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Abstract:
The paper presents a new approach to parƟcle filtering,
i.e. Dispersed ParƟcle Filter. This algorithm has been ap-
plied to the power system, but it can also be used in other
transmission networks. In this approach, the whole net-
work must be divided into smaller parts. As it has been
shown, use of Dispersed ParƟcle Filter improves the qual-
ity of the state esƟmaƟon, compared to a simple parƟcle
filter. It has been also checked that communicaƟon be-
tween subsystems improves the obtained results. It has
been checked by means of simulaƟon based on model,
which has been created on the basis of knowledge about
pracƟcally funcƟoning power systems.

Keywords: parƟcle filter, power system, state observer,
state esƟmaƟon, dispersed esƟmaƟon

1. IntroducƟon
The Power System State Estimation (PSSE) prob-

lem is relatively old, because it has over 40 years, and
the ϐirst idea of state estimation in power system has
been proposed by Fred Schweppe in 1970 [21]. But
PSSE is still used also in more advanced calculations,
such as Optimal Power Flow (OPF). In this case, cor-
rect state vector estimation directly affects ϐinal solu-
tion.

PSSE is also important in terms of energy security,
to prevent so-called “blackouts” – this is the highest
degree of failure of the power system, in which many
villages and towns can be without access to electric
power. To prevent such accidents, current control of
the results obtained in thePSSE calculations is needed.

A lot of different algorithms have been created so
far in order to solve the problem of PSSE, such as
Weighted Least Squares (WLS), varieties of Kalman
Filter (Extended Kalman Filter (EKF) [11], Unscented
Kalman Filter (UKF) [24]). In [23] authors presented
the use of a different estimator than typically used in
the WLS method, and apart from the typical Newton
method they suggested the use of Primal-dual Interior
Point Method (PDIPM). In [4], authors proposed the
variety of Particle Filter (PF) as a state observer in rel-
atively small power system.

In this article a new algorithm, i.e. Dispersed Par-
ticle Filter (DPF) has been proposed. It involves the
use not just one, but several different PF instances to
run in parallel for different parts of the power system
(each instance can be carried out in another compu-
tational unit, which can be placed in another area of
power system). This approach is consistent with indi-

Fig. 1. Branch in network between i-th and j-th buses

cated in [10] needof PSSEbasedondata fromdifferent
control centres.

The second Section is devoted to the power sys-
tem and is followed by Section presenting basic infor-
mation about particle ϐilter, while the fourth Section
describes simulations that have been carried out, pre-
senting results and the conclusions. Section no. 5 sum-
marizes the entire article.

2. Power System
Power system has been selected as object. Net-

work is composed ofB buses (nodes) and L branches
(lines) that connect speciϐied buses. Branch scheme
has been shown in Fig. 1, where y′

ij
/2 is a half total

line charging susceptance [25], whereas y
ij

is a line
admittance, which can be expressed by the equation

y
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=
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Based on y
ij
and y′

ij
/2 admittancematrix Y can be

created accordingly to equations

Y ij = −y
ij

i ̸= j , (2)

Y ii =
B∑

j=1
j ̸=i

(
y′
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2
+ y

ij

)
. (3)

Set of all voltages U and angles δ at the buses un-
ambiguously describe state of the power system

x = [x1 x2 . . . x2B−1]
T

= [U1 . . . UB δ2 . . . δB ]
T

, (4)

because based on them it is possible to calculate all the
other values in power system. But there is a problem
with the angles, because the only thing that can be cal-
culated is the difference between them. Therefore, one
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reference node must be chosen, in which angle is al-
ways equal to 0 (in expression (4) ϐirst node has been
chosen as reference, hence δ1 is always equal to 0, and
this angle is not included in the state vector). Accord-
ingly, the state vector is limited to 2B − 1 variables.

The measured values in the network are power
injections in the nodes, power ϐlows through the
branches and voltage values in the buses. The last type
of measurement (voltage magnitude) is special, be-
cause it is directly state variable. In other cases, the
measured values can be expressed by the equations

Pi(U, δ) = Pi =

=
B∑

j=1

UiUjYij cos (δi − δj − µij) , (5)

Qi(U, δ) = Qi =

=

B∑
j=1

UiUjYij sin (δi − δj − µij) , (6)

Pij(U, δ) =Pij = U2
i Yij cos (−µij)

− UiUjYij cos (δi − δj − µij) , (7)

Qij(U, δ) = Qij = U2
i Yij sin (−µij)

− UiUjYij sin (δi − δj − µij) + U2
i

y′ij
2

, (8)

where (5-6) are the power injections (active and re-
active), while (7-8) are the power ϐlows. It should be
noted that the Pij and Pji are two different power
ϐlows (as well asQij andQji), and ϐirst index speciϐies
the node where the measurement is made. Yij and µij

values are given in admittance matrix based on

Y ij = Yij · exp (jµij) . (9)

Formore information about the power system, ref-
erences [1,18,25] are recommended.

3. ParƟcle Filter
The principle of operation is based on Bayesian ϐil-

tering, and the PF is one of possible implementation of
the Bayes ϐilter [3]

posterior︷ ︸︸ ︷
p
(
x(k)|Y(k)

)
=

=

likelihood︷ ︸︸ ︷
p
(
y(k)|x(k)

)
·
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)
p
(
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)
︸ ︷︷ ︸

evidence

, (10)

where x(k) is vector of state variables in k-th time step,
y(k) is vector ofmeasurements, whereasY(k) is a set of
output vectors from the beginning of simulation to k-
th time step.

Posterior probability density function (PDF) is
represented by the set of particles in PF, where each
particle is composed of the value xi (vector of state
variables) and the weight qi. Therefore it can be writ-
ten that the set of particles corresponds to the poste-
rior PDF. With higher number of particles N , this ap-
proximation is more accurate

p
(
x(k)|Y(k)

)
N→∞
= p̂

(
x(k)|Y(k)

)
=

=
N∑
i=1

qi,(k)δ
(
x(k) − xi,(k)

)
, (11)

where δ(·) is a Dirac delta.
In [12] the authors point out that the prior should

be chosen so that as many particles as possible were
drawn in the areawhere likelihood has signiϐicant val-
ues. Prior can be written as [2]

p
(
x(k)|Y(k−1)

)
=

∫
p
(
x(k)|x(k−1)

)
p
(
x(k−1)|Y(k−1)

)
dx(k−1) , (12)

where p(x(k)|x(k−1)) is a transition model and
p(x(k−1)|Y(k−1)) is posterior from previous time step.

First who suggest something what today can be
considered as a particle ϐilterwasNorbertWiener, and
it was as early as in ϐirst half of the twentieth century
[22]. However, only a few decades later, the power of
computers made it possible to implement these algo-
rithms. Algorithmproposed in [9] byGordon, Salmond
and Smith, named by them Bootstrap Filter (BF), is
considered as the ϐirst PF. The operation principle of
the algorithm is presented below.

Algorithm 1 (Bootstrap Filter)

1) Initialization. Draw N initial particle values from
the PDF p(x(0)). Set iteration number k = 1.

2) Prediction. DrawN new particles based on transi-
tion model: xi,(k) ∼ p(x(k)|xi,(k−1)).

3) Actualization. Calculate weights of particles based
on equation q̃i,(k) = p(y(k)|xi,(k)).

4) Normalization. Normalize particle weights so that
their sum be equal to 1

qi,(k) =
q̃i,(k)∑N
j=1 q̃

j,(k)
. (13)

5) Resampling. Draw N new particles based on pos-
terior PDF obtained in steps 2–4.

6) End of iteration. Calculate estimated vector value,
increase number of iteration k = k + 1, go to
step 2.
BF algorithm belongs to a class of Sequential Im-

portance Resampling (SIR) algorithms and is one of
its simpler implementation. Of course, alsomore com-
plicated algorithms are proposed in the literature, for
example Auxiliary PF [20], Rao-Blackwellised PF [8]
or the Gaussian PF [13]. However, for purpose of this
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article, BF algorithm and its modiϐications were used
– results which have been obtained in previous stud-
ies [14, 16] are satisfactory. In addition, the simplic-
ity of implementation with such a complex problem,
which is the PSSE, led to the choice of algorithm pro-
posed in [9].

Resampling (5 step in Algorithm 1) also can be
made in several different ways. In algorithm the strat-
iϐied resampling has been used. In order to learnmore
about the resampling, see [6,17,19].

To ϐind more information about particle ϐilter, ref-
erences [2,7,15] are recommended.

3.1. Dispersed ParƟcle Filter

Network composed of 16 buses has been pro-
posed, as shown in Fig. 2, so there are 2B − 1 = 31
state variables. To use DPF the whole power system
has been divided into 3 parts – PS1, PS2 and PS3. This
division is one of many possible, as well as the num-
ber of subsystems in this example. The main purpose
in this article was to show how the division of the sys-
tem into smaller parts affects on obtained results.

For the DPF implementation the assumption has
been made that only measurements inside the subnet
are available. However, for a good modeling, border
lines and nodes at their ends are also required. For
example, in the ϐirst subsystem there are 9 modeled
nodes (1, 2, 3, 4, 5, 6 and additionally 7, 8 and 13) and
the number of state variables in PS1 is 17 (in the other
two subsystems there are 8 nodes, and 15 state vari-
ables – reference node must exist in each subnet).

As one can see, the number of state variables in
each subsystem has been decreased and this should
has positive inϐluence on estimation quality.

4. SimulaƟons
16-nodal system has been proposed for simula-

tions (see Fig. 2). The numbers in circles indicate num-
bers of the nodes and values of R,X and y′/2 are, re-
spectively, line resistance, line reactance and half of
the total line charging susceptance. The double circles
represent the location of the generators, single cir-
cles are the loads. There are also locations and types
of measurements – the gray squares mark measure-
ments of the power ϐlows, while the grey circles mark
themeasurements of power injections andvoltage val-
ues.

One simulation, which consists of 100 time steps
has been prepared and has been used for all calcula-
tions.

Simulation computations for all subsystems have
beenmade not in parallel, but sequentially one by one.

4.1. SimulaƟon Results

The ϐirst simulations have been performed for the
simple PF algorithm. The results have been shown in
Fig. 3. The simulation for each number of particles N
has been repeated 100 times with different values of
the seed of random number generator. The value D,
which is shown in the graph, was calculated based on

mean square errors (MSE) of each of the state vari-
ables (there are 31 state variables inwhole power sys-
tem). This can be written as

D = 106 ·
31∑
i=1

(MSEi)
2
. (14)

Thanks to this, estimation quality of whole system can
be represented by one coefϐicient.

Next the another approach has been proposed, in
which simultaneously three different particle ϐilters
operate, each in a different subsystem, thus creating
Dispersed Particle Filter. The assumption has been
made that the individual subnets does not communi-
cate with each other and does not exchange any infor-
mation. Values of the state variables in each nodewere
obtained based on the estimated values in the subnets.
The simulation results have been shown in Fig. 4.

As before, the graph shows the averaged results of
D, based on 100 different simulations for each value
ofN . Signiϐicant improvement is visible, both in terms
of the mean and standard deviation.

In the third approach the exchange of data be-
tween subnets has been implemented. For the border
branch information about the power ϐlowswas passed
to another subsystem, and was taken as additional
measurements. For example, in PS3 one of such border
branch is the line (1,13). Information, which was sent
from PS1 to PS3, was the estimated values of P1,13 and
Q1,13. Both of these valueswere regarded in PS3 as an-
other measurements. Similar information was trans-
ferred from the PS3 to the PS1, but this time the values
P13,1 andQ13,1. The results have been shown in Fig. 5.

In the last approach the impact of the additional
measurement (transferred as in the previous case) –
voltage magnitude in bus – has been checked. The re-
sults have been shown in Fig. 6.

All results (excluding the standard deviation) have
been shown in Fig. 7, for comparison.

Based on obtained results, one can see that the use
of DPF signiϐicantly improves the quality of estima-
tion, in comparison to the standard PF algorithm. As it
can be seen, performance improves even for the DPF
without any communication between subnets. This
can be explained by the fact that in the case of stan-
dard PF particles have to move in a 31-dimensional
space (the number of state variables). In the case of
DPF number of particles was smaller, but the number
of dimensions of the state vector was also decreased –
to 17 (for the PS1) and15 (for the PS2 andPS3). Similar
conclusions can be found in [5] (case without commu-
nication).

The results obtained for DPF with additional mea-
surements of power ϐlows and voltage are very simi-
lar to those in which the voltage measurement is not
passed. This is understandable, because in the values
of the power ϐlows are already contained information
about state variables in this node.

5. Summary
The article presents a new approach to particle

ϐiltering in the problem of Power System State Esti-
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Fig. 2. Power system used in simulaƟons composed of 16 buses, with marked measurements

Fig. 3. MeanD values for standard PF

Fig. 4. MeanD values for DPF without any communica-
Ɵon between subsystems.

mation – Dispersed Particle Filter. In each conϐigura-
tion of communication, results obtained by the DPF
were better than for the standard PF. This is because
power systemdivision causes reductionof state vector
length, and improvement of estimation quality is ob-

Fig. 5. Mean simulaƟon results for DPF with addiƟonal
measurements of power flows

Fig. 6. Mean simulaƟon results for DPF with addiƟonal
measurements of power flows and voltages

served with decrease of object order. The best results
have beenobtained for caseswith additionalmeasure-
ments.

Further studies on the DPF are being planned, in-
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Fig. 7. SimulaƟon results for different algorithms.

cluding the impact of the number of subsystems on
simulation results. For a smaller number of state vari-
ables into subsystem simulation results should be bet-
ter, hence the best division will be probably one sub-
system for every bus.

There are also plans for FPGA algorithm imple-
mentation and veriϐication of the proposed algorithm
performance of parallel computing for several compu-
tational units.
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