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RGB-D images. However, supplementing visible range 
cameras with auxiliary sensors does not eliminate 
difficulties to discern textures on flat surfaces, mostly 
in the far field area of the scene.

The above reasoning leads to the conclusion 
that texture analysis in an arbitrary region of inter-
est (ROI) is still a problem with no satisfactory and 
universal solution. In practice the ROI may happen to 
be very irregular – topologically not connected, and 
of non-smooth boundary. Irregularity of the ROI is 
a substantial problem for methods based on global 
transformations [4], such as Fourier or wavelet trans-
formation, or on resolution pyramids. For irregular 
ROIs far better results are obtained by local (pixel-
based [4]) methods. Such methods do not require the 
ROI to be very regular, as far as it does not contain 
significantly many holes of size comparable to the size 
of pixel neighborhood system used in calculations. 
Such methods are often based on statistical texture 
features where during calculation process of statis-
tics the ROIs boundary, and in particular – shape of 
this boundary, do not yield any significant contribu-
tion to the final feature value. Most commonly used 
texture features satisfying this condition are based on 
histogram [11] or on more general concept of SGLDM 
[5], or on colour correlogram [6], colour cooccurrence 
matrix [1], and local binary patterns [9]. This class of 
features is implementation-friendly due to its paral-
lelization potential and no necessity of exhaustive 
floating-point computations.

In this paper we propose a novel form of colour 
correlogram and new statistical features of construc-
tion similar to SGLDM-based features. The proposed 
colour correlogram and its derived features retain 
perceptual interpretation of the SGLDM and its de-
rived features [5], respectively. This property distin-
guishes our concept of correlogram from other cor-
relograms known in literature. 

Organization of the subsequent is as follows. Sec-
tion 2 contains a brief overview of existing correlo-
grams, in both grayscale and colour. In Section 2.1 the 
SGLDM and Haralick features as a basis or our defini-
tions are described. In Section 2.2 I outline colour cor-
relogram definitions and point out their flaws. In Sec-
tion 3 I propose perceptual colour correlogram and 
introduce its several statistical features with elabo-
ration of their perceptual interpretation. In Section 
4 I discuss results of simple numerical experiments 
revealing typical perceptual colour correlogram form 
and typical texture feature values. Section 5 contains 
summary and conclusions.
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Abstract:
In this paper a novel definition and understanding of co-
lour correlogram has been proposed. The proposed co-
lour correlogram generalizes the spatial graylevel depen-
dency matrix (SGLDM) to the case of colour textures. This 
generalization is based on perceptual colour difference 
measure expressed in the language of the CIELab colour 
space components. Application of the colour difference 
instead of arbitrary colour indices or colour components 
themselves allows to avoid colour-shuffling palletization 
and introduction of multidimensional objects, respec-
tively; the proposed perceptual colour  correlogram is a 
single 2D matrix. At the same time, a simple relation of 
the proposed colour correlogram to the spatial graylevel 
dependency matrix for graylevel textures is retained. 
Based on this relation it will be shown that there exists a 
vector of statistical features built from the perceptual co-
lour correlogram which can be used to describe textures 
in perceptual terms. These statistical features and their 
abovementioned perceptual interpretation generalize 
Haralick concepts derived for the SGLDM.

Keywords: perceptual colour correlogram, perceptual 
texture features, colour texture classification

1. Introduction
Colour images acquired in the visible range of 

electromagnetic spectrum are the cheapest and at the 
same time the most reliable source of measurements 
for numerous branches of robotics, including envi-
ronment perception, mapping, simultaneous local-
ization and mapping, intelligent object manipulation, 
etc. The ratio of quality and accuracy of measurement 
data to price of the detector is for digital cameras 
significantly higher compared to the same ratio for 
ultrasonic sensors and laser scanners of equivalent 
spatial range and scanning resolution. In fact, actual 
price of solutions incorporating visual cameras in the 
system is substantial effort needed to design and en-
gineer suitable measurement image analysis methods 
and algorithms. This refers especially to the task of 
detection, segmentation, and classification of objects 
of interest. In order to enhance efficacy and efficiency 
of algorithms it is often decided to employ more than 
one sensor. In most cases, the second sensor is an-
other visible range camera forming a stereo pair with 
the first one, or a laser scanner allowing generation of 
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2. The SGLDM and Colour Correlograms: 
Existing Methods
Spatial GrayLevel Dependency Matrix (SGLDM) 

defined in Haralick’s paper [5] is a common base for 
all basic concepts and objects discussed in this paper. 
Texture features calculated from this matrix are still 
successfully applied for texture analysis and classifi-
cation [3, 12]. Currently known generalizations of the 
SGLDM to the colour domain comprise colour correlo-
gram [6] and colour cooccurrence matrix [1]. Colour 
correlogram relies on palletization (indexing) process 
of colours and calculation of the SGLDM of the resul-
tant texture, and colour cooccurrence matrix is in fact 
a set of SGLDMs, one per every colour channel pair.

All abovementioned concepts are introduced in 
this section.

2.1. The SGLDM and Haralick Features for 
Grayscale Textures

Let  be a subset of two dimensional integer lat-
tice , let  be the set of  graylevels, 
and let  be a texture. We assume that the inte-
ger lattice    is endowed with the maximum metric . 
In order to be more specific, the metric   is a func-
tion which for arbitrary , , and 

 is defined by

  (1)

Let  denote cardinality of an arbitrary set . 
The above notation allows us to introduce the SGLDM  

 by means of the following formula

  (2)

where  is a free parameter. We will not consider di-
rectional dependency of texture, hence orientation 
parameter  present in a more general version of the 
SGLDM is omitted. It is straightforward that  is di-
agonal and this diagonal is simply the histogram of 
the texture . Therefore SGLDM should be considered 
as a generalization of histogram. Moreover, from the 
definition (2) it follows that the matrix  is symmet-
ric. It the subsequent text we will omit the superscript   

 as far as it is clear which particular value of  is be-
ing concerned or when value of  is arbitrary.

Each and every matrix  induces a two-dimen-
sional probability density function (PDF)  by the fol-
lowing normalization:

  (3)

In order to simplify further considerations, let us 
introduce the following marginal distributions of the 
PDF :

 , (4)

  (5)

   (6)

By means of the above PDFs, for every texture H 
and distance value d the following scalar texture fea-
tures can be introduced [2,4]:

1.  Energy (second angular moment)

  (7)

The function  is convex, hence more con-
centrated PDF  yields higher energy value. When the 
SGLDM entries concentrate around given intensities, 
it follows that the texture is uniform. Therefore, en-
ergy is a global measure of texture uniformity.

2.  Contrast (inertia)

  (8)

Contrast measures local texture non-uniformity 
because the weighting factor promotes far-from-
diagonal regions of the SGLDM. Large values of such 
entries mean that locally there are many pixels pairs 
of significantly different grayscales. This happens, 
for example, when there are numerous sharp edges. 
Hence, off-diagonal SGLDMs yield higher values of  
and contrast measures local texture non-uniformity.

3.  Correlation

  (9)

where  and  are means  and  are standard 
deviations of the respective marginal distributions , 

. For SGLDM defined by (2) those distributions are 
equal, hence this feature is another measure of uni-
formity of .

4.  Inverse difference moment (local uniformity)

       (10)

Opposed to contrast , we conclude that inverse 
difference moment measures local texture uniformity 
because the weighting factor promotes near-diago-
nal region of the SGLDM and damps influence of its 
far-from-diagonal regions. This happens when many 
pixels have neighbours of similar intensity. Hence, 
nearly-diagonal SGLDMs yield higher values of , and 
inverse  difference moment measures local texture 
uniformity.

5.  Entropy

  (11)

The function  is concave, hence more 
uniform, or constant, PDF  yields higher entropy 
value. This means that the more is the SGLDM spread 
along its diagonal, the higher value of . This hap-
pens when many pixels have neighbors of much dif-
ferent intensity. Therefore, the texture is disordered, 
and this definition mimics Gibbs entropy concept 
known in statistical mechanics.

In Haralick’s work [5] fourteen texture features 
have been introduced, while above we have cited only 
five. Our choice of five features from the full set of 
fourteen is dictated by the fact that only five of them 
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can be easily transferred to the colour domain while 
retaining their analogous perceptual motivation. The 
remaining nine features can also be transferred to 
the colour domain, however their meaning is yet un-
known. Finding good perceptual motivation for those 
transferred features is left for future papers.

2.2. Colour Correlogram, Colour Cooccurrence 
Matrix, and Statistical Features for Colour 
Textures

Let  be the RGB colour cube and let  
 be any palette (has right inverse in the 

category of sets), and let  be a colour texture. 
Using this notation we can define colour correlogram 
by the following formula:

   (12)

We see that the above definition matches the one 
given by (2). However, the SGLDM and the colour cor-
relogram differ substantially, and those differences 
stem from very different definition of . Although the 
palette range  is defined in an identical way as in Sec-
tion 2 on the set level, it misses numerous additional 
structures which accompanied the set of graylevels. 
Namely,  has no natural ordering, hence every per-
mutation of  induces a palette carrying equivalent 
information content, and there is no natural way to 
distinguish any such permutation. Also,  has no natu-
ral topology defining neighbouring colours. As a con-
sequence, there is no metric on . Additionally,  has 
no natural linear structure allowing scaling, adding, 
and subtracting colours. In other words, there is no 
natural way to assess perceptual colour difference 
between  and , and actual relation of colours  
and  is not perceptually connected with actual re-
lation of colours  and  for any .

In consequence, the above shortcomings of the 
palette range  do not allow to introduce not only 
features (7)–(11), but any features involving arithme-
tic operations on elements of . Although there is no 
possibility to define scalar features for any individual 
colour correlogram, metrics on a set of all colour cor-
relograms (12) can be successfully defined. This met-
rics allow employing colour correlograms (12) for 
Content-Based Image Retrieval (CBIR) tasks [7, 10].

Now, let  be the HSV colour cone and let  be 
an , which means that every element of  is 
not further than  from some element of  (close-to-
uniform quantization). Opposed to previous situation 
where  had no structure, here  inherits metric (and 
therefore also topology) and linear structure from the 
HSV colour space. Naturally, any colour texture con-
sists now of three independent components, namely 

 . Given this, we define multi-compo-
nent colour cooccurrence matrix by the following for-
mula [1,13]:

  
(13)

where . Basically, every colour cooccur-

rence matrix component  is an SGLDM (2) and 
has properties identical to those of the SGLDM, and 
therefore we have six independent SGLDMs. Hence, 
for every such component texture features (7)–(11) 
can be computed. In total 30 features can be obtained 
in this way. However, mixed components  can-
not be given perceptual meaning. Still, those features 
can be successfully applied to classification of tex-
tures [1].

3. Definition and Theoretical Properties of 
the Perceptual Colour Correlogram and Its 
Statistical Features
When considering application of the above gener-

alizations of the SGLDM to robot perception one im-
mediately encounters conceptual problems because 
either there are no understandable features, like in 
the case of colour correlogram, or such features have 
no clear perceptual interpretation comparable to (7)–
(11) for grayscale textures. This motivates us to de-
fine perceptual colour correlogram and its respective 
statistical features which are free of this flaw.

The first step to accomplish this task is to choose 
proper colour space in which all colour components 
are easily interpretable in perceptual terms. It is most 
convenient to use the CIELab colour space  [8] which 
is tailored for this task. The next step is to choose a 
proper finite subset  of   which will serve as actual 
colour range for textures. A good starting point is to 
observe that all desired mathematical properties of  
are assured when we choose  to be an -net in . In 
order to quantize the colour space  uniformly in per-
ceptual terms we assume that  has metric structure 
induced by any perceptual colour difference function   

 from the range of ’s described in [8]. Addition-
ally, we assume that the coordinate-wise projection of 
the set  onto its  component forms a set  which 
is metrically uniform. This property assures that the 
analogy between  and the set of graylevels is com-
plete.

Let  be a colour texture and let  
 be any perceptual colour difference function. We 

define the perceptual colour correlogram  by 
means of the following formula:

(14)

where  is a free parameter. It is straightforward 
that  is zero except for the line  and this line 
is simply the histogram of the texture component 
. Therefore the perceptual colour correlogram should 
be considered as a generalization of  component of 
colour texture histogram. It the subsequent text we 
will omit the superscript  as far as it is clear which 
particular value of  is being concerned or when value 
of  is arbitrary.

The perceptual colour correlogram is also con-
nected to the SGLDM by a simple relation. Namely, 
when the texture  is actually gray, which means that 

 , the perceptual colour correlogram 
(14) of  and the SGLDM (2) of the  are related by 
the following formula:
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 , (15)

because we assumed previously that the  set is met-
rically uniform and  is a non-negative metric. It is 
easily seen that the perceptual colour correlogram 
has all the desired properties and none of the draw-
backs pointed out in Section 2.2: it’s both dimensions 
have natural order, topology, linear structure, and 
metric structure consistent with human perception of 
colours.

In order to proceed any further we have to define 
the following PDFs induced by the PPC:

 , (16)

 . (17)

The second equality in the above equation states 
that the marginal distribution  equals the margin-
al distribution  for the SGLDM.

Now, we are ready to define statistical features of 
the perceptual colour correlogram:

1.  Energy (second angular moment)

  (18)

Concentrated PDF  yields higher energy value. 
When PPC entries concentrate around fixed  and  

 values, it can be shown that the texture is uniform. 
Therefore, energy is a global measure of colour tex-
ture uniformity.

2. Contrast (inertia)

  (19)

Contrast measures local texture non-uniformity 
because the weighting factor promotes the region of 
the PPC for which  is large. Large values of such en-
tries mean that locally there are many pixels pairs of 
significantly different colours.

3.  Correlation

  (20)

where  and  are means  and  are standard de-
viations of the respective marginal distributions , 

, where the latter marginal distribution is defined 
in the same manner as . By its definition, correla-
tion measures constancy of .

4. Inverse difference moment (local uniformity)

   (21)

Opposed to contrast , we conclude that inverse 
difference moment measures local colour texture uni-
formity.

5. Entropy

  (22)

The more is the PPC is spread along its depen-
dent dimension, the higher value of  . This happens 
when many pixels have neighbors of many different 
colours. Such colour textures are highly disordered.

Hereby we have defined five statistical features 
of the perceptual colour correlogram and we have 
proved that these features have perceptual interpre-
tation.

4. Results of Numerical Experiments on 
Natural Colour textures 
The features (18)–(22) introduced above clearly 

generalize Haralick’s features (7)–(11). Hence, it is 
expected that they should have strong discriminative 
power for colour textures. In order to check whether 
this statement is actually true, we have used MIT’s 
vismod  texture database [14]. Two examples of these 
textures are shown in the figure below. 

Fig. 1. The top image shows colour texture of beans, 
while the bottom image shows colour texture of coffee 
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Both images have been acquired in the similar 
lightning conditions and using the same exposure 
parameters. Resolution of both images is 512   512. 
Acquired texture resolution implies that each texture 
consists of 262,144 pixels and contains numerous 
characteristic microstructure cells. Therefore, de-
scription of such a texture in statistical terms is rea-
sonable.

For textures shown in Fig. 1 the SGLDMs were 
calculated, and conversion to grayscale has been 
achieved by dropping  and  components of tex-
tures after transforming it to the CIELab colour space. 
Exemplary SGLDM surface plot and PPC surface plot 
is shown in the figure below.

Fig. 2. The top plot contains the SGLDM of the L* com-
ponent of the upper texture depicted in Fig. 1. The low-
er plot contains the PPC of the upper texture depicted 
in Fig. 1 

During calculation of the above PPC, simplest 
possible definition of colour difference measure was 
used. Hence, the colour difference was simply Eu-
clidean distance in the CIELab colour space. For both 
SGLDM and PPC the free distance parameter  was set 
to 30 pixels. This value is larger than typical micro-
structure cell size (here – grain size), hence summa-
tion related to cardinality operator in the definition 
of the SGLDM and the PPC was running over several 
microstructure cells.

In the above figure it is clearly visible that the PPC 
is skew along its  dimension while there is no sig-
nificant skewness in the SGLDM, and the SGLDM is 
almost rotationally symmetric. Such phenomenon 
was observed for all investigated textures of approxi-
mately symmetric histogram of intensity, and the rea-
son for this is explained by the relation (15) of both 
matrices.

The PPC attains a broad maximum at  which 
means that the investigated texture is perceptually 

non-uniform. This follows directly from the very defi-
nition of : when  it means that a not trained 
observer easily sees significant colour difference.

For both texture classes shown in Fig. 1, Haralick’s 
features (7)–(11) and proposed features (18)-(22) 
were calculated. Values of these features are assem-
bled in the table below.

Feature Coffee texture in Fig. 1 Beans texture in Fig. 1

4.2×10–4

6.0×10–4

5.2×10–4

8.2×10–4

5.0×102

7.5×102

5.1×102

6.7×102

8.8×10–6

–4.3×10–6

8.6×10–6

9.1×10–6

6.2×10–2

1.0×10–1

6.9×10–2

1.5×10–1

3.8

4.0

3.8

3.9

Tab. 1. List of mean values of Haralick features and pro-
posed features for textures shown in Fig. 1

Values shown in the above table prove that the 
proposed features can discriminate textures shown in 
Fig. 1. It must be noted that differences among colour 
features (18)–(22) for both texture classes are larger 
than differences among respective grayscale features 
(7)–(11). This can be explained by the fact that the in-
vestigated texture classes are more distinct when co-
lour components are retained than when those com-
ponents are disregarded; it has been observed that 
the beans texture is more uniform mainly in its  com-
ponent, while its colour components are very similar 
to these of coffee texture.

Hereby we have shown an example of natural co-
lour textures for which the proposed features (18)–
(22) express discriminatory capabilities not worse 
Haralick features (7)–(11). More extensive test for 
larger set of colour texture classes will be performed 
in future. Also, in coming research it will be investi-
gated whether the proposed features (18)–(22) allow 
to discern textures which cannot be separated by Ha-
ralick’s features (7)–(11).

5. Summary
In this paper we introduced a novel type of colour 

correlogram, the perceptual colour correlogram, gen-
eralizing concept of the spatial graylevel dependency 
matrix (SGLDM) to the case of colour textures. For 
construction of the perceptual colour correlogram 
we used the  measure describing perceptual colour 
difference. Therefore it became possible to interpret 
the introduced colour correlogram in perceptual 
terms. The PDF induced by the perceptual colour cor-
relogram was used to define five statistical features 
generalizing Haralick features of the SGLDM. These 
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features can be used for colour texture classification 
or statistical modelling.

It is planned to investigate the introduced statisti-
cal features more thoroughly in order to gain deeper 
understanding of their relations to Haralick features. 
This understanding should prove useful to define fur-
ther perceptual colour correlogram features. Also, ex-
tensive numerical experiments should be conducted 
to test actual discriminative power of the introduced 
statistical features. Moreover, it seems that the pro-
posed features can be easily generalized to account 
for texture orientation parameter  (horizontal, ver-
tical, and two diagonals) present in the generalized 
SGLDM. 

In future works the proposed features will be com-
pared to state-of-the-art features, like Gabor-filter 
features present in MPEG-7 texture descriptor.
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