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Abstract:
The paper presents a sequential neural network (NN) 
identification scheme for the four-wheeled mobile ro-
bot subject to wheel slip. The sequential identification 
scheme, different from conventional methods of optimi-
zation of a cost function, attempts to ensure stability of 
the overall system while the neural network learns the 
nonlinearities of the mobile robot. An on-line weight 
learning algorithm is developed to adjust the weights so 
that the identified model can adapt to variations of the 
characteristics and operating points in the four-wheeled 
mobile robot. The proposed identification system that 
can guarantee stability is derived from the Lyapunov sta-
bility theory. Computer simulations have been conducted 
to illustrate the performance of the proposed solution by 
a series of experiments on the emulator of the wheeled 
mobile robot.

Keywords: mobile robot, tracking control, wheels’ slip, 
neural network, Lyapunov stability, 

1.	 Introduction
In the adaptive control, unknown systems are pa-

rameterized in terms of known basic structures or 
functions but with unknown parameters. Two broad 
classes of adaptive controllers include the direct adap-
tive controllers and indirect adaptive controllers. In the 
indirect adaptive tracking controller often two feed-
back networks are used. One network is a plant iden-
tifier that has the role of identifying (or learning) the 
plant dynamics model online in real time. The tuning 
law for the plant identifier depends on the identifica-
tion error, which is desired to be small. After the plant 
has been identified, the controller network can be com-
puted using a variety of methods depicted in [1].

The problem of identification consists in choosing 
an appropriate identification model and adjusting its 
parameters such that the response of the model to an 
input signal approximates the response of the plant 
under the same input [5, 9, 12, 13]. 

For identification process both on-line [3,  6,  11] 
and off-line [8] methods can be used. 

In [3] an adaptive critic identifier for wheeled mo-
bile robot was presented. The architecture of adap-
tive critic identifier contains a neural network (NN) 
based adaptive critic element (ACE) generating the 
reinforcement signal to tune the associative search 

element (ASE), which is applied to approximate non-
linear functions of the mobile robot.

In [11] the task of identifying the parameters of 
mobile robot was performed using tuning model 
method. The mathematical description for a robot 
model was derived on the basis of the Appell’s equa-
tions.

An interesting approach to building multi-input 
and single-output fuzzy models was presented in [6]. 
A model is composed of fuzzy implications, and its 
output is inferred by simplified reasoning. The impli-
cations are automatically generated by the structure 
and parameter identification. In structure identifi-
cation, the optimal or near optimal number of fuzzy 
implications is determined in view of valid partition 
of data set. The parameters defining the fuzzy im-
plications are identified by genetic algorithm hybrid 
scheme to minimize mean square errors globally.

The synthesis of the wheeled mobile robot state 
identifier is a complex problem because objects like 
that are non-linear with respect to occurring slips 
and are also multidimensional systems. Application 
of neural network architectures to identification of 
non-linear systems has been demonstrated by several 
studies in discrete time [9, 10]. Lots of the studies in 
discrete-time systems are based on replacing the un-
known function in the difference equation by static 
neural networks first, and then deriving update laws 
using optimization methods for the cost function. Al-
though such schemes are adequate in many cases, in 
general some problems may arise, including the sta-
bility of the identification scheme and convergence of 
the output error [9]. To overcome the above limita-
tions, in this paper a sequential identification scheme 
for a continuous model of wheeled mobile robot sub-
ject to wheel slip using neural networks is presented. 
The nonlinearities of the mobile robot are assumed 
to be unknown. The sequential identification scheme, 
different from the conventional methods of optimi-
zation of a cost function, attempts to ensure stabil-
ity of the overall system while the neural network 
learns the nonlinearities of the mobile robot. An on-
line weight learning algorithm is developed to adjust 
the weights so that the identified model can adapt to 
variations of the characteristics and operating points 
of the four wheeled mobile robot. To guarantee stabil-
ity, the proposed identification system is derived from 
the Lyapunov stability theory. 

The present article is the continuation of works 
[2, 3]. The paper is organized as follows. Chapter 2 
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describes a two-layer neural network. Dynamic equa-
tions of the four-wheeled mobile robot and identifier 
properties are included in Chapter 3. Chapter 4 pres-
ents results of the identification algorithm investiga-
tions, obtained using numerical simulations. Chap-
ter 5 summarizes the results of the research.

2.	 Linear-in-the-parameter Neural Networks 
There are two layers of neurons shown in Fig. 1 

(a two-layer NN [7]), with one layer having N neurons 
feeding into the second layer having r neurons, with 
linear activation functions on the output layer.

Fig.1. Schematic diagram of the neural network

After assuming the element of input vector x0 ≡ 1 
and the vector of threshold values as the first column 
of matrix VT, one obtains:

	 )( xVSWy TT= ,	 (1)

where [ ]TNSSS (.)(.),...,(.), 21=S  is the vector of func-
tions describing neurons, V and W are weights of neu-
ral network (see Fig. 1), )1( +×∈ nNT RV  and NrT ×∈RW . 

From the mathematical point of view, a two-layer 
network is able to approximate any continuous non-
linear function of several variables. An arbitrary con-
tinuous function 

rn
f RRDf →⊂: , where fD  is a com-

pact subset of nR , can be approximated with arbitrary 
accuracy by a two-layer neural network with appro-
priately chosen weights [7]. That is, for a given com-
pact set fD  and a positive value of the approximation 
error ε, there exists a two-layer neural network, such 
that the non-linear function )(xf  can be written as: 

	 	 (2)

for .
If weights of the first layer of the network VT are 

determined with certain method, then weights WT of 
the second layer of the network define its properties, 
and it is in fact a single-layer network. 

If one puts , then the relationship (1) 
can be written as:

	 ,	 (3)

where NRx ∈ , rRy ∈ , . 
Network like that is linear with respect to its pa-

rameters (WT weights). Therefore this kind of neural 

network is attractive from the point of view both con-
trol and identification tasks and is often use in practi-
cal applications [2, 4].

The form (3) will be adopted to approximate robot 
nonlinearities in the further analysis.

3.	 	Modelling of the Robot and Identifier 
Properties
The object analyzed in the present article is a 

four-wheeled mobile robot. Diagram of its kinematic 
structure is shown in Fig. 2 [4,  14,  15,  16]. In the 
model, the following basic robot components can 
be distinguished: 0 – mobile platform (robot body 
with additional frame to accommodate control and 
measurement equipment), 1–4 – wheels, 5–6 – 
toothed belts (tracks). 

In the analyzed robot, at either side the front wheel 
is connected with back wheel by means of the toothed 
belt. 

The following symbols are adopted for i-th wheel: 
Ai – geometric centre, ri – radius, θi – wheel rotation 
angle. Mobile platform angular velocity is denoted 

. It is assumed that motion of the mobile robot 
occurs in the oxoy plane (as shown in Fig. 2).

Fig. 2. Model of the analyzed robot

Position and orientation of the mobile platform are 
described by generalized coordinates vector: 

	 [ ]Tz
o

R
o

R
o yx 0,, ϕ=q ,	 (4)

where: xR = oxR, yR = oyR – coordinates of the point R of 
the mobile platform, φz = oφ0z – rotation of the mobile 
platform with respect to z-axis, both in the stationary 
coordinate system {O}. 

Generalized velocities vector q  can be determined 
based on the value of velocity of motion of the point R 
of the robot along direction of x-axis of the {R} system 
connected with the robot that is vR, and the angular 
velocity of the mobile platform that is ϕ , based on 
the kinematic equations of motion in the form:
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The above equation is valid if robot moves on 
a horizontal ground. In the control of position and 
heading of the robot, one assumes that motion of the 
robot is realized based on the desired vector of its po-
sition and heading, which has the form:

	 ,	 (6)

where: xRd, yRd – desired coordinates of characteristic 
point R of the robot in (m), φd = oφ0zd – desired rota-
tion of the mobile platform with respect to z-axis in 
(rad), both in the {O} coordinate system.

In order to define the problem of tracking control, 
based on the relationship (6) let us define desired pa-
rameters of motion of the point R in the form of equa-
tion:

	  ,	 (7)

where: vRd, ωd = dϕ  – respectively desired linear ve-
locity of the characteristic point R of the robot in 
(m/s) and desired angular velocity of its mobile plat-
form in (rad/s), in the stationary coordinate system 
{O}. 

In Fig. 3 schematic diagram of the analyzed robot 
with marked reaction forces acting on the robot in the 
wheel-ground contact plane is presented. 

For description of motion of the four-wheeled, the 
model elaborated in [15] will be used. In this model 
the tire-ground contact conditions are character-
ized by coefficients of friction and rolling resistance. 
A simple form of a tire model, which considers only 
the most important effects of tire-ground interaction 
,is applied. The robot dynamics model also includes 

the presence of friction in kinematic pairs and the 
electromechanical model of servomotor drive unit.

According to proposed model, it is assumed that 
the tire-ground coefficient of adhesion changes ac-
cording to the Kiencke model, and values of longitudi-
nal slip ratios 3l  and 4l  depend respectively on an-
gular velocities of driven wheels 3θ  and 4θ . 
Additionally, equality of driving torques for passive 
and active wheels is assumed, that is, 31 τ=τ  and 

42 τ=τ .
After taking into account the above assumptions, 

dynamic equations of motion for the mobile platform 
version with the hybrid drive system, i.e. with wheels 
and toothed belts, are written as [15]:

 
	 	 (8)
where

	
	  

,
	

and , Dt are respectively: a constant associ-
ated with the model of wheel-ground adhesion, com-
ponents of acceleration of the characteristic point R 
of the robot in the {R} coordinate system associated 
with the robot. 

In turn, constants ai that occur in equation (8) result 
from analyzed robot geometric properties and mass 
distribution, and were determined in the work [15]. 

In the present work we use the idea of the iden-
tifier, introduced in [9], which allows estimation of 
parameters of the mobile robot mathematical model. 

After putting T],,,[ 4343 θθθθ= x , , dynamic 
equations of motion (8) can be written in state 
space representation:

	 	
(9)

where 4(.) Rf ∈  is a non-linear function vector. 
The identification model for the mobile robot (9) 

can by expressed by
 

	 	 (10)

where  and 4RA ∈  is a Hurwitz matrix. 
Suppose that a neural network is used to approxi-

mate the non-linear function G(x,u) according to
 

	  ,	 (11)

where: WT – the ideal approximating weights,  – 
function with a suitable basis,  – the approximation 
error with . 

Fig. 3. Diagram of reaction forces acting on the robot in 
the wheel-ground contact plane



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  8,      N°  4        2014

Articles 27

Then the estimate of G(x,u) is given by
 

	  .	 (12)

This yields the following identification model

	 ,	 (13)

where x̂  denotes the state vector of the network 
model. 

Let us define the state error vector as

	 xxx ˆ~ −= ,	 (14)

so that the dynamic expression of the state error is 
given by

	 .	 (15)

Description of the closed structure of identification 
is shown in Fig. 4.

In Fig. 4, two neural network structure are shown. 
The first structure, i.e. tracking control structure, 
generates necessary signals  for identification. 
The second structure is neural network based iden-

tifier. In the proposed solution, the weights W of the 
network are learned without the preliminary pro-
cess of learning. In order to prove stability of the 
proposed structure of identification of the mobile 
robot state, let us introduce the assumption that 
weights W are limited, i.e. the inequality mW≤W  
is fulfilled.

Let us introduce the Lyapunov function in the form:

	  ,	 (16)

where tr(.)  denotes the trace of a matrix. 
The first derivative of the Lyapunov function L 

with respect to time t reads

 .
(17)

Since

 ,
(18)

equation (17) becomes

 .
(19)

Fig. 4. Identification based on neural networks
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If the estimation law for the weight matrix is given 
by
	 ,	 (20)

we will obtain

	 	
(21)

where lmax (A) is the maximum eigenvalue of the ma-
trix A. 

Therefore, the Lyapunov derivative is negative 
semi-definite as long as

	 )(/~
max Ax l> εz .	 (22)

Therefore, the identification error x~  is bounded 
with a practical bound given by the right-hand side of 
equation (22). As long as the existing disturbances 
will be less than this value, the proposed system will 
work properly.

Since L is positive define and 0≤L , this demon-
strates stability in the sense of Lyapunov, so that x~  
and W~  (and hence Ŵ ) are bounded.

4.	 Simulation Results
In simulation investigations it was assumed that 

input T],[ 43 ττ=u  and desired signals T],,,[ 4343 θθθθ= x  
for the neural network identifier were generated from 
the neural network tracking control system [4], as 
shown in Fig. 4. 

Simulation investigations were realized for move-
ment of a chosen point R of a mobile robot on a de-
sired path in the shape of a loop (Fig.  5a). Fig. 5c 
shows the actual angles of rotation 3θ  and 4θ  for 
wheels 3 and 4, and Fig. 5d actual angular velocities 

43 ,θθ  . The obtained control signals 43 ,ττ  (i.e. desired 
torques for driven wheels) that realize desired trajec-
tory of motion of the point R of the mobile robot are 
shown in Fig. 5b. In the simulation of neural tracking 
control system, the parametric disturbance occurring 
for t ≥ 12 s is assumed in the form of increase in roll-
ing resistance coefficient by Dfr=0.3 when the charac-
teristic point R of the robot moves along the curvilin-
ear path.

In order to use the procedure of identification of 
kinematic parameters of the mobile robot (section 3), 
let us rewrite the dynamic equations of motion (8) in 
the form (10)
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where TTxxxx ],,,[],,,[ 43434321 θθθθ=  , aii = 8, =Tuu ],[ 21  
T],[ 43 ττ=  

and: 

	 	 (24)

(25)

For approximation of non-linear functions 
Tgg ],[),( 43=uxG , equation (12) was applied where 

the neural network described in section 3 is used with 
sigmoid functions describing neurons, assuming that 
each element of the G(x,u) vector is approximated 
with 6 neurons. In the neural network of the identifi-
er, initial weights were chosen equal to zero, and then 
adapted in a learning process for 500=γ . 

The simulation results of the neural identifier for 
the desired motion parameters are shown in Figs. 6 
and 7. The actual and estimated states of dynamic sys-
tem against time t are shown in Figs. 6a and 6c. The 
errors of identification of rotation angles 21

~,~ xx  and 
angular velocities 43

~,~ xx  are shown in Figs. 6b and 6d.
In the presented simulations, during the mobile 

robot movement, five disturbances occurred, marked 
in Fig. 6d by ellipses (1, 2, 3, 4, 5), which cause the 
errors of identification. Disturbances 1 and 5 are as-
sociated with realization of two phases of robot mo-
tion: accelerating and braking. Disturbances 2 and 4 
are connected with the entrance and the departure of 
the mobile robot from the loop. The disturbance 3 is 
the parametric disturbance occurring for t ≥ 12 s as-
sumed in the form of increase in rolling resistance co-
efficient. 

Fig. 5. Desired signals for identification

a)	 b)
	

c) 	 d)
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Initial values of the identifier errors are the high-
est, and are reduced during neural networks adapta-
tion process. During time periods when disturbances 
appear, the temporary increase of the identification 
errors occurs. The neural networks weights adapta-
tion process enables reduction of the tracking errors 
when the signal produced by the identifier is adapted 

to the changed dynamics of the mobile robot. 
Weights of the non-linear function g3 of the neural 

network, shown in Fig. 7a, are bounded and converge 
to fixed values after the learning process, similarly as 
weights of the non-linear function g4, shown in Fig. 7b.

For quantitative evaluation of the results obtained 
from simulation investigations of the neural network 
identifier, the following quality indices are introduced:

–	 maximum values of the errors max3
~x  and max4

~x  in 
(rad/s):

)))(~(abs(max~
(.)max(.) kxx

k
= ,  k =1,2,…n,

–	 the square root of the mean squared error (RMSE) 
of the identifier in (rad/s): 

( ) ( ) ( )( )∑
=

=
n

k
RRR kx-kx

n
x

1

2
... )(ˆ)(1~ , 	

where k is the ordinal number of a discrete value and 
n = 32 000 is the total number of discrete values. 

Values of all quality indices of realization of track-
ing motion are summarized in Table 1.

Table 1. Values of the introduced quality indices

max3
~x max4

~x Rx3
~

Rx4
~

0.3237 0.2517 0.01976 0.01917

5.	 Summary
A sequential identification scheme for a continu-

ous non-linear model of four-wheeled mobile robot 
with unknown nonlinearities using neural networks 
has been developed. The algorithm works online and 
renders the time consuming trial-and-error prelimi-
nary learning unnecessary. The stability of the overall 
identification scheme and convergence of the model 
parameters are guaranteed by parameter adjust-
ment laws developed using the Lyapunov synthesis 
approach. The operation of the sequential identifica-
tion algorithm was presented based on the conducted 
simulation investigations and the results conformed 
to theoretical expectations.
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