
Abstract:

1. Introduction

2. Architecture

Player/Stage/Gazebo[1] is an open-source Software
project that consists of three main software parts
that make it successful robotics framework. It can be
downloaded for free from projects home page
(http://playerstage.sourceforge.net). These parts are:

- the core of whole framework, which contains
message-passing server and drivers for most popular
robotics equipment; it can be extended by plugins -
pieces of software that use Player as communication
interface. - a plugin for Player that acts as a 2D
simulation device, which simulates existence of real
hardware in predefined 2D workspaces, called worlds.

- a simulation plugin for Player that works with
3D workspaces. All this suite of programs and com
panion software conforms the spirit of UNIX operating
system [2] and Open-Source movement [3]. In this paper
we will focus on Player and Stage parts only, as only these
parts were used in PJIIT student's projects so far.
Examples of these projects will be also described shortly.

Whole framework makes use of client-server architec-
ture where Player itself plays the role of the server while
client programs communicate with it to access data (sen-
sors readings, camera images, odometry or GPS position
clues and so on) and to send commands to actuators
(robot motors, gripper, pan-tilt-zoom module on camera
and so on). There are programming libraries available for

Player/Stage/Gazebo is an Open-Source Software
project designed for robotics research that provides
infrastructure for distributed access to robotics equipment
both real and simulated. Founded by Brian Gerkey, Richard
Vaughan, Andrew Howard, Kasper Stoy and Nate Koenig it
soon became popular among roboticists community.
Project itself gained lots of contributors and many related
software projects were started that support or make use of
Player/Stage/Gazebo software. At PJIIT Robotics
Laboratory we decided to deploy this software for
educational purposes as well as for our Virtual Robotics
Laboratory project where it plays significant role as an
integration platform. Since it is Open-Source Software we
were able to contribute new modules and also release fixes
for bugs that we have found. This paper deals with our
experiences with using and maintaining Player and Stage
software.

Keywords: Robotics software, simulation software, open-
source software, robotics programming, robotics laboratory

Player

Stage

Gazebo

many popular languages (C, C++, Java, Lisp, Scheme,
Python, Ada, Octave/Matlab) that are required to build
client-side programs. Also Player server plugins may act
as the clients for other Player servers, which is useful for
building more sophisticated communication topologies.

Player may be considered as a communication bus, to
which client-side programs can connect in order to
communicate with robotics hardware through drivers also
connected to that bus. Server configuration file describes
what drivers are connected to communication bus in
certain Player server instance. Although many drivers are

to Player itself, new drivers for the new hardware
can be written in C++ language using Player API. These
drivers are called plugins. Stage is an example of the most
sophisticated Player plugin that provides access to
simulated hardware.

Each driver provides at least one predefined interface
(consequently, Stage simulator provides many different
interfaces). Every interface describes the kind of offered
data with their internal structure and syntax of com-
mands that associated device can accept (except read-
only devices that do not accept any commands, only
provide data like camera images, sonar readings, laser
scans, power source status, etc.). For example,

driver provides interface, which accepts no
commands while data offered by this interface are: image
(as an matrix of integer numbers), compression infor-
mation (if JPEG compression is used or not), width,
height and colour depth of the image.

built-in

Video-
4Linux camera

Fig. 1. Stage is the most sophisticated plugin for Player - it
opens its own window in which progress in simulation can
be observed; also a user can make changes in simulation by
moving objects using a mouse.

PLAYER AND STAGE AT PJIIT ROBOTICS LABORATORY

Paweł Ośmiałowski

Received 4 July; accepted 16 Julyl.th th

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 1, N September° 3 2007

Articles 21

There are some drivers (both built-in and plugins)
that aren't associated with any particular hardware.
These drivers provide useful functionality for whole
Player infrastructure. Since communication between dri-
vers is also possible through the Player's communication
bus, one driver can take data in one form and offer
different representation of them for connected clients or
other drivers. Also one driver can take data directly from
other Player server (it acts as a Client then) and then it
can offer data processed by itself to other drivers or
clients connected to Player server in which this driver was
started. Note that communication between connected
clients using Player communication bus is not possible;
they should use other means of communication if they
need it.

As an example of a driver that is not associated with
any certain hardware we may consider cameracompress
that takes image from camera driver and offers the same
image JPEG compressed, which can be useful for distant
communication purposes. Another example is the
driver that implements Adaptive Monte-Carlo Localiza-
tion algorithm. It takes data from other drivers using

interface which offers odometry position
clues, laser interface which offers scans of environ-
ment nearby, interface which offers 2D map of the
whole current workspace and provides inter-
face to return guessed robot position within given map.
In facts, interface has two roles: to provide
current position (absolute or odometric) and to command
position changes which effects in robot motors activity.

There are two kinds of position change commands
accepted by interface: position commands
(for example

) and velocity commands (for example
). Which kind of commands is accepted

depends on associated device capabilities. Since real
robots accept only velocity commands, a driver called
(Vector Field Histogram) can be used, which takes
position commands using interface and
recalculates them to velocity commands that are later
sent to interface provided by some robot's
driver. This driver also uses interface to read laser
scans necessary to obstacle avoidance during the
movement. Note that metric system of units is used in
Player for distance measurements.

There are three kinds of data travelling through
communication bus: sensor readings, commands and
configuration queries. First two were explained above.
Configuration queries are sent to certain driver, which
responds to it instantly. They are accepted both by read-

Fig. 2. Player communication bus with connected clients
and drivers.

amcl

position2d
laser

map
position2d

position2d

position2d
move to given distance from current posi-

tion move forward
with given speed

vfh

position2d

position2d
laser

write and read-only devices. For example, configuration
query can be sent using interface to ask for
geometry of laser device (where it is situated on the
robot and what is it's shape and size, information typi-
cally used by client-side graphic visualization programs
that tries to restore current situation in users application
window). The same query can be sent using
interface to ask for - geometry of whole movable robot.
Also configuration query can be sent to change some
parameter of the device (even if it's read-only). For
example, laser scans resolution can be changed that way.

Some of the drivers that are not directly assigned to
hardware can do heavy computations. If Player is
intended to run on robot's onboard computer it must be
considered that it can be too slow to run some of
mentioned drivers that Player can provide. For example,
there are few drivers that do advanced image processing.
They are linked against [17] (Open-Source
Computer Vision library), which provides programming
functions for image processing that needs CPU-consu-
ming computations. Mentioned earlier driver (Adap-
tive Monte-Carlo Localization) needs GNU Scientific
Library [18] (), which also provides functions that do
heavy computations.

laser

position2d

amcl

OpenCV

gsl

3. Client-side programs
Player software package is shipped with example

client-side applications. Although desired way of using
robotics devices with Player is to write a program imple-
menting control behaviours that does not require inter-
action with human operator, first program that most users
learn first is (PlayerViewer) - graphics user inter-
face for controlling interactively all the devices accessible
by Player server to which it will be connected. To control
a device or to just read data from it a subscription should
be made using menu. The way subscribed device is
represented on the window work area depends on inter-
face provided by its driver. See figure 3 for an example
situation.

playerv

Devices

Fig. 3. PlayerViewer () connected to a Player server
that works on Pioneer P2DX robot on-board computer. As we
can see, there are several devices subscribed that provide
following interfaces: position2d (red box), ptz (blue and
green lines, pan-tilt-zoom driver for the Sony EVID-30
camera), laser (blue field represents free space seen in front
of the robot) and two different devices that provide
blobfinder interface.

playerv

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 1, N° 3 September 2007

Articles22

client 1

camera
driver

motors
driver

image compress
driver

client 3client 2

Unfortunately, cannot manage with camera
interface; therefore another client program called

[15] was created which is an example of many con-
tributed applications. It opens a window in which image
from camera interface is constantly redrawn (see figure
12). It is also able to check if an image is JPEG compres-
sed and run decompress routine to manage with it. Later
Player developers have made another program that does
similar thing called , but is still in
use due to its simplicity and clear source code which is
used as an example of how camera interface data can be
acquired in programs for further image processing.

Another interesting client-side program shipped with
Player software package is . It is designed to be
a for the interface (yet another interface
that cannot manage with). It displays map of the
current workspace taken from given device that provides

interface. A user first has to place (using mouse)
robot symbol within this map to give a hint
where the robot currently is and what is its current pose.
Then it is possible to set the target position, which will be
sent to the device that provides interface.

Example driver that provides such interface is
- a path-planning device, which, after receiving new

target position a robot should approach, computes list of
waypoint positions, that makes a patch to the target
position. During these computations, helps
itself by using a map of the workspace taken from a device
that provides interface. Having this list of waypoint
positions, sends commands to actuator device
using interface. Since majority of known

actuator devices accept only velocity commands,
typically sends position commands to the
device which changes them to desired velocity commands
as described earlier. Commonly used device that provides

interface is called - it reads bitmap image
from or file and interprets it as a workspace map
with given resolution (for example 10cm per pixel). Each
black pixel denotes place occupied by an obstacle, while
white pixels denote free space.

Player and Stage are widely used in PJIIT Robotics La-
boratory. It is used both for educational purposes (during
classes) and for research projects. The success of this ro-
botics framework corresponds to overall success of Open-
Source Software in field of educational research at PJIIT.

playerv
video-

player

playercam videoplayer

playernav

playerv

playernav

frontend planner

map

planner
wave-

front

wavefront

map
wavefront

position2d posi-
tion2d

wavefront vfw

map mapfile
.pgm .png

Fig. 4. in action; black rectangle is the map of
the workspace available in our Virtual Robotics Laboratory.

4. Player and Stage at PJIIT

Playernav

Despite of that, the most important role at PJIIT Player
infrastructure plays in Virtual Robotics Laboratory [16]
where it integrates all communication.

The purpose of Virtual Robotics Laboratory is to
provide remote access through the Internet to its
robotics resources for students and researchers from
other educational institutes. At the beginning of the
project, very first topic to consider was the choice of
integrated communication platform [4]. Although we
could choose to create our own communication software
or to use existing solutions like CORBA, we wanted to
conform standards of software used in robotics research
laboratories around the world. We've realized that the
most popular Open-Source Software solution is the Player
server, which was already used by individual PJIIT
students for their projects.

Currently our Virtual Laboratory offers access to two
Pioneer P2DX robots (one of them is adapted to work
24 hours 7 days a week, the other is on duty at users
request). Each is equipped with ring of ultrasonic sonars,
SICK LMS200 laser, camera Sony EVID-30 with pan-tilt-
zoom module, and onboard computer (PC/104+ compa-
tible) with -compatible PCI framegrabber
device. One of them is also equipped with gripper. To
observe current situation, there are few cameras situated
on top of the workspace. Two of them are mounted on
movable tractor devices controlled by Player's plugin
running on PC computer, which access these devices
through RS232C serial port. This plugin driver was created
in our laboratory and provides interface
making remote operator able to change position of given
camera.

Each PC computer and all onboard PC/104+ computers
working in our Virtual Laboratory has started at least one
Player server instance. The main server working at

at TCP port 6665 offers public
access to cameras and full access to movable tractor
devices. Other devices (for example robot actuators) are
available through special authorization proxy that we
have designed to make sure only registered users who

4.1. Player as an integration platform for Virtual
Robotics Laboratory

Video4Linux

position2d

Fig. 5. One of D-link cameras mounted on a movable
tractor.

address vlab.pjwstk.edu.pl

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 1, N° 3 September 2007

Articles 23

have full responsibility on the way they use laboratory
resources can have full access. These users can also
access our Control Panel web service available at add-
ress . Users, that use this
control panel, can view the history of their access
attempts and current condition of every device provided
by our Virtual Laboratory. Supervisor user can also
disconnect all other users, which leads to stop all robots
movement.

Currently our laboratory uses Player version 1.6.5
with our set of bugfixes. Corresponding client software
and programming function libraries for both UNIX-
compatible and MS Windows systems are available to
download. We're providing source code, binaries for MS
Windows and a portage tree for automatic installation in

operating system [20], which is the most
supported system by us.

Janusz Matkowski used the first time Stage simulator
at PJIIT in his graduate studies research [5]. In his work
he has described approach to artificial intelligence oppo-
sing classic AI ideas (this approach was earlier presented
by Rodney A. Brooks [6]). Instead of heavy symbolic
processing, paradigm of relies on
physical implementation (in particular environment) as
a key to achieve truly intelligent agents. Aside from
describing theory behind this approach he has demon-
strated in simulation (figures 7 and 8) how sophisticated
behaviours can emerge from appropriate combination of
agent morphology and controller.

Another example of students' project is Karol Yama-
zaki's PaGo () [7]. The main goal was to
create new means for mobile robot navigation based on
image analysis. Yamazaki's program is using Player to
acquire live image from robot's camera. Image analysis is
used for pointer object detection and space positioning.
This pointer object (yellow bar) role is to show a robot
where it should go (see figure 9). [17] library
functions were used for image analysis.

https://cp.vlab.pjwstk.edu.pl

Fig. 6. Virtual Laboratory Control Panel started in the
Firefox web browser.

embodied intelligence

Point-and-Go

Gentoo Linux

4.2 Student projects

OpenCV

Fig. 7. Snapshot from Stage simulation of one of experi-
ments described by Janusz Matkowski in his work [5].

Fig. 8. Snapshot from experiment shown in previous figure
after few minutes of simulation process.

Fig. 9. PaGo at work.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 1, N° 3 September 2007

Articles24

Potential Field Method (PFM) as means for navigation
is used in Michal Dendewicz and Lukasz Hrynakowski
project [8]. The method is not a new idea, but is still
considered interesting, so they wanted to focus on it and
present its main assumptions on an operative model.
They used Pioneer P2DX robot equipped with SICK
LMS200 laser device and onboard computer running
Player server.

In several words, PFM main assumption focuses on
imaginary forces acting on a robot. It can be compared to
an electron behaviour in an electromagnetic field. In
their case, mobile robot is the electron, and the
electromagnetic field is emitted by obstacles situated in
the robot's workspace (figure 10). Although PFM is very
effective and pretty simple, it may suffer from local
optima problem. Our students in their work have
described their challenges in avoiding it.

During the years of experience with Player and Stage
software we have made number of improvements and
bugfixes. First changes in Player's code were made in
parts responsible for FireWire cameras operation. In our
Robotics Laboratory we are using Imaging Source's DFK
41F02 high resolution FireWire camera that we wanted to
use as a live image source for Player. Trying to do it we
have realized that whole Player driver for FireWire camera
devices should be totally rewritten.

After buying three D-link's DCS-5300W cameras we
had to write a completely new Player driver for them. It
provides two interfaces: for the live image and
for pan-tilt-zoom module available in these cameras.

We have also discovered and fixed few bugs in
driver for cameras connected to the standard

PCI framegrabbers.
Although Player developers try to be up to date with

providing drivers for the most popular robots, there are
still many devices that need new drivers to be written.
Example is small Hemisson robot by K-Team. PJIIT
Robotics Laboratory uses two such robots. There are
Player drivers for other K-Team products built into Player
server (Khepera robot, and robot controllers based on
REB/Kameleon board). Hemisson uses communication
protocol similar to other K-Team robots; therefore we
were able to base our work on Khepera driver source code
written by Toby Collett from University of Auckland

Fig. 10. Example potential field.

camera ptz

Video4Linux

4.3. Our improvements and bugfixes

Robotics Group. During this work, we did totally change
serial port communication part of the driver code using
new functions based on source code of [19] pro-
gram (popular Open-Source communication software).

During the time we were using Player, many changes
has taken place in related Open-Source Software infra-
structure. When the new version line (4.x) of
compiler suite that is used to compile Player was started,
some smaller parts of the code had to be rewritten. Also
new, more restrictive version of GNU C library ()
made some hidden errors in memory management to
show up. We have proposed set of patches that fix both
problems for Player version 1.6.5 and Stage 2.0.0a. Also
we have released portage tree for [20] that
provides building guidelines for Player 1.6.5, Stage
2.0.0a and Gazebo 0.5.2, all including our bugfixes.

For MS Windows users we have ported client-side
programming library using [21] development
environment. We had to replace usage of
(used for TCP communication in Linux and other UNIX-
compatible systems) with . Having client-side
library ported to Windows we were able to release
and compatible with Player 1.6.5 as regular
Windows applications [22].

Soon we have realized that instead of using two diffe-
rent models of communication sockets, one for MS Win-
dows, another for other systems, we can use one portable
solution that works the same way almost everywhere. We
have used suite of highly portable programming
libraries [23] that also provides its own communication
sockets in a programming library called . That
way we have released SDL-style version of client-side
programming library and using this we were able to
release new and as regular Windows
application, this time compatible with Player 2.0.4 [24].

During the works on Virtual Robotics Laboratory
project we have released two simple programs that
constantly monitor state of our infrastructure [9]. The

program checks every 30 seconds if given
Player server started on the same host responds properly
(it tries to read list of available devices). If not, the
process of that Player server instance is killed. Since we're
starting our server instances in infinite loop, new Player
server will be started in these circumstances. Another
monitoring program is called . It is started on
a robot which Player's driver provides interface. It
reads constantly voltage and whenever it goes below
defined threshold, whole system is going to shutdown.
This protects at least file system from being damaged
during unexpected halt of onboard computer.

Although C, C++ and Java are of the most popular
programming languages in PJIIT, students in our
Robotics Laboratory use also other languages for their
programming works. Recently, Octave [10] - Open-Source
Software interpreter of Matlab-compatible programming
language became popular, mostly during the classes. We
have started to use Cameron Morland's [11]
- Player's client-side programming library for Octave.
Soon we have extended it by adding more interfaces
(laser, camera, map, localization). Also we have rewritten
it totally to become compatible with latest Player 2.0.4
(June 2007).

minicom

gcc

glibc

Gentoo Linux

MinGW
BSD sockets

Winsock
playerv

videoplayer

SDL

SDL_net

playerv videoplayer

playercheck

lowpower

octplayer

power

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 1, N° 3 September 2007

Articles 25

Fig. 11. Output of a script presented in listing 1.

Another programming language popular in our
Robotics Laboratory is Scheme. We have developed
client-side programming library called [12],
which is intended to use with [13] - the most
popular Open-Source Software interpreter of Scheme.
Writing this library we tried as hard as possible to
conform the spirit of Scheme language, therefore we
couldn't have used automatic bindings generators (like

[14]). We had to do everything from scratch, but
finally we can admit that it was worth it.

guileplayer
guile

swig

r.robot = client_create("vlab.pjwstk.edu.pl", 6665);

r.index = 1;

laser = proxy_create("laser", "r", r);

n = 0;

while (1)

n++;

do

for i = 1:5,

if (client_read(r))

error("client_read returned an error!\n");

end

end

scans = laser_val(laser); len = length(scans);

until (l > 359)

x = cos((pi / 180.0) * (((1:len) - 1.0) / 2.0)) .* scans(1:len);

y = sin((pi / 180.0) * (((1:len) - 1.0) / 2.0)) .* scans(1:len);

clg();

plot(x, y, "@");

if (n > 200)

n = 0;

closeplot(); purge_tmp_files();

end

end

closeplot(); purge_tmp_files();

client_destroy(r);

Listing 1. Example Octave script that constantly plots scans from laser device.

Fig. 12. The same situation as in figure 11 seen by the
robot's camera (it cannot see 180 degrees as laser do, so
this image shows less information about obstacles than
laser scans presented earlier).

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 1, N° 3 September 2007

Articles26

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 1, N° 3 September 2007

Articles 27

(load-from-path "guileplayer.scm")

(define main-loop (lambda (client position sonar turn-counter)

(cond

((not (player-client-signalled?))

(player-client-read-for-sure client)

(main-loop client position sonar (cond

((> (player-sonar-scan-count sonar) 5)

(cond

((< (player-sonar-scan-n sonar 2) 1.0)

(player-position-set-cmd-vel

position

'(0.0 0.0 -1.0)

player-enable

)

(+ turn-counter 1)

)

((< (player-sonar-scan-n sonar 5) 1.0)

(cond

((> turn-counter 10)

(player-position-set-cmd-vel

position

'(0.0 0.0 -1.0)

player-enable

)

)

(else

(player-position-set-cmd-vel

position

'(0.0 0.0 1.0)

player-enable

)

)

)

(+ turn-counter 1)

)

(else

(player-position-set-cmd-vel

position

`(,(player-sonar-scan-n sonar 3) 0.0 0.0)

player-enable

)

0

)

)

)

(else

(display (player-sonar-scan-count sonar)) (newline)

turn-counter

)

))

)

(else

(display "going to quit...")

(newline)

)

)

))

(define client (player-client-create player-null "localhost" 6665))

(player-client-connect client)

(define position (player-position-create client 0))

5. Future work
Currently we are preparing for upgrade of whole

Virtual Laboratory infrastructure to be compatible with
Player 2.0.x. Also we are intended to help in developing
new version line (2.1) of Player, which is supposed to be
more portable and able to run also natively also on MS
Windows.

Since PJIIT Robotics Laboratory students build their
own robots, there is unavoidable need for writing Player
drivers for them. A driver will be also required by a new
global positioning device that is currently under
construction and will be installed in our Virtual Robotics
Laboratory.

- Polish-Japanese Institute of Infor-
mation Technology, ul. Koszykowa 86, 02-008 Warszawa,
Poland, e-mail: newchief@ai.pjwstk.edu.pl.

AUTHOR
Pawel Osmialowski

References
[1] Brian Gerkey, Richard T. Vaughan and Andrew Howard.

"The Player/Stage Project: Tools for Multi-Robot and
Distributed Sensor Systems". In

(ICAR
2003), Coimbra, Portugal, June 2003, pages 317-323.

[2] Eric Steven Raymond. ,
on-line book available at http://www.faqs.org/docs/
artu, 2003.

[3] Sam Williams.
, on-line book available at

http://www.faifzilla.org, 2002.
[4] Paul Ośmiałowski.

, PJIIT, Master's thesis,
Warsaw, Poland, June 2006.

[5] Janusz Matkowski.
[Paradigm of Intelligence Materialized], PJIIT,

Master's thesis, Warsaw, Poland, October 2003.
[6] Rodney A. Brooks. , MIT

Artificial Intelligence Laboratory, Cambridge, Massa-
chusetts, 1990.

Proceedings of the 11th
International Conference on Advanced Robotics

"The Art of Unix Programming"

"Free as in Freedom: Richard Stallman's
Cruscade for Free Software"

"Implementation of distributed robo-
tics framework and robotics hardware adaptation in the
Virtual Robotics Laboratory"

"Paradygmat Inteligencji Ucieleśnio-
nej"

"Elephants Don't Play Chess"

[7] Karol Yamazaki.
[PaGo. The navigation sys-

tem based on orientation analysis of 3D object], PJIIT,
Warsaw, Poland, 2006

[8] Michal Dendewicz, Lukasz Hrynakowski.
, PJIIT, Warsaw,

Poland, 2006
[9] http://vlab.pjwstk.edu.pl/files/PJIIT/vlabrelated
[10] http://www.gnu.org/software/octave
[11] http://cns.bu.edu/~cjmorlan/robotics/octplayer
[12] http://sourceforge.net/projects/guileplayer
[13] http://www.gnu.org/software/guile
[14] http://www.swig.org
[15] http://king.net.pl/playercontrib/videoplayer
[16] http://vlab.pjwstk.edu.pl
[17] http://sourceforge.net/projects/opencvlibrary
[18] http://www.gnu.org/software/gsl
[19] http://alioth.debian.org/projects/minicom
[20] http://www.gentoo.org
[21] http://www.mingw.org
[22] http://vlab.pjwstk.edu.pl/downloads
[23] http://www.libsdl.org
[24] http://vlab.pjwstk.edu.pl/files/PJIIT/SDL

"PaGo. System nawigacji oparty na ana-
lizie orientacji 3D obiektu"

"Potential Field
Method for Mobile Robot Navigation"

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 1, N° 3 September 2007

Articles28

(player-position-subscribe position player-all-access-mode)

(define sonar (player-sonar-create client 0))

(player-sonar-subscribe sonar player-read-access-mode)

(player-position-enable position player-enable)

(player-client-trap-signal SIGINT)

(player-client-trap-signal SIGTERM)

(main-loop client position sonar 0)

(player-position-set-cmd-vel position '(0.0 0.0 0.0) player-enable)

(player-position-enable position player-disable)

(player-position-unsubscribe position)

(player-position-destroy position)

(player-sonar-unsubscribe sonar)

(player-sonar-destroy sonar)

(player-client-disconnect client)

(player-client-destroy client)

Listing 2. Example Scheme script that implements very simple obstacle avoidance behavior. It uses sonar ring to detect distance
to the obstacles.

