62

effect of a larger number of people in the ϐield of view
of the sensor. As the Kinect SDK has the ability to track
only two skeletons, the test was limited to two people.
The test results are summarized in Table 3. Shorter av-
erage detection time was achieved using OpenNI and

shorter average tracking start time using Kinect SDK.

3.4. Minimal Distance from a Wall

During numerous HRI studies the authors of this
article observed negative effects when the user was
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Tab. 3. DetecƟon Ɵme and tracking start Ɵmes (presented as the number of frames) when two people are present in
the sensor’s field of view
Dev. – standard deviaƟon

Detection
frame - 1st
person

Detection
frame - 2nd
person

Tracking frame
- 1st person

Detection
frame - 2nd
person

Mean Dev. Mean Dev. Mean Dev. Mean Dev.
OpenNI 16.10 2.72 20.83 2.85 27.87 2.82 34.73 3.68

Kinect SDK 23.27 2.80 29.93 3.89 25.27 2.80 31.93 3.89

close to a wall (or other ϐlat surface). The proximity of
such surfaces hinders the Kinect’s to properly detect
and track a user. Due to the features of OpenNI (inabil-
ity to detect static users coupled with the dependence
on history of detections), this test was performed only
for the Kinect SDK library. The distance from a wall at
which Kinect SDK managed to detect a human silhou-
ette is (on average) 0.28m from the wall to the user’s
center of mass.
3.5. Users Passing Each Other

In order to maintain eye contact or keep up a con-
versation with the user, a social robot must be able
to repetitively and robustly choose the speaker from
among several people. It is extremely important that,
after establishing ϐirst contact, the robot was able to
correctly track a speciϐic user. Without this ability
undisturbed human-robot interaction can occurwhen
there is only one user in the robot’s ϐield of view. We
proposeda test,whichaimed to examinewhetherboth
libraries properly ascribe identiϐication numbers to
users when they obscure each other. There were two
variants of the experiment.
1) Variant with two people were walking at a pace of

80 steps perminute, following apathparallel to the
X axis of the sensor. Oneof themwas located1.71m
from the device, the other one 2.35 m away. Their
paths crossed in themiddle (directly in from of the
sensor).

2) Variant with three people, including one who is
standing directly in front of the sensor, 2.35 m
away from it and the other twowalking at a pace of
80 steps per minute, following a square path sym-
metricwith respect to the sensor’s Z axis. Each side
of the path was 1.29 m long and its proximal side
was 1.71maway from theKinect. Thewalking peo-
ple obstructed each other at the point where the
ϐirst person was standing.

The results show a signiϐicant advantage of OpenNI li-
brary over Kinect SDK. A typical case of user detec-
tion for both packages is shown in Figure 8. Every
user was given a speciϐic identiϐication number. Obvi-
ously, none of the packages managed to track an ob-
scured person. However, in the case of OpenNI, once
theuserwas again visible to the sensor (evenwhen the
user’s side was turned towards the Kinect) tracking
resumed almost immediately. More importantly, the
person whose tracking was interrupted regained the
exact same identiϐication number that they had before
being obscured. Kinect SDK always assigned a new ID

number to the obscured user and detection was re-
sumed only when the person turned towards the sen-
sor.

3.6. Accuracy of Hand PosiƟon Measurement

During HRI experiments it is often necessary to ac-
curately determine theposition of the selectedparts of
the body (usually the hand or the head). This is espe-
cially important e.g. while recognizing the color of the
object the user is holding, determining the direction
indicated by a human or interpreting various other
static gestures. To evaluate the accuracy of the Kinect,
an experimentwasdevised inwhich thepositionof the
right hand was measured. During the test, the sensor
was placed 0.81 m above ground (distance between
the ϐloor and the center of Kinect’s optical system).
Right armwas still during themeasurement, extended
1.35m above ground, shifted by 0.86m in the X axis of
the sensor. The experiment was performed in the fol-
lowing variants:
- different distance from the sensor (in Z axis): near –
1.71m, far – 2.57 m,

- user standing still or moving left-right (his hand be-
ing still)with 0.43m long steps at a pace of 100 steps
per minute.
During the experiment, the effects of using ϐilters

smoothing the position of the joints in time was also
examined. For OpenNI the level of ϐiltering is deϐined
as a number between 0 and 1, where 0 is no ϐiltration
and 1 is the total lack of joint movement (the default
setting is 0.3). Kinect SDK has four selectable prede-
ϐined ϐilter conϐigurations (where 0 – no ϐiltration, 4 –
the strongest smoothing).

The experimental results are presented in Table 4.
It was observed, that the ϐilter settings did not have
a major impact on the resulting measurements. Fur-
ther analysis of the results shows that in most cases
OpenNI provides a more accurate measurement (2-3
times the accuracy of Kinect SDK). The standard devi-
ation, in the case of the user being near the sensor, is
about two times smaller for Kinect SDK.Whenwe ana-
lyze the results from the variant where the user is far-
ther away, results are comparable. Results delivered
by OpenNI are signiϐicantly inϐluenced by the user’s
motion but only when the user is at a distance from
the sensor. In the case of Kinect SDK the movement of
the user does not affect the accuracy ofmeasurements
(regardless of the distance).
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Fig. 8. DetecƟon when users are passing each other (top: OpenNI, boƩom: Kinect SDK)

Tab. 4. Results of hand posiƟon measurements (in meters)
Dev. – standard deviaƟon

Filter setting
No movement Movement

Near Far Near Far
Error Dev. Error Dev. Error Dev. Error Dev.

Open NI
Filter = 0.0 0.0210 0.0426 0.2718 0.1224 0.0304 0.0558 0.0750 0.0191
Filter = 0.15 0.0305 0.0777 0.0420 0.0103 0.0299 0.0371 0.0649 0.0194
Filter = 0.3 0.0232 0.0410 0.0434 0.0105 0.0180 0.0329 0.0768 0.0222
Filter = 0.45 0.0220 0.0163 0.0369 0.0093 0.0391 0.0680 0.0879 0.0249
Filter = 0.6 0.0175 0.0269 0.0403 0.0073 0.0230 0.0391 0.0701 0.0232

Kinect SDK
Filter = 0 0.0638 0.0171 0.1253 0.0106 0.0799 0.0223 0.1065 0.0292
Filter = 1 0.0606 0.0039 0.1183 0.0107 0.0822 0.0291 0.1096 0.0273
Filter = 2 0.0787 0.0159 0.1278 0.0096 0.0879 0.0265 0.1099 0.0260
Filter = 3 0.0880 0.0044 0.1293 0.0082 0.0664 0.0246 0.1024 0.0171

4. Conclusion

The experiments described in this article aimed to
verify the applicability of the Kinect sensor in social
robotics. Particular emphasis was placed on the key
features and differences between Microsoft SDK and
OpenNI/NITE libraries used to develop applications
and algorithms oriented towards human perception.

Both libraries provide algorithms for detection
and tracking of silhouettes and individual joints. Such
algorithms are essential from the point of view of
human-robot interaction. Kinect SDK is preferable
with regard to the number of tracked joints (20 when
compared to 15 joints available in the OpenNI). The
advantage of OpenNI is its ability to track a virtu-
ally unlimited number of users (in Kinect SDK only
two users can be tracked at the same time). A key as-

set of the software provided by Microsoft is a very
large number of additional features - “near mode” and
“Seated mode”, 3D face detection, and support for the
built-inmicrophone array. OpenNI is an open platform
and can be easily expanded thanks to numerous li-
braries (currently there are about 50 on the OpenNI
website). Each new library provides many application
speciϐic functions such as precise hand and face track-
ing, gesture recognition, scanning, and reconstruction
of 3D models. However, to the authors’ knowledge,
there are no libraries compatible with OpenNI which
allow access to the built-in microphone arrays. RGB-
D image processing capabilities of both libraries are
comparable.

To summarize the comparison of OpenNI/NiTE
and Kinect SDK and experimental veriϐication of their
parameters, we can conclude that both provide a rich
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new source of data about the environment, extremely
useful when endowing a robot with user-oriented, so-
cial capabilities. Selecting the proper library for use
with the Kinect sensor depends on the individual
needs of the speciϐic application. OpenNI allows track-
ing of an unlimited number of people, determining the
correct orientation of the user, or precisely measuring
the position of joints. Kinect SDK provides many ad-
ditional features, fast detection and tracking even in
cases of limited visibility and, above all, the ability to
detect the users even if they are not moving.
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