
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N° 4 2014

3

Client-side Storage. Offline Availability Of Data

Arkadiusz Janik, Szymon Kiebzak

Submitted: 6th July 2014; accepted 28th July 2014

DOI: 10.14313/JAMRIS_4-2014/30

Abstract:
Since paradigm shift from thick clients to thin ones and
through growing requisition of remote services we have
been facing continuous evolution of web applications.
Standards and approaches of building HTML clients have
been changing and now one of the biggest challenges
for web application developers is issue related to client-
side data storage. This paper applies to new technolo-
gies specified recently by World Wide Web Consortium.
These specifications refer to new methods of storing
data in web clients, which can be accessed via JavaS-
cript in modern web browsers. In addition, the paper
introduces a design and a reference implementation of
a framework for Java language and Java Server Pages
technology that simplifies implementation of web based
applications with client-side storage. The framework is
designed for integrating Java language with above men-
tioned new W3C specifications to create more powerful,
modern, thin client web applications easily, without a
need of knowledge of implementation details of JavaS-
cript API for new technologies but using only Java lan-
guage. The framework can be used to build thin clients,
including mobile web-based clients that may replace not
–portable, native mobile applications.

Keywords: HTML5, Offline-storage, WebSQL, Web Stor-
age, IndexedDB, File API, client-side storage

1.	 Introduction
W3C organization has recently introduced HTML5

specification. Since then lot of effort has been made
on implementing a new client-side storage technolo-
gies to give developers opportunity to create power-
ful web applications that utilize HTML5 and CSS3.
Previous technologies of client-side storage, such as
HTTP Cookies or URL parameters, were not enough.
The lack of sophisticated client-storage technologies
was particularly important in a world of mobile appli-
cations. This led to expansion of thick, native clients
that are not portable and have to be implemented for
each mobile platform (Android, iOS, BlackBerry, Win-
dows Phone etc.). Additionally, there are more and
more users of Internet and, due to limited servers’ ef-
ficiency, storing data on a client side is an obvious way
of increasing applications performance (especially
now when clients machine nowadays have relatively
big CPU and RAM capabilities).

The new client-side storage technologies could be
used in improvement of distributed data acquisition
systems in the field of automation and measurements
where problems with an access to the network may
occur.

Web Storage, Indexed Database and File API are
modern technologies and there has not been much
research done in relevance to them (last two have not
been marked with Recommendation status – W3C still
works on the specification). They still require thor-
ough examination. In the paper, we summarize the
results of our investigation and viability study on the
subject of above mentioned technologies. In the first
part of the paper we present previous ways of storing
data in a web browser on a client-side. Then, we sum-
marize Web Storage, Indexed Database, File API. We
also present a design of a framework and reference
implementation of a library for Java language that can
be used to integrate web applications written in Java
(web frameworks based on JSP technology) with the
mentioned client-side technologies.

2.	 	 An Overview of Previous Client-side
Storage Methods

2.1.	 HTTP Cookies
HTTP Cookies were introduced in 1994. The main

motivation was the ability to store state of customers’
basket in web stores. It was a very important matter, es-
pecially that e-commerce businesses were growing ones.

A concept behind cookies is very simple. A cookie
is a small piece of information that consists of unique
key and its value. The cookies are stored as files in
a client’s file system. Obviously web browser can
access these files. When HTTP server wants to set
a cookie in a particular client computer, it sends a key
and a value of the cookie in the HTTP Response.

After that when a client browser generates the
new HTTP Request, it attaches all the previously
stored cookies to a header in the HTTP Request thus
all the cookies for a relevant web domain are sent to
the web server. A drawback of using the HTTP Re-
quest for transporting cookies is a limitation of the
cookies size (4kB for a web domain).

Another weakness of the cookies is that the tech-
nology is susceptible to web attacks. Even though
some mechanisms to prevent such threats have been
introduced still not cope with all attacks [6].

Nowadays, the HTTP cookies are still widely used
by web applications, primarily to store session ID but

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N° 4 2014

Articles4

also to provide website personalization. The last but
not least – the cookies can be used to track user ac-
tivities on websites.

2.2. URL Parameters
In some cases, cookies can be substituted by URL

parameters. It is quite important since users can dis-
able cookies in web browsers. Therefore, URL param-
eters are often used to keep users session. The main
difference between this mechanism and cookies is a
fact that information transferred in URL parameters
is lost once a user closes a web browser window.
Cookies last on users’ file system.

3.	 An overview of W3C client-side storage
specifications

3.1.	 HTML5 Manifest
New HTML5 specification introduces noteworthy

feature, which is a manifest file. In the file, which lo-
cation is referred in HTML documents of web appli-
cations, developers may specify pages that should be
cached in web browsers. This feature can be used to
provide an offline web application. A manifest file is
a great idea as it allows a developer to actively affect
behavior of partially offline applications [3].

3.2. Web Storage
Web Storage is a set of key-value pairs stored in a web

browser for each origin [9]. It is divided into Local Stor-
age (which is persistent) and Session Storage (where
data is stored for the lifetime of a web browser win-
dow). A web application can only store strings. It means
that in order to save JavaScript object, they have to be
serialized (converted to JSON format) before. Stringify-
ing objects to JSON can be time consuming so develop-
ers should be aware of that. It is particularly important
because calls to WebStorage API are synchronous.

3.3. IndexedDB
IndexedDB is a database, which is built in a web

browser [10]. It can store more types of data than the
Web Storage because it can handle every object that
can be serialized by “structured clone” algorithm.
One origin may have many databases (identified by
a name and a version) and each one may have many
data stores, so that one store has its own definition of
a key and is designed to store similar objects.

Similarly to the WebStorage, data in IndexedDB’s
store is represented by a pair of a key and a value. The
key can be automatically generated or set programmati-
cally (in fact, the key is also one of the stored objects attri-
butes). Obviously, the keys must be unique across a store.

IndexedDB has two APIs – asynchronous and syn-
chronous one. It is recommended to use the asyn-
chronous API from JavaScript code of the web appli-
cation as it can work on quite big data sets. Executing
JavaScript code can hang a web browser card or even
the whole window (depending on how a given web
browser is implemented).

As a great feature of IndexedDB, a developer can de-
fine indexes for chosen attributes for a selected store. As

in regular databases, this improves performance when
searching for entities. What is more, indexes can be
used as constraints thus guarding attribute uniqueness.

IndexedDB is transactional. Every operation on its
data is performed in a scope of a transaction. A devel-
oper can choose between two types of a transaction –
read-only and read-write – depending on a type of data
manipulation required. There is also another type of
transaction – “versionchange” but it is only used during
a database creation or changing its version.

It is worth mentioning that there have been some
ideas of synchronizing data from a server (with an SQL
database deployed) with a web client running different
engines (IndexedDB, WebSQL Database, Google Gears).
The authors decided to build a custom SQL interpreter
[4].

An interesting summary about usage of above men-
tioned technologies in JavaScript can be found in [7].

3.4. File API
W3C introduced File API to manipulate files in

a web browser before they are sent to a web server
[11]. This approach allows some operations to be per-
formed on files using client CPU power (thus saving
server resources). Moreover, files can be read (as a bi-
nary string, text or DataURL) and their content can be
saved in Web Storage or IndexedDB.

Another great function of File API is a sandboxed
filesystem [12], which web application can access to
operate [13] on files (create, write, read and delete)
and folder. There are two types of filesystems – per-
sistent and temporary. While using temporary filesys-
tem, a web browser takes care about files lifetime – if
a web browser needs some disk space, it can delete
files without notice. But when a web application wants
to use persistent filesystem it requires user permis-
sion and a user can approve or decline this request.

3.5. Browser’s Support
It should be mentioned that not all of these specifi-

cations have been already announced as final. Only Web
Storage has W3C Recommendation status. Indexed Da-
tabase has W3C Candidate Recommendation status,
whereas File API has Last Call Working Draft status
(but its related specifications: File API: Directories and
System and File API: Writer has only Working draft sta-
tus). For this reason, not all mechanisms are supported
by different web browsers [1]. Web Storage is support-
ed by each popular modern web browsers except for
Opera Mini. IndexedDB is not supported by Safari, iOS
Safari, Android Browser (but will be from 4.4 version)
and Opera Mini (and it is supported by Internet Explor-
er version 10.0 or newer). Some features of File API
are supported by all browsers except for Opera Mini.
However, key features like a sandboxed filesystem and
CRUD operations on files in it are currently supported
solely by web browsers with Webkit engine, which are
Google Chrome, Opera, Blackberry Browser, Opera Mo-
bile and Chrome for Android (and there are no signs of
implementing full File API support in other web brows-
ers in near future). The Fig. 1 summarizes availability
of HTML5 features in modern web-browsers.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N° 4 2014

Articles 5

Fig. 1. Compliance of HTML5 features for web-browsers
available on the market

4.	 Web Applications on Mobile Devices
Due to specific limitations of mobile devices and

development frameworks available for them major-
ity of web applications intended for them are native
applications. It is caused by unreliable access to In-
ternet from such devices. One cannot simply assume
that there will be an access to Internet all the time.
On top of that there are also other situations when
the devices cannot be connected to Internet, e.g.
during flight. Therefore, mobile applications need to
have ability to work both online and offline. However,
working offline they generate a demand for storing
application state on mobile devices’ storage. Unfor-
tunately, it was really hard to meet this requirement
when using web browsers on mobile devices.

There are two main types of mobile applications.
The first one is often called “Wireless Internet” ap-
plications. They consist of client – WWW browser
and a web server connected to a data source. Appli-
cation state is stored on the server. To use such an
application, a user needs to establish connection to
Internet on their machine and launch a web browser.
There is no need to install any additional software.
Developers implement only one version of a web ap-
plication, which is suitable for all modern browsers
be it a mobile web browsers of a desktop one.

Another type of a mobile application is “Smart
Client”. This is a native application, which must be
downloaded and intentionally installed by a user
on his device. As an advantage, such application can
access device’s storage and can work offline (e.g.
some operations are performed offline and then
are synchronized when connection is established).
A native application is allowed to access a device’s
OS features such as geo-location, detection of avail-
able connection channel (WiFi, 3G, etc.) thus can of-
fer more sophisticated features. A big drawback of
native applications is variety of mobile platforms to
be considered by application developers (i.e. iOS,
Android, Windows Phone, Blackberry). An applica-
tion provider has to implement many applications to
cover all mobile device users.

For above reasons, there were some attempts
made to speed up development process for web

applications in thin client architecture for mobile
devices. PhoneGap is one of them [2] [5]. This tool
allows a developer to create an application using
HTML, Javascript and CSS. From a developer’s point
of view, the process is similar to developing a stan-
dard web-based application. However, once the ap-
plication source code is ready, it is compiled into
a native application dedicated for each mobile plat-
form (using based on web views controls specific for
each platform). Therefore, the compiled application
has to install on a device by a user and undergoes
the process of validation before being placed in plat-
form market (i.e. Play Store for Android or App Store
on iOS).

Another approach is RWD (Responsive Web De-
sign). Because it is sometimes hard to prepare a web
page that looks properly on both big Full-HD moni-
tor and relatively small mobile device screen, devel-
opers tend to choose creating native applications
adapted to screen size (sometimes different soft-
ware for phones and tablets). The HTML5 introduce
media queries – elements of CSS that can be used
by developers to adjust appearance of web page de-
pending on web browser’s window size.

It seems that, due to availability of HTML5 and
above mentioned technologies, developers have
great opportunities to boost their web applications
in thin client architecture. Storing data on client
side can be easily achieved using Web Storage, In-
dexedDB and File API even with relatively big data
sets and binary files. Certainly, there are some types
of mobile application that still have to be native, e.g.
applications running as daemon but still majority
can be provided as HTML5, web-based clients with
client-side offline storage. These applications can
run in both: online and offline modes.

5.	 Possible Adoption of New W3C Technologies
As W3C organization claims (and it is hard to dis-

agree with it), there are many useful cases related
to mentioned technologies to be adopted in web ap-
plications. First of all, a module that sends big sets
of data from a client web browser to a web server. It
splits a set of data into smaller pieces, stores them
in a web browser’s space and sends sequentially. If
a web browser window is closed, it remembers the
last sent part. After next access to the web page, re-
maining parts are sent as well. Without ability to
store data in a web browser, in case of any trans-
fer interruption (regardless of a reason) a data set
would have to upload once again and sent from the
very beginning.

Another scenario is also about sending files.
Imagine that an application running in a web brows-
er needs to download many files from a server. It is
faster to transport one ZIP package than many files
separately. In this case, after receiving client’s HTTP
request, several files can be zipped on the server and
sent back as a single package. Then, it can be un-
packed in the web browser. The package’s content
can be stored in a web browser storage space to be
accessed from it (also offline).

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N° 4 2014

Articles6

The next case is offline graphic editor that runs
only in a web browser without need to send files
to a server. In addition, files may be stored in a web
browser’s storage space for the further manipula-
tion. In case of mobile devices, this is an example of
useful application that could successfully replace na-
tive software.

Another example is a web portal providing access
to movies. Now, the portal can be streamlined with an
ability to store movies in browsers, so that they can be
watched when no Internet connection is available due
to network problems or flight.

When using new HTML5 technologies, it is pos-
sible to implement a web-based e-mail client allow-
ing to access e-mail content offline (including attach-
ments that have been previously downloaded and
stored in a web browser’s storage space). It allows
a user to use the application in the offline mode but
it also decreases network load when working online.
Another helpful feature useful offline is saving work-
ing copies, as well as attachments, as drafts that will be
synchronized with the server once the user is back on-
line (when Internet is reconnected items will be taken
from web browser space and sent as e-mail message).

6.	 An Tdea of the Framework
Web applications are created in popular program-

ming languages, such as PHP, C#, Java, Python, Ruby
or many others. In fact, developers always use proven
web frameworks for those languages. A large part of
the market is possessed by Java and there are many
popular libraries for it to help developing web appli-
cations. Most of them (Spring MVC, Struts, JSF etc.)
are based on Java Server Pages specification, in which
an application has its view layer built on JSP files.
A JSP file can contain HTML tags and also Java code
that integrates view with other layers. Of course, web
frameworks have mechanisms that facilitate this type
of integration and introduce their own mechanisms
(for instance actions and forms definition in Struts or
view controllers in Spring MVC). When using JSP files,
developers can also take an advantage of previously
created libraries of JSP tags (or define new ones). JSP
tags can for example execute methods on a server side
or place previously prepared piece of HTML code or
JavaScript code.

New HTML5 technologies (Web Storage, Indexed-
DB and File API) can be accessed from JavaScript
scripts inside HTML documents. Therefore, in web ap-
plications created with Java frameworks based on JSP
technology, the best place for JavaScript code is a JSP
file. As it was presented above, the new technologies
have a lot of possible applications, however developers
need to learn new APIs or sometimes even JavaScript
language (because Java web frameworks allow a user
to successfully create working applications without
need to know JavaScript). It is worth noticing that both
IndexedDB and File API have asynchronous API, which
requires quite a different approach from web devel-
oper. It is an obstacle for the use of the technologies.

Considering the above problems, our objective
was to create a Java framework that would help devel-

opers using new HTML5 client-side storage technolo-
gies. The framework should be intuitive and easy to
learn and designed in a way that keeps an application
code properly structured and also easy to test.

There have been several studies on usefulness of
new client-side storage technologies [1], [8]. Some
articles also claims that these mechanisms will be im-
portant when developing modern web applications
(mobile ones as well). These papers describe ways
of adopting HTML5 technologies to web applications.
However, there is nothing about designing a way of
propagate these technologies.

In the next section we present a design of a frame-
work allowing Java developers to write web-based
applications streamlining HTML5’s offline storage
feature. We will present the framework’s four main
elements that can be leveraged by developers.

7.	 Project of the Framework
Some ideas significantly guided the final process

of designing our framework. First of all, the key point
was to identify and group separable elements of the
framework. As the result it was found that one of
these elements will be JavaScript library. The library
contains a set of functions, which call Web Storage,
IndexedDB and File API methods in a proper, brows-
er-specific way. What is important, the library is the
only place in the framework where client-side stor-
age technologies APIs are used. This is very essen-
tial since, JavaScript language as well as JavaScirpt
library API specifications tend to change frequently.
Especially when one considers that above mentioned
technologies still have not been officially specified by
W3C organizations and their specification is still un-
der development. Therefore, if any element of these
API changes, it is required to adapt changes only in
the JavaScript library. What is more, although our
framework is designed to be a Java library, JavaScript
library can be also distributed as independent proj-
ect and can be used with alternative web frameworks
written in different programming languages. High lev-
el architecture of the solution proposed is presented
in Fig. 2).

The most important element is JavaScript library
html5storage.js – a set of objects and methods that
maps browser specific code onto browser-indepen-
dent code to be used by client applications. Another
element of a framework is a Java library with a set
JSP tags definitions and Java annotations that can be
used by developers to annotate classes to be cached
on the client side. The whole framework is distributed
as a WAR package that can be used in the customer-
specific Java Web applications.

Another important feature of a project is that it is
easy to use by Java web developers. To make this hap-
pen, we have focused on two things. First of all, we
introduced JSP tag library that contains many JSP tags
to use on JSP pages. The set of tags covers all possible
calls to functions from framework’s JavaScript library
described above. JSP tags should be well-known to
Java web developers as oppose JavaScript language for
HTML5. Secondly, in our framework we use a proven

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N° 4 2014

Articles 7

way of defining a set of objects that can be stored in In-
dexed Database. We choose similar way that is used in
Java Persistence API – there is configuration file with
a list of fully-qualified Java classes, which instances
can be stored in the database. Additionally, we intro-
duced a set of Java annotations for both: classes and
fields. They have to be used to specify classes which
instances should be made storable. There are also an-
notations to mark fields to be stored in the database
as well as an annotation to indicate a primary key and
specify for which field indexes should be generated.

The most important thing about our framework
is wide range of operations that can be performed
in web applications that adapts it. We introduce four
main elements that take advantage of client-side
storage HTML5 technologies and they are briefly de-
scribed in below sections.

7.1. HTTP Request Caching
In a web application clicking on a link or an in-

put field, which has type “submit” (simply a button)
causes generating HTTP Request for a particular re-
source identified by URL. It always works when Inter-
net connection is available. Otherwise, an appropri-
ate error message will be displayed in a web browser
window. However, if a web application uses our frame-
work, a user can go to offline mode. A framework will
take care about caching actions that generate HTTP
Request (simplifying – a resource URL, HTTP method
type and/or additional parameters). These requests
will be stored persistently in a web-browser (they
will last even when the web-browser is closed). Once
the Internet connection is reestablished, the previ-
ously stored requests can be sent to the web server.

For example, a developer can mark a HTML form as
conditionally cacheable. It means that if a user works
online, the form will be submitted in a standard way.
Otherwise, a URL with parameters generated by the
form submission will be cached and sent to the web
server when the user starts working online again.

7.2. HTML Forms Caching
Another feature of this framework implementa-

tion is caching state of HTML forms. In a usual sce-
nario, when a user has to close a web browser when
filling in an HTML form the form’s state will simply
vanish. Using our framework it is possible to save the

form’s state in web browser storage. It can be done
automatically by marking particular form or it can be
done on-demand by the proper user’s action. Form
state could be saved either for web browser’s tab’s life
or persistently. Then, the form’s state can be restored
(either automatically or when needed).

The framework provides following operations
to developers:
–	 to mark a form to be cached conditionally,
–	 to mark a link for conditional send (if the

application is offline the system will store HTTP
request for the link instead of trying reloading the
page),

–	 to add an element that will call an action that will
cache a HTTP request in a web browser’s cache,

–	 to add an element that will call an action that will
call a stored HTTP request,

–	 add an element that will remove a cached HTTP
request.

7.3. Cache Data Between Pages
The next framework’s element is ability to cache

data when navigating between pages. This mecha-
nism is very similar to session or request scope
data storing on server side available in popular web
frameworks. A data can be stored in a web browser.
Of course, it is still possible to use traditional mecha-
nisms: HTTP cookie mechanism or URL parameters.
However, in this approach, all data will be sent in
each HTTP Request. And like in “HTML forms cach-
ing”, a developer can specify scope of stored data
and framework will obey it. But in this case, one of
available scopes is a session scope, which keeps data
stored until a web browser’s tab is closed. Another
one is a request scope, which makes data accessible
only for the next loaded page.

The framework provides following operations
to developers:
–	 to define, which data should be cached and be

available after loading another page
–	 to load previously cached data after another page

is loaded,
–	 to remove previously cached data,
–	 to define scope of data availability (a session scope

or a request scope).

7.4. Access to Browser Data Space
One of the most important parts of the framework

is set of tools to manipulate data stored. The frame-
work provides many JSP tags which deal with that.
Each type of operation can be done in two ways - au-
tomatically when page is loaded or after specific ac-
tion of a user. From server side perspective (i.e. Java
code), by different sort of data we assume simple,
primitive data types, Java objects (properly annotat-
ed) and binary data (e.g. resources – music, graphics,
etc. on web server).

Depending on kind of data it is stored in the most
suitable way. Simple data types are placed in Web Stor-
age under a given key. Single Java also objects can be
stored in Web Storage but if their classes are listed in
frameworks configuration file, framework will cre-

Fig. 2. High level architecture of the solution

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N° 4 2014

Articles8

ate in client web browser database several stores for
each class. Then one or more Java object of same class
can be put in Indexed Database from Java code (using
JSP tags). Developer can put in JSP iterators to access
their attributes (for example to present collection data
in a HTML table). In addition, iterated data can be fil-
tered by attributes (lower and/or upper bound; strict
or open; equality). This filtering can only be applied to
attributes that were annotated to additionally be store
indexes. All storing operations can be done in two ways.
The first one is to explicitly define objects to be stored
in a JSP file. The second one is to load them from URL
(programmers should then provide for example dedi-
cated Java Servlet, Spring controller, REST web service
etc.). Files can be cached in browser’s sandbox filesys-
tem from given URL or from HTML5 input (type=file).
What is more, there are ready tags that allow web ap-
plication users to download files from sandboxed file-
system to hard disk. On top of that there are tags to
display stored graphics in a web page or place audio/
video control to play stored music and video files.

The framework provides following operations
to developers:
–	 to cache data,
–	 to cache data from a given URL,
–	 to cache data from a given URL and add it to HTML

document,
–	 to cache data from a given URL and process it,
–	 to read data,
–	 to read data and add it to HTML document,
–	 to remove data,
–	 to transfer data to server using AJAX,
–	 to transfer data to server using GET/POST method,
–	 to modify attributes of JavaScript objects

previously cached.
The framework provides following operations on

object collections to developers:
–	 to add elements to a data storage,
–	 to add elements to a data storage from a given

URL,
–	 to read (or search using defined criteria) elements

from a data storage,
–	 to read elements from a data storage and add them

to HTML documents,
–	 to remove elements from a data storage,
–	 to send elements to a server using AJAX,
–	 to send elements to a server using GET/POST

methods,
–	 to modify attributes of elements from a data

storage.
The framework provides following operations on

binary data to developers:
–	 to add a binary data to a virtual file system,
–	 to add a binary data to a virtual file system and

process it,
–	 to add a binary data from a given URL to a virtual

file system,
–	 to add a binary data from a given URL to a virtual

file system and process it,
–	 to read a binary data from a virtual file system

either as a text or as a data URL or as a binary
string,

–	 to add a link to a binary data from a virtual file
system to HTML document (so that a user can
download it),

–	 to add an image/video/audio content from
a virtual file system to HTML document,

–	 to add a file from a user’s file system to a virtual
file system,

–	 to convert image format of stored binary data,
–	 to apply filters, resize and modify image data stored

in a virtual file system using Pixastic library [14],
–	 to rename, move and remove files from a virtual

file system,
–	 to add, remove folder in a virtual file system,
–	 to send binary data to a server using AJAX.

7.5. Using Framework
Let’s assume that we want to create Java web ap-

plication using a framework that is based on JSP tech-
nology. A project will be built using Maven. As a result
a WAR file will be created.

First, the dependencies needs to be defined in
a pom.xml file:

<dependencies>
 <dependency>
 <groupId>pl.edu.agh.html5storage</
groupId>
 <artifactId>html5storage-core</
artifactId>
 <version>1.0.0</version>
 </dependency>

</dependencies>

In order to use caching of HTTP requests or
HTTP forms does not require any special configura-
tion. However, in order to use caching data between
pages and accessing browser data space a developer
needs to annotate Java classes, which instances can be
cached, and create a configuration file.

Java classes, which instances can be cached do not
have to implement any specific interface nor to in-
herit any specific class. Neither getters/setters have
to be defined. The only required modification is a Java
annotation defined in pl.edu.agh.html5storage.anno-
tations.ClientStore.

A Java class needs to have a field to be used as ID.
The ID will be used as object’s key for Javascript ob-
jects stored in IndexedDB data storage. A pl.edu.agh.
html5storage.annotations.KeyPath annotation has to
be used. A value of a key will be generated by Java code
(using a code provided by a developer) or can be gen-
erated automatically. In the latter case the field has to
be int or long (java.lang.Integer or java.lang.Long re-
spectively). Additionally, ClientStore annotation needs
to have autoGenerateKey attribute set to true.

All fields that should be available when caching
an objects in a data storage need to be annotated by
pl.edu.agh.html5storage.annotations.Cached. All non-
annotated fields (except for the ID) will be ignored.

There is another annotation available pl.edu.agh.
html5storage.annotations.Index that can be used to
mark fields for which a system should create an index.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N° 4 2014

Articles 9

This is useful to speed up filtering of data o searching
data storage.

Another step that needs to be taken by a devel-
oper is to prepare a configuration file (html5stor-
age-config.xml) and place it in src/main/resources/
META-INF location. The simplest configuration file is
presented below:

<?xml version=”1.0” encoding=”UTF-8”?>
<html5storage>
 <db>
 <name></name>
 <version></version>
 </db>
 <classes>
 <class></class>
 </classes>

</html5storage> ,

db.name – a name of a database to be used on
a web browser side,

db.version – a version of a database to be used on
a web browser side; whenever there are any changes
in Java classes whose objects will be stored, a devel-
oper needs to increate a database version,

classes.class – zero or more fully-qualified names
for classes whose instances will be stored.

8.	 Test Cases
Browser’s support for framework depends on

their support for client-side storage HTML5 technolo-
gies. For this reason, some framework elements are
available on every modern web client, but some are
not. Hopefully it seems that process of standardiza-
tion of Indexed Database and File API is progressing
in a good pace. After they reach Recommendation sta-
tus, all modern browser vendors will not have choice
but to introduce implementation in their products.

Our framework is distributed as a Java Archive li-
brary. To use it, it must be simply added to classpath
for JVM where one wants to run his/her application.
The simplest way is to start new project with Maven
and add framework dependency. Then developer
should create in the project html5storage-config.xml
file. It contains information about database name and
version, which will be created in client’s web browser
and list of classes, for which corresponding stores
in browser database will be also created. The next
step is to mark desirable classes and class fields with
framework’s annotations. From this point a developer
can freely use JSP tags in their projects.

After finishing the first reference implementation
of our framework we decided to write two sample
web applications that utilizes client-side storage
technologies. This was an offline graphics editor and
a web-based e-mail client. The next two sections
briefly describe the sample applications.

8.1. Offline Graphics Editor
The first application we built to validate the

framework was web-based GUI editor. The applica-

tion is capable of working offline. A user is allowed to
upload an image from web or from local file system.
Then, an image can be processed, different image-
filters may be applied to it. Then, the modified im-
age can be stored on local file system. Once a file is
uploaded to a client it is stored on the client’s side
(File API and WebStorage) and can be processed of-
fline. Even though there is no Java code executed on
the server side (which means that the application ex-
ecutes in web browser only) it was written using the
JSP tags and other elements delivered by the frame-
work.

8.2. Web Based E-mail Client
The second application is an e-mail client that

runs in a web browser. We focused on storage-side of
the implementation thus, the IMAP/POP3/SMTP part
of it is just a mock up because handling e-mail pro-
tocols was negligible in that case. We only provided
server methods required to imitate e-mail sending
and receiving. The e-mail client presents data stored
in a web browser (previously received e-mail mes-
sages with attachments), therefore it can work of-
fline. It also implements mechanisms to synchronize
its state with the server (e.g. receive new messages).
This application can work both offline and online
depending on client’s needs and access to Internet.
All operations executed by a user when offline are
automatically synchronized with the server when on-
line again.

Let’s consider pl.emailclient.Message class that
represents a single e-mail message. We want ID to be
a message identifier. An identifier will be assigned by
email server rather than the framework. We also pre-
dict the need for searching by email subject, sender
and recipient. Considering the above a Java class can
be defined in a following way:

 package pl.emailclient;
 @ClientStore
 public class Message {
 @KeyPath
 private long id;

 @Index
 @Cached
 private String title;

 @Cached
 private String content;

 @Index

 @Cached
 private String sender;

 @Index
 @Cached
 private String receiver;

 @Cached
 private List<String> attachements;

}.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N° 4 2014

Articles10

The simplest configuration file is following:

<?xml version=”1.0” encoding=”UTF-8”?>
<html5storage>
 <db>
 <name>test_project</name>
 <version>1</version>
 </db>
 <classes>
 <class>pl.emailclient.Message</class>
 </classes>
</html5storage>.

9.	 Conclusion and Future Works
We researched powers of new HTML5 client-side

storage technologies and found them really helpful
in boosting capabilities of web applications. We also
tried to show alternatives to making several native
mobile applications representing the same product
for different mobile platforms – it yet can be done in
a thin client architecture streamlining HTML5 storage
capabilities. We designed framework that integrates
Java web framework based on JSP technology (which
nowadays takes significant part of web market) with
Web Storage, Indexed Database and File API. We also
tried to proof usefulness of our work by implement-
ing two sample applications that operates on web
browser client-side storage thanks to our framework.

There is much space to improve our solution. It is
obvious that this is a tool made for developers, so it is
important that it meets as many theirs requirements
as possible as well as needs to be ease use. It was real-
ly difficult to predict all scenarios. Furthermore, when
we started to implement sample applications we dis-
covered that we also need to add additional function-
ality to framework to fulfill our needs. We also already
have agreed that there are some places where frame-
work can be changed to be easier to use. For example,
our plans is to abandon configuration file and base all
setup on Java annotations and Java reflection.

Finally, there are some cases that we really need to
work on accroding to specific environment that web
application is. We live in times that one person often
has one or more device (PC, notebook, tablet, smart-
phone etc.). However, a situation that two different
people uses same machine as well as same browser
is also very common. Web Storage, Indexed Database
or File API do not provide any mechanism that can di-
vide browser space for different user (yet). We must
think on suitable solution for that as it is really impor-
tant in terms of security and privacy.

AUTHORS
Arkadiusz Janik* – AGH University of Science and
Technology, Faculty of Computer Science, Electronics
and Telecommunications, Department of Computer
Science, al. Mickiewicza 30, 30-059 Kraków, Poland,
E-mail: arkadiusz.janik@agh.edu.pl

Szymon Kiebzak – AGH University of Science and
Technology, Faculty of Computer Science, Electronics
and Telecommunications, Department of Computer
Science, al. Mickiewicza 30, 30-059 Kraków, Poland,
E-mail: s.kiebzak@gmail.com

*Corresponding author

REFERENCES

 [1]	 Onyedikachi Jeffrey Anyansi, Lonergan, Ian
Patrick, Oracle HTML5 Rich Web Application,
Worcester Polytechnic Institute, 2012.

 [2] 	Cha Si-Ho, Yeomun Yun, Smartphone Application 	
Development using HTML5-based Cross-Platform
Framework, Chungwoon University, 2013.

 [3]	 Ram Sandilya K., Sudheer R., Sreenivas V., Kiran
K.V.D., “Effective Use of HTML5 for Developing
Offline Web Applications”, IIJAR, 2013, 80–87.

 [4] 	Leblon R., “Building advanced, offline web appli-
cations with HTML5”, UPC-Barcelona Tech,
Ghent University, 2010.

 [5] 	Hasan Y., Mustafa Zaidi M., Haider N., Hasan W.U.,
and Amin I., “Smart Phones Application devel-
opment using HTML5 and related technologies:
A tradeoff between cost and quality”, Interna-
tional Journal of Computer Science Issues (IJCSI),
vol. 9, issue 3, May 2012, 455.

 [6] 	West W., Monisha Pulimood S., “Analysis of pri-
vacy and security in HTML5 web storage”, Jour-
nal of Computing Sciences in Colleges Archive, vol.
27, issue 3, January 2012, 80–87.

 [7] Laine M., “Client-Side Storage in Web Applica-
tions”, Aalto University, Technical Report, 2012.

 [8] 	Ijtihadie R.M., Chisaki Y., Usagawa T., Bekti
Cahyo H., and Affandi A., “Offline web applica-
tion and quiz synchronization for e-learning
activity for mobile browser”, TENCON 2010,
November 2010, 2402–2405. DOI: 10.1109/TEN-
CON.2010.5685899.

 [9]	 http://www.w3.org/TR/webstorage/.
[10]	 http://www.w3.org/TR/IndexedDB/.
[11]	 http://www.w3.org/TR/FileAPI/.
[12]	 http://www.w3.org/TR/file-system-api/.
[13]	 http://www.w3.org/TR/file-writer-api/.
[14]	 http://www.pixastic.com/.

