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given starting point. Moreover, methods of estimation 
of starting point in Jiles-Atherton model are connect-
ed only with isotropic magnetic materials, which are 
rarely used in technical applications. For this reason, 
the new methods of determination of parameters of 
Jiles-Atherton model, on the base of experimentally 
measured magnetic hysteresis loops, are intensively 
developed. This paper presents the results of system-
atic experimental research on differential optimiza-
tion as a very promising method for determination of 
Jiles-Atherton model’s parameters.

2.  Jiles-Atherton Model of Magnetic 
Hysteresis 

Jiles-Atherton model of magnetic hysteresis is 
based on the idea of a hysteretic magnetization Mah. 
While, at the beginning, such magnetization was de-
termined only for isotropic materials as a modified 
Langevin function, recently it is known [2] and veri-
fied [3] for anisotropic materials. In this case, aniso-
tropic anhysteretic magnetization  is given by 
the following set of equations:

  

,

 

(1)

  ,	 (2)

  .	 (3)

Where a quantifies domain wall density, Ms is satura-
tion magnetization of the material, Kan is average aniso-
tropy energy density, y is an angle between direction of 
magnetizing field H and anisotropy easy axis. Moreover, 
effective magnetizing field He = H + αM is calculated for 
the total magnetization M and inter-domain coupling α. 

It should be stressed that for isotropic mate-
rials (where average anisotropy energy density  
Kan = 0 J/m3) equation (1) reduces to modified Lan-
gevin equation:

  

(4)
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1. Introduction
Jiles-Atherton model of magnetic hysteresis was in-

troduced in 1986. This early model uses 6 parameters; 
however, it considered only isotropic materials. In 1996, 
Jiles-Atherton model was extended by Ramesh et al. As 
a result of this extension, the possibility of effective 
modeling of the magnetic hysteresis loops of anisotro-
pic materials was created. On the other hand, extended 
model utilizes 9 parameters of magnetic material. 

The parameters of Jiles-Atherton model of mag-
netic hysteresis are clearly connected with physical 
properties of magnetic materials. However, it is not 
defined how to calculate value of each Jiles-Atherton 
model parameter on the base of measurements of 
physical properties of given sample of magnetic ma-
terial. This is the main drawback of Jiles-Atherton 
model, limiting its usability in engineering applica-
tions as well as limiting possibility of verification of 
correctness of this model. 

To overcome this problem, the different methods 
of determination of Jiles-Atherton model parameters 
were presented. In general, all methods utilize opti-
mization algorithms, targeting the minimization of 
target function defined as a sum of squares of differ-
ences between experimental data and the results of 
modeling. However, the target function connected 
with Jiles-Atherton model exhibit many local minima. 
For this reason, the results of gradient optimization 
proposed previously [1] are strongly dependent on 
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In some specific materials, such as constructional 
steels, isotropic and anisotropic phases can be mixed. 
In such case, the total anhysteretic magnetization is 
calculated from following equation [5]: 

 Mah = t  +(1+t)  ,	 (5)

where t∈<0,1> describes participation of anisotropic 
phase in the material.

Magnetic hysteresis is introduced to Jiles-Atherton 
model by differential equation:

  ,	 (6)

where c∈<0,1> describes the reversibility of magnet-
ization process, whereas parameter k quantifies the 
average energy required to break pining site. Moreo-
ver, in equation (6), the parameter δ causes hysteretic 
magnetization due to the fact that it is equal to 1 dur-
ing the increase of H and − 1 during its decrease. It 
should be highlighted that parameter δM guarantees 
that incremental susceptibility is physically justified 
(not smaller than 0) [6].

It should be stressed that for diversified values of 
the amplitude of magnetizing field, the original Jiles-
Atherton model guarantees the good agreement be-
tween experimental hysteresis loop and results of 
the modeling for single hysteresis loop [7]. For other 
values of the amplitude of magnetizing field, another 
set of model’s parameters have to be determined. It 
was proven previously that to overcome this prob-
lem model parameter k should change during the 
each magnetization process. Changes of parameter 

k are connected with changes of the average energy 
required to break pining site for different values of 
material’s magnetization [4]. 

Due to the fact that the magnetic state of the ma-
terial is determined by the value of magnetization M, 
the changes of parameter k might be described by the 
following equation [7]:

   ,	 (7)

where parameters k0, k1 and k2 describe shape of func-
tion determining k as follow: k0 is maximum value of 
k, k1 is its minimum value and k2 is the shape param-
eter of k(M) function.

Table 1 presents the set of parameters of Jiles-
Atherton model of anisotropic magnetic materials.

It should be stressed that to solve equation (6) nu-
merical Runge-Kutta algorithm based methods has to 
be applied [8]. Moreover, due to the lack of antiderriv-
ative for equation (1), Gauss-Kronrod method should 
be applied for numerical integration [9]. 

3. Experimental Results
Experimental measurements of magnetic hys-

teresis loops were done for X30Cr13 corrosion re-
sisting martensitic steel. This steel is widely used in 
construction of energetic structures. As a result, it 
is often subjected to non-destructive testing proce-
dures, also based on magnetic properties. For proper 
analyse of such results of non-destructive testing, the 
Jiles-Atherton model is often applied. For this reason 
the determination of model’s parameters is required.

For effective measurements of B-H magnetic 
hysteresis loops, the samples with closed magnetic 
circuit should be used. For this reason, the frame-
shaped samples made of X30Cr13 corrosion resisting 
martensitic steel were utilized [10]. In addition, such 
frame-shaped sample may be also used for testing of 
the stress dependence of magnetic B-H characteris-
tics, which is especially important from the point of 
view of non-destructive testing applications [11].

Frame shaped sample made of X30Cr13 corrosion 
resisting martensitic steel was wound by magnetiz-
ing and sensing winding. Quasistatic B-H character-
istics were tested using digitally controlled hysteresis 
graph HBPL2.

4.  Methods of Determination of Model’s 
Parameters

Since its introduction in 1984, the most sensitive 
part of Jiles-Atherton model was the method of deter-
mination of its parameters. In general, all methods of 
determination of model’s parameters [12] are based 
on different types of minimisation of target function 
G given as:

  
,
 

(8)

where McalcJ-A were the results of the modeling of mag-
netization and Mmeas were the results of the experi-

Table 1. The set of Jiles-Atherton parameters of material

Parameter Units Description

Ms A/m Saturation magnetization of the 
material

a A/m Quantifies domain wall density

α – Interdomain coupling

k A/m
Quantifies average energy 
required to break the pinning 
site

k0 A/m Maximum value of k (if k 
described by eq. 7)

k1 A/m Minimum value of k (if k 
described by eq. 7)

k2 – Shape parameter of k(M) 
function (if k described by eq. 7)

c – Magnetization reversibility

t – Participation of anisotropic 
phase

Kan J/m3 Magnetic anisotropy energy 
density
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mental measurements of magnetization (calculated 
from the flux density B), all for the given value Hi of 
magnetizing field. Moreover, Jiles-Atherton model’s 
parameters were determined simultaneously for giv-
en number of B-H hysteresis loops (e.g. three hyster-
esis loops) measured for different values of the ampli-
tude of magnetizing field H.

4.1. Gradient Optimization
An algorithms from the family of gradient optimi-

zation methods (covering linear gradient methods 
[13], Newton-like algorithms [14] or congruent gradi-
ents methods [15]), are known to be time efficient lo-
cal search methods. However, as strictly local optimiz-
ers, all these methods stuck in local minima, which 
leads to useless solutions of Jiles-Atherton model 
parameters. As a result, gradient optimization may be 
used only for final adjustment of Jiles-Atherton model 
parameters around the local minima of target func-
tion G determined in other way.

4.2. Evolutionary Strategies
Evolutionary strategies are a set of stochastic al-

gorithms suitable for optimization of continuous 
functions with local minima [16, 17]. Such strategies 
are based on simplified model of evolution. In case of 
such algorithm, from the population of N vectors rep-
resenting the possible solutions, the set of µ parents 
is selected. On the base of parents, λ descendants are 
generated with the use of mutation and crossing-over 
operators [16]. Mutation operator is connected with 
the change of randomly selected value of descendant 
vector accordingly to the normal distribution, where 
the centre of this distribution is the previous value. 
Crossing-over operator creates descendant vector on 
the base of two parental vectors when part of vector 
is taken from one parent, whereas second part is tak-
en from the second parent. Next, in the case of (µ+λ) 
strategy, from the set of µ parents and λ descendants, 
µ best vectors are selected and returned to the popu-
lation. In the case of (µ, λ) strategy, this selection is 
made only among λ descendants vectors.

Both (µ+λ) and (µ, λ) are global search methods 
but the (µ+λ) was selected for finding parameters of 
Jiles-Atherton model because it is not losing promis-
ing results when they are identified [18].

4.3. Covariance Matrix Adaptation Evolution 
Strategy (CMA-ES)

Covariance Matrix Adaptation Evolution Strategy 
[19] is a successor of evolutionary strategies but un-
like them, it does not sore, nor perturb set of solutions 
called population. In CMA-ES, population is repre-
sented by multivariate normal distribution. That dis-
tribution is represented by its mean and its symmet-
ric and positive definite covariance matrix. 

The algorithm is iterative. At each step, the dis-
tribution is sampled, and resulting solutions are as-
sessed by objective function. After that, distribution 
mean and covariance matrix are updated. The algo-
rithm can be fast for difficult problems with costly 
objective function evaluation because the number of 

evaluated individuals can be much smaller than in 
population-based algorithms.  The CMA-ES is 
known to be a robust local search strategy, and be-
cause of its robustness, it was successfully applied for 
many global optimization problems.

4.4. Differential Evolution 
The differential evolution algorithm (DE) [20] is 

a relatively new member of Evolutionary Algorithms 
family. To apply DE, the problem to be solved is encod-
ed by a vector of real numbers called individual. Each 
element of individual is a value of design variable. 
The algorithm is iterative – at each iteration t (gen-
eration), group of N individuals (population) from t-1 
is perturbed, i.e. modified by genetic operators (mu-
tation and crossover), then is assessed by objective 
function. It is assumed that this function should be 
minimized, i.e. smaller value means better solution. 
The algorithm stops after specified number of genera-
tions. The number of generations and population size 
N are parameters of the algorithm. The thing that dis-
tinguishes DE from the rest of the family is differential 
mutation operator.

During mutation phase, a temporary population is 
created form current population. Each i-th new indi-
vidual vi (i in <1, N>) is created by adding weighted 
difference between selected individuals to the third 
individual. That schema can be implemented in many 
ways. First of all individuals can be selected in many 
ways from the population. What is more, the informa-
tion from those selected individuals can be combined 
in many ways. Therefore there exist many versions of 
DE algorithm. Following variants of DE were tested 
from the point of view of its usability for Jiles-Ather-
ton model parameters estimation:

DE algorithm 1:
In the canonical version of the algorithm (known 

also as “DE /rand/1/bin”), a mutant vi is generated 
by adding difference between two randomly selected 
solutions to the third randomly selected solution, i.e.:

 vi = xr0 + F(xr1 – xr2) , (9) 

where F∈(0,1) is scale factor and it is a parameter of 
the algorithm. The process of vi generation is sketched 
in Fig. 1.

Fig. 1. Sketch of differential mutation procedure for 
DE’s canonical schema (variant 1)
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Bullets represent individuals in a space of two de-
sign variables (dv1, dv2), vi is the resulting mutant that 
will compete with xi to take i-th place in resulting pop-
ulation, xr0, xr1, xr2 are randomly drawn solution, xbest 
is the best solution in current generation. For sketch 
simplicity, it was assumed that F from equation (9) is 
equal to 1.

DE algorithm 2:
In variant called “DE/local-to-best/1/bin”, the mu-

tant vi is a result of the sum of i-th solution xi, difference 
of two randomly selected solutions and difference of 
the best solution in current population and xi, i.e.:

 vi = xi + F ⋅ (xbest– xi) + F ⋅ (xr1–xr2) . (10) 

DE algorithm 3:
In the third variant called “DE/best/1/bin with 

jitter”, new individual is calculated from: 

 vi = xbest  +  jitter + F ⋅ (xr1–xr2) , (11)

where jitter is defined as 0.0001*rand+F, where rand 
is real number uniformly drawn from <0, 1>.

DE algorithm 4:
In the fourth variant called “DE/rand/1/bin with 

per-vector-dither”, a new parameter value is taken 
from values of three randomly drawn individuals:

 vi = xr0 + dither ⋅ (xr1– xr2) , (12)

where dither is defined as F+rand*(1-F).

DE algorithm 5:
The fifth variant called “DE/rand/1/bin with per-

generation-dither” is like fourth variant but dither is 
calculated only once per generation.

DE algorithm 6:
In the sixth variant called “DE/current-to- 

-p-best/1” instead of the best solution an individual 
randomly selected from the set of 10*p*problem size 
the best solutions is used (pbest), where p=0.2 is an 
algorithm parameter and problem size is the number 
of parameters to optimize:

 vi = xi + F ⋅ (xpbest– xi) + F ⋅ (xr1–xr2) . (13)

After mutation, a crossover is performed. For gen-
eration of each i-th trial individual ui, a pair of indi-
viduals (xi, vi) is used, i.e. xi – i-th individual form old 
population and vi is i-th individual from temporary 
population. To perform crossover, first an index j of 
design variable is randomly drawn. Starting from that 
index a sequence of values from vi is copied into ui un-
til uniformly drawn real number (from <0, 1>) is less-
er than crossover probability (CR), which is a parame-
ter of the algorithm. The rest of the ui vector is copied 
from xi. Therefore setting CR=1 means that ui=vi.

After crossover, trial population is assessed by 
quality function. After that selection is performed. 
The i-th place in new population will be occupied by 

ui, if its quality is not worse than quality of xi, other-
wise xi will be used. 

The model and search algorithm were implement-
ed in R language [21]. In the presented research dif-
ferential evolution algorithms implemented by Ardia 
et al. [22] were used. We accepted parameters of algo-
rithm proposed by the implementation, i.e. stop after 
200 generations, N=10*problem size, F=0.8, CF=0.5. 
The implementation uses DE-2 as default optimiza-
tion method.

5.  Results of Determination of Model’s 
Parameters

5.1. Evolutionary Strategies
Evolutionary strategies, especially (µ+λ) evolu-

tionary strategy were successfully applied previously 
for determination of Jiles-Atherton model parameters 
[23]. Such methods of optimization are able to es-
cape from local minima. However, application of evo-
lutionary strategy is time consuming. For presented 
research 70 iterations of (µ+λ) evolutionary strategy 
were performed, where population N was equal 900, 
number of parents µ was equal to 3 and number of 
offspring λ was equal to 12. In such case, 252 900 
evaluations of target function were required. After 
(µ+λ) optimization, process value of target function G 
equal 0.401 was reached. The time run of calculation 
was 32 hours at the single node of Halo2 computer 
cluster (AMD Opteron 6272).

5.2. Covariance Matrix Adaptation Evolution 
Strategy (CMA-ES)

CMA-ES is known to be a robust local search strat-
egy. Practical tests indicated that it is not suitable for 
minimization of G function determining quality of pa-
rameters of Jiles-Atherton model. It is results did not 
lead do acceptable solutions and they were strongly 
dependent on initial conditions (staring point). For 
these reasons, we resigned from further research on 
application of CMA-ES for minimization of G function.

5.3. Differential Evolution 
To test the efficiency of the differential evolution 

for determination of the Jiles-Atherton model, the set 
of 25 optimization processes were carried out for each 
differential evolution algorithm. Moreover, algorithms 
were tested for both constant value of model’s parame-
ter k as well as for k(M) given by the equation (7). Table 
2 presents the results of the tests of efficiency of opti-
mization process for constant value of k, whereas table 
3 presents similar results for k given by equation (7). 

The number of function evaluations for each algo-
rithm in table 2 was set to 10 000, whereas for algo-
rithms shown in table 3 it was set to 14 000. The result 
of tuning algorithm’s crossover ratio parameter (CR) 
is presented in table 4 for constant k, and in table 5 
for k(M). We used only DE-2 for that tests because this 
algorithm was chosen to be default in used optimiza-
tion package, which means that it was recognized to 
be good choice for various optimization tasks. For our 
task, according to tables 2 and 3, DE-2 and DE-3 are 
comparable and they are noticeably better than the 
rest of investigated algorithms.
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According to tables 4 and 5, increasing CR from 
default 0.5 gives better average results and smaller 
standard deviation of the results. Therefore, after set-
ting CR=1 it is highly probable to achieve solution that 
is close to the best possible in a single run of the algo-
rithm.

The algorithm was run on single processor on 
Intel(R) Xeon(R) 3.50GHz CPU. The time of one run 
was about 26 minutes for problems in which k was 
a function of M, and 16 minutes for constant k.

6. Conclusion
From the practitioner’s point of view, it is desired 

to achieve good result by the use of of-the-shelf opti-
mization algorithm, i.e. without parameter tuning. For 
our problem, the optimizer’s default algorithm DE-2 
proved to be one of the best performing algorithms. 
Unfortunately, further tests revealed that default set-
ting of crossover ratio (CR) gave substantially worse 
results than results achieved after tuning of the CR 
value. Therefore, to achieve the best possible results, 
still there is a need for parameter tuning. Fortunately, 
within the progress of developing modern optimiza-
tion methods, the number of parameters that needs 
tuning decreases.

Presented results indicate that differential optimi-
zation algorithms can be used to determine Jiles-Ath-
erton model parameters, and they are about 20 times 
faster than previously used evolutionary strategies.
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