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Abstract:
Robot compeƟƟons are effecƟve means to learn the is-
sues of autonomous systems on the field, by solving a
complex problem end-to-end. In this paper, we illustrate
Red Beard BuƩon, the roboƟc system that we developed
for the Sick Robot Day 2012 compeƟƟon, and we high-
light noƟons about design and implementaƟon of roboƟc
systems acquired through this experience. The aim of the
contest was to detect, fetch and carry balls with an as-
signed color to a dropping area, similarly to a foraging
navigaƟon task. The developed roboƟc system was re-
quired to perceive colored balls, to grasp and transport
balls, and to localize itself and navigate to assigned ar-
eas. Through extensive experiments the team developed
an iniƟal prototype, discovered piƞalls, revised the iniƟal
assumpƟons and design decisions, and took advantage of
the iteraƟon process to perform successfully at the com-
peƟƟon.

Keywords: RoboƟc CompeƟƟon

1. IntroducƟon
Robot competitions constitute an effective mean

in robotic education [4, 10]. Through the contest stu-
dents can learn to address robotic problems and tasks,
to work as a group, to design complex systems includ-
ing mechanical structure, electronic components and
software architecture, and to check the initial assump-
tions with the results on the ϐield. In common robotic
practice as well as in student projects, researchers
and students tend to concentrate on speciϐic aspects
of robotics such as perception with a speciϐic sensor,
localization or navigation. Thus, the main result is a
single component or an algorithm, whose experimen-
tal assessment is usually accurate but aims at achiev-
ing proof-of-concept and sometimes artiϐicial demon-
strations. On the other hand, solutions developed for
a robotic competition must be effective and take into
account the interaction of each component with the
whole robotic architecture. A method that works cor-
rectly in laboratory experiments may not achieve the
same results when used in different setups like those
involved in a competition. Thus, students can learn
through competitions that “the whole is greater than
the sum of its parts” as well as appreciate the impor-
tance of tests on the ϐield.

Sick AG, a leading manufacturer in sensor tech-
nologies and laser scanners, organizes Sick Robot Day,
a competition open to student teams from universi-
ties and other educational institutions aimed at pro-

Fig. 1. The arena of Sick Robot Day 2012 delimited by a
fence and three pens. A pen is shown in the boƩom-leŌ.

moting mobile robotics and automation technologies
in education. In2012SickRobotDay reached its fourth
edition. While previous editions involved perception
and navigation capabilities, in the latest challenge the
robots were required to detect, fetch and carry balls
with an assigned color to a designated area called pen.
The proposed problem falls in the well-studied cate-
gory of the foraging tasks [2]. The contestants had to
address several problems including which sensors to
use for detecting balls, obstacles and pen, how to carry
the balls, how to ϐind the pen, and which tasks to ex-
ecute. The robot systems were developed by partici-
pating teams under imperfect knowledge of the ϐinal
competition environment, shown in Figure 1.

In this paper, we illustrate the robotic system im-
plemented for Sick Robot Day 2012 by a team of
students of the University of Parma and the lessons
learned during its development. The implementation
of the control architecture required the team to make
design decisions and to verify the obtained results on
the ϐield. Experiments have proven fundamental for
discovering pitfalls and for developing more robust
and effective solutions. The robotic competition has
proven a valuable experience to check initial assump-
tions and to learn how to implement components that
can perform the required tasks in practice. The ϐinal
autonomous systemhasprovenquite effective andour
robot, Red Beard Button, achieved ϐirst place at the
competition.

The paper is organized as follows. Section 2 sum-
marizes the competition rules. Section 3 illustrates
the architecture of Red Beard Button and shortly de-
scribes the development history. Section 4 illustrates
the experiments performed before and at the compe-
tition as well as the problemsmet. Section 5 discusses
the lessons learned through this experience,while sec-

82



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

Fig. 2. The robot equipped with Sick LMS100 and
TiM300 laser scanners, Logitech C270 camera, and the
motorized fork liŌ

tion 6 provides the concluding remarks.

2. CompeƟƟon Rules
This section summarizes the rules of Sick Robot

Day 2012 in order to clarify the design decisions to
the reader. The contest takes place in an indoor polyg-
onal arena, whose diameter size is about 10 ÷ 20 m.
The arena contains balls of three different colors with
20÷ 25 cm diameter. The ring fence of the arena gaps
in three zones where three pens are placed. Each pen
is distinguished by one of the three colors and is used
as a starting position for one of the robots and as the
ball dropping area.

The aim of challenge is to detect, fetch and carry to
the pen as many balls of the assigned color as possi-
ble. The contest consists of several 10minutes rounds
(also called runs) and three robots compete at the
same round, each looking for balls of a given color.
Each robot participates to two rounds and a differ-
ent color is assigned in the two rounds. The score of
each round is equal to the number of balls of the as-
signed color, except for penalties. The balls of a wrong
color reaching the pen are subtracted from the score
of the round. Furthermore, every contact of the robot
with the fence is sanctioned with a half point and col-
lision with another robot leads to instant disqualiϐica-
tion from the current round. Contact with balls is al-
lowed irrespective of their color. Thus, the position of
the balls is likely to change during a run since robots
may carry or push them. The ϐinal placement of the
teams depends on their best performance in either of
the two rounds. Several details, like ball colors, exact
dimensions of the balls and of the pen, or number of
balls placed inside the arena, were not deϐined by the
rules of procedure and have been discovered by teams
with short notice on the very day of the competition.

3. Robot Architecture
In this section, we present the ϐinal architecture

of the Red Beard Button robot implemented for Sick
Robot Day 2012. We also brieϐly discuss the variants
implemented before reaching the ϐinal one and the
motivation for the design decisions. The system has
been decomposed into parts to address the threemain
challenges posed by the competition: ball detection,
ball picking and transportation, and robot localization

Fig. 3. The roboƟc architecture of the system composed
of ROS framework nodes

for returning to the pen. These three tasks are coordi-
nated by the robot navigation system.

The robotic platform used in Red Beard Button is
a MobileRobots Pioneer 3DX equipped with two laser
scanners, Sick LMS100 and Sick TiM300, and a Log-
itech C270 camera (Figure 2). The scan plane of the
LMS100 laser scanner is approximately parallel and
10 cm above the ground plane. The TiM300 laser scan-
ner has been included in the architecture to overcome
ball occlusion problems. However, it has hot been used
in the ϐinal robot setup due to design decisions dis-
cussed later in the paper.

The perception component detects the balls of the
required color by performing sensor fusion. The de-
vice adopted for carrying balls is relevant for the navi-
gation strategy. Two ball picking structures have been
implemented: a simple static fork, that requires spe-
ciϐic navigation policies to avoid loosing the ball, and
a motorized fork, that lifts and cages the ball thereby
avoiding any occlusion in front of the robot. A local-
ization andmapping algorithm is required to estimate
the robot position w.r.t. the pen area where the ball
must be dropped. Since the map of the environment
is unknown, the robot must extract landmarks to ϐind
its position. The only stable elements in the given com-
petition arena are the fence and the pens. Finally, the
navigation component handles the robot task state
and coordinates perception and action using the infor-
mation provided by the other components. The differ-
ent tasks have been implemented as ROS1 nodes and
are illustrated in Figure 3. In the following the details
of the main components are described.

3.1. NavigaƟon

The navigation component is responsible for the
execution of robot motion and for the management of
the state of competition. The navigation task coordi-
nates all theother tasks, since it receives anduses their
outputs to carry out the robot main task. In the arena,
the robot interacts with different kinds of objects:
- static objects like arena fence, that must be avoided
in order not to incur into penalties;

- semi-static objects like balls, that may be moved or
avoided depending on the adopted policy;

- dynamic objects like the other robots, that may lead
to disqualiϐication if a collision occurs.
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The presence of several dynamic and semi-static ob-
jects in the arena makes path planning an ineffective
solution, since a plan may quickly become outdated
due to the change in obstacle conϐiguration. Thus, a re-
active approach has been preferred for robot naviga-
tion. The development of navigation components has
been simpliϐied by the choice of themotorized fork lift
that is discussed in section 3.3. The navigation task is
divided into several subtasks, each corresponding to a
robotic behavior with a speciϐic goal:
- exploration: the robot moves and searches target
balls;

- ball approaching: when a target ball has been de-
tected, the robot approaches it;

- ball grasping: the robot reaches the ball and raises
the fork;

- transportation: the robot returns to the pen to drop
the ball;

- ball release: the ball is released into the pen.
Figure 4 illustrates the ϐlowchart of navigation decom-
posed into subtasks.

Fig. 4. Flowchart of navigaƟon decomposed into sub-
tasks

Safe navigation is guaranteed by a collision avoid-
ance behavior, which interrupts the execution of cur-
rent subtasks when the distance from the closest ob-
stacle is less than a given threshold (0.55 m). When
collision avoidance is active, the robot steers in the op-
posite direction w.r.t. the obstacle until free space is

observed in front of the robot. Such behavior is dis-
abled only during the approach to or the release of a
target ball.

The exploration task has been developed using a
hybrid approach: the main behaviour is a standard
stay-in-the-middle behavior [1] that allows the robot
to move in the environment keeping about the same
distance from the nearest obstacles on its left and on
its right. In order to move to all the directions and
explore the environment, every 12 seconds the robot
randomly steers. During exploration, the robot speed
may reach 0.45 m/s and the fork lift is held raised in
order not to occlude the laser scanner.

When the ball detector component observes a tar-
get ball, the ball approaching behaviour is activated.
Then, the mobile robot rotates towards the centroid
of the ball andmoves with a speed proportional to the
ball distance. If the ball is lost, e.g. the collision avoid-
ance switches on, the exploration task is reactivated to
search and reach other interesting balls. However, the
ball trackingmodule described in the following avoids
intermittent observations of the goal and prevents un-
necessary transitions between ball approaching and
exploration.

When the distance to the ball is less than a given
threshold (about 0.70m), the fork is lowered and ball
grasping task is performed. During ball grasping, per-
ception of the target balls and obstacles is handled by
a speciϐic procedure due to the limited ϐield of view of
the camera, which prevents the observation of balls,
and the occlusion of the laser scanner caused by the
lowered fork. The robot moves towards the ball un-
til it correctly grabs the ball or fails. The outcome
of such operation is monitored by a selected subset
of frontal range ϐinder beams that are not occluded.
When the ball is caught, the robot raises the fork and
starts to navigate towards the pen. Otherwise, after
having lifted the fork, the robot resumes exploring the
environment. Since the ball is caged by the fork, the
ball never falls down during the lift.

The navigation back to the pen is driven by the in-
formation provided by the localization module. This
subtask directs the mobile robot towards a goal point
placed in themiddle of the pen, setting the orientation
properly to approach the pen frontally. In order to pre-
vent collisions, the collision avoidancebehavior runs in
background with higher priority. Moreover, when the
robot is near to the pen (1.2m) the linear velocity is re-
duced to 0.2m/s to perform a more accurate motion.

When the ϐinal position is reached with the right
orientation, the ball releasing task is activated. After
lowering the fork, the robot pushes the ball in the pen
moving forward and suddenly backward. If the ball is
correctly released, the robot rotates around its axis
about 180◦ and restarts the exploration of the arena
to search another ball of the assigned color.
3.2. Ball DetecƟon

The main task of the detection module is to distin-
guish the target balls from all the other objects placed
in the arena. Therefore, during exploration the robot
must be able to segment its sensormeasurements and
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extract those segments that meet the requirements of
goal objects like shape, aspect ratio, size, colour and
a position consistent with physical constraints (e.g.
balls lie on the ground). Since two different types of
sensors, namely a RGB camera and a laser scanner, are
available, recognition of candidate target balls is sep-
arately performed in the two sensor domains (laser
scans and images) and the results are associated only
in a second phase. In this way, the algorithm takes ad-
vantage of both devices and, at the same time, pro-
cessing can be performed by two separate compo-
nents. The laser scanner provides an accurate estima-
tion of ball position, while the camera is able to assess
the color and the aspect ratio of the region-of-interest
(ROI) corresponding to balls.

The robot control application, developed for the
ROS framework, consists of four nodes. The ϐirst
node is the CMVision package (Color Machine Vision
project) [5] that extracts blobs of a given color from
the frames acquired by the camera. Since the segmen-
tation of images is independent from the laser scan-
ner, it has been easy to integrate this library pack-
age into our system. The second node is dedicated
to the calibration procedure, which is performed only
ofϐline before using the detector. The third node is
the ball detection core component, which processes
laser scans and associates laser segments to the color
blobs extracted by CMVision. The fourth node is a ball
tracking node that addresses the intermittent detec-
tion caused by laser scan and image segmentation fail-
ures or by missing associations between the two sen-
sor domains.

The purpose of the calibration node is the esti-
mation of the transformation matrix between a point
Plaser in the laser reference frame and the corre-
sponding point Pimg in the image plane and viceversa
as expressed by equation

Pimg = KK · CLT · Plaser

where KK is the intrinsic parameters matrix of the
camera and C

LT the transformation matrix from laser
frame to camera frame. While there are several pack-
ages for estimating KK , the few libraries for assess-
ing C

LT strongly depend on the setup and the calibra-
tion object. The calibration object must be chosen so
that it is possible to detect and match a pair of homol-
ogous points in the two sensor domains. We have in-
vestigated the algorithm proposed in [12] that jointly
calibrates a laser scanner and a camera by match-
ing slices of a planar checkerboard with the plane of
the same checkerboard. Unfortunately, we have not
achieved satisfactory results, possibly due to the noisy
perception of the checkerboard or to numerical stabil-
ity problems of the proposed method.

Thus, we have implemented an iterative procedure
based on themanual association of themeasurements
of a ball acquired with the laser scanner and the cam-
era. Although not automatic, this method allows quick
and reliable estimation and has the advantage of us-
ing the object to be detected (the ball) as a calibra-
tion target. This method exploits the same segmen-

tation procedures of the image and of the laser scan
used during detection. However, since the algorithm
starts from an initial guess of the transformation C

LT
to be estimated, the blobs returned by CMVision are
ϐiltered according to strict criteria on the area and as-
pect ratio of the balls. Then, the centroids of the laser
segments are projected into the image plane accord-
ing to the current value of CLT and roughly associated
with the blobs. The user can iteratively change the val-
ues of translation and rotation parameters of CLT until
the projected laser points overlap with the centroids
of blobs.

After the initialization of parameters, the detection
cycle consists of four steps:
- segmentation of laser scan using a discontinuity
threshold and selection of intervals checking their
diameter;

- projection of these valid segments in the image
frame;

- if a segment falls into a bounding box, it takes on its
colour and it is classiϐied as belonging to a ball;

- publication of the recognized balls list, including
useful information for navigation and collection,
such as colour or position in the laser reference
frame.
The trackingnodehasbeendesigned to address in-

termittent detection of balls due to temporary failure
of the ball detector illustrated before. The node keeps
an estimation of the observed balls by updating their
position w.r.t. the robot according to robot odometry
and the sensor observations. The tracking algorithm
implements Kalman ϐilter equations. Objects that have
not been observed for a given time interval, are re-
moved from the state.

Tests in the laboratory, with controlled light, have
shown that the algorithm is able to identify and locate
with satisfactory accuracy all theballs. The association
is correct, even though the calibration is performed
with the manual algorithm. However, larger envi-
ronments with reϐlections and abrupt light changes
strongly affect the performance of the CMVision com-
ponent. The problems of this component are further
discussed in section 4.

3.3. Ball Grasping Device

An important requirement to succeed in the com-
petition was to provide the robot with a device to
move the balls that are inside the arena. Among sev-
eral possible solutions, we have built a static fork and
a motorized fork lift. The ϐirst device consists of two
plain wooden bars that can be used to push the target
ball as shown in Figure 5(a). This device requires the
availability of an additional laser scanner at a differ-
ent height (in our case the TiM300) since the LMS100
is occluded during ball transportation. The second de-
vice is a motorized fork lift, shown in Figure 5(b), that
can raise the ball when it has been caged among the
fork bars. Since the fork is raised during exploration
and ball transportation, the laser scanner is occluded
only during ball grasping and release.
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Fig. 5. The staƟc fork (a) and the motorized fork liŌ (b)
built to cage and carry balls

We experimented with both solutions until few
weeks before competition. The static fork was appeal-
ing for its simplicity in construction and reliability, but
ball transportation proved difϐicult since the ball was
not caged. The fork lift required some iterations inme-
chanical and electronic design andwas eventually pre-
ferred for the competition. Indeed,with the fork lift the
robot does not lose the ball while moving because the
ball is well caged without occluding the sensor.

The constructionof themotorized fork lift requires
a mechanical structure, an electric motor, the elec-
tronic components for its control, and a software in-
terface with the laptop computer. The system consists
of the following components:
- a DC geared motor with a high reduction ratio, so
as to decrease the maximum speed and increase the
torque output;

- a Microchip Technology Inc PICDem2 board, which
consists of a microcontroller, the output interface
with the powerboard, an Ethernet port and other el-
ements not used in this project;

- a power board, built in the university laboratory,
which controls the power supply of the motor ac-
cording to the logic signals output from the PIC-
Dem2 board;

- two limit switches, which signal when the fork is
completely raised or lowered.

The limit switches are the only devices available to
monitor the fork state. No other information is avail-
able while the fork is in an intermediate position.

A ROS node is responsible for the communication
between the laptop computer and the control board
through a custom protocol on TCP/IP port. Themicro-
controllerwaits for commands from the computer and
sends control signals to the motor when it receives a
command. To control the motor, the board generates
a PWMmodulation: a pair of square waves, one oppo-
site the other, are generated and overlapped into a sin-

Fig. 6. Ouputs of the two localizaƟon and mapping
nodes: the segment landmark graphicalmap (a) and the
pen landmark localizer (b)

gle signal to the motor. The amplitude of the signal is
12 V . The ϐinal performance of the system is satisfac-
tory, since the fork reliably raises and releases balls.

3.4. LocalizaƟon and Mapping

Localization is a crucial task for the successful ac-
complishment of the proposed challenge. When a ball
is fetched using the fork lift, Red Beard Button must
reach its pen and drop the ball there. Without know-
ing its pose, the robot cannot plan its path or even
guess the direction toward the pen. The information
provided by odometry is unreliable, since odometry is
sensitive to steering and its error increases with the
travelled path length. In order to estimate its own po-
sition and orientation, the robot requires a map con-
taining the landmarks or implicit references that can
be easily detected in the environment.When suchmap
is not available, the system must be able to build a
map from the acquired measurements. This problem
has been investigated by robotic research for decades
and is known as simultaneous localization and map-
ping (SLAM) [11].

In the scenario of the Sick Robot Day 2012 com-
petition, a major complication is represented by the
lack of stable and continuously observable landmarks.
The arena shown in Figure 1 chieϐly consists of balls,
whose position rapidly changes andwhich occlude the
border of the arena. The fence and the pens, which ap-
pear as gaps in the fence, are the only invariants in the
scene. Both types of candidate landmarks are distin-
guishable in laser scans by detecting aligned points.
Two different approaches have been developed for
map construction and localization, each using one of
the two landmarks. Figure 6 illustrates the output of
the two methods.

The ϐirst method builds a map of segment land-
marks to represent the boundaries of the arena. These
boundaries do not change, but they may be occluded

86



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

by other dynamic or semi-static elements of the envi-
ronment like balls and other robots. The scan plane of
laser scanner Sick TiM300 does not intersect the balls.
Thus, this range ϐinder can be used to extract bound-
ary segments, although its maximum range is limited
to 4 m. More in detail, the algorithm performs four
main operations. First, the scans acquired by the laser
scanner are segmented into intervals and are split ac-
cording to endpoints [8]. In the second step, the para-
metric model of the segment and its uncertainty are
computed through least square estimation within the
geometric limits represented by the two segment end-
points [3]. The association between the segments and
the landmarks already stored in themap is performed
using Hausdorff and Mahalanobis distances. Finally, a
Graph SLAM algorithm takes the odometric data, the
previous landmarks, and the landmarkmeasurements
given by the associations to estimate the pose of the
robot. The sensor model uses the SP Map representa-
tion [6] applied to segments. Instead of using Bayesian
ϐiltering, the map has been represented by a graph-
ical model that encodes the constraints between the
variables of the problem. The estimation has beenper-
formed using the G2O library [9] for the optimization
of constraint networks. Unfortunately, this promising
and general approach has proven unreliable in this
case due to the limited visibility of the fence, as well
as prone to numerical instability.

The second localization method, developed to ad-
dress the limitation of the ϐirst solution, focuses on the
detection of the pens. Although there are only three
pens in the arena (one for each robot that concurrently
takes part to a round) and only the initial pen is fre-
quently observed, the detection of a gap in the fence
is rather robust. Furthermore, the range ϐinder view
of the pen is seldom occluded by balls, since the robot
starts with the closest balls right in front of the drop-
ping area and progressively cleans the space. The de-
veloped method exploits the odometry to predict the
robot pose and then corrects the estimation by us-
ing the landmark when available. After taking the ball,
the robot tries to reach the pen assuming that it is lo-
cated in the origin of the reference frame, located in
the initial pose. Moreover, it activates the pen detec-
tion routine. A pen has been modelled with two seg-
ments lying on almost parallel lines with a gap in the
between. The laser scanner data are used to build this
model using an algorithm based on the Hough Spec-
trum and Hough Transform [7]. Whenever a pen is de-
tected, the system checks whether the pen is the one
assigned to the robot for the current round by com-
puting theEuclideandistancebetween thepenand the
map reference frame origin. If this is the case, the cur-
rent estimation of the robot pose, which is updated us-
ing odometry at each iteration, is corrected according
to the observation.

During the competition the second approach has
been used. This approach has the advantages of being
simpler, more goal-oriented and it better ϐits the prob-
lem. The ϐirst approach would have been more gen-
eral and the provided correction potentially more fre-

(a)

(b)

(c)

Fig. 7. Environments where Red Beard BuƩon has been
tested: the RIMLab RoboƟcs laboratory (lab) (a), the
gym of the University of Parma (gym) (b), and the Sick
Robot Day arena (arena) (c)

quent. However, it suffers from the inaccuracy of the
fence detection with several occluding balls, from the
numerical instability of segment landmarks and from
the ambiguity of landmark association criteria, either
based on the segment endpoint position or on the sup-
port line parameters. Moreover, the environment of
the competition had a lot of balls that occluded the
LMS100 laser whereas the arena was too large to rely
on the TiM300.

4. Experiments
The development of the robotic architecture illus-

trated in the previous section has been supported by
experiments in the Robotics Laboratory of the Depart-
ment of Information Engineering (lab) and in the gym
of the University of Parma (gym). The second environ-
ment has been chosen for its presumed similaritywith
the Sick Robot Day arena (arena). The three environ-
ments are illustrated in Figure 7. In this section, we
present the experimental assessment, the correction
proposed to the observed pitfalls, and the ϐinal results
achieved in the competition.
4.1. Training Tests

The initial tests in lab allowed the development
and fast testing of some components of the robotic
architecture. In particular, the implementation of the
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ball detection algorithm, the fork lift and the robot
navigation core have taken advantage of the labora-
tory test. However, only the next set of tests in gym
allowed the full assessment and the identiϐication of
the system pitfalls. There are twomain differences be-
tween lab and gym: the scale and the lighting condi-
tions. The hallway of the department can be approxi-
mately divided into two narrow trunks, each with size
about 10 × 2.5 m. On the other hand, the region of
gym used in the experiments has 18m diameter and is
more similar to the competition ϐield. Such large ϐield
does not constrain the robot motion and allows the
tuning of parameters like maximum linear and angu-
lar speeds, segmentation thresholds, and pen size.

During such extensive tests, which have taken
place for about a month, new problems and limita-
tions have been detected and addressed. First, the ball
detection algorithm failed when the light conditions
were difϐicult as shown in Figure 7(b). Abrupt changes
in light intensity, reϐlections on the ground, etc. make
the color segmentation of the acquired frames unreli-
able. The three colors of the balls (green, yellow and
white) have been announced about 2 months before
the competition, when the detection algorithm had al-
ready been implemented (and team members were
busy with exams and other academic duties). In or-
der to lessen this problem, some solutions have been
developed. For example, the ball tracking module de-
scribed in section 3.2 has been applied to keep the
previously detected position of balls in case of inter-
mittent detection. The extended components worked
well in the case of green and yellow balls. However,
the detection of white patches in the image is unreli-
able when the light conditions are not fully controlled
like in lab. This perception pitfall remained unsolved
in the ϐinal competition ϐield, since a radical change of
approach and new design of the ball detection compo-
nent would have been required to address it. In fact,
color segmentation using an off-the-shelf component
likeCMvisionhasprovenunreliable outside the labora-
tory. A customized, laser-driven approach could have
been more effective.

An unforseen deadlock condition has been iden-
tiϐied in the fork control module. In a trial, while the
robot approached the ball, the fork has been lowered
too early causing the block of the fork on the ball. Since
the robot waits for completion of fork lowering, the
system stays indeϐinitely in such state. A trivial solu-
tion to address such sporadic condition has been im-
plemented by setting a timeout on the lowering action.
If this action is not completed before the deadline, the
fork lift is raised.

In the gym, the localization component has proven
to be crucial for reliable robot operation in large en-
vironments. Estimation of robot pose w.r.t. the pen
can be performed using only the odometry only if the
size of the environment and the travelled path are lim-
ited. However, if the robot moves for 10 minutes at
high speed and frequently steers, the odometric error
of Pioneer 3DX largely increases and the localization
of the robot becomes unreliable. In early odometry-

based trials the robot missed the pen with an error up
to 5m. We then developed the twomethods discussed
in section3.4: localization andmappingusing segment
landmarks and localization using pens as landmarks.
Experiments on the twomethods had to copewith the
limited availability of the gym as well as with the time
pressure of the incoming competition. After some ex-
periments in the gym, we adopted the approach based
on pen detection, which was simpler, more robust and
effective. Although only the starting pen is usually ob-
served due to the travelled path and occlusions, Red
Beard Button has always been able to reach its target
conϐiguration.

4.2. CompeƟon Results
Sick Robot Day 2012 took place on October 6th

in the Stadthalle in Waldkirch (Germany). Although
the rule of procedure describes the general geomet-
rical features of the competition ϐield, the arena (Fig-
ure 7(c)) was seen for the ϐirst time by the 14 teams
from Germany, Czech Republic and Italy only few
hours before the beginning of the competition. The
diameter of the real arena was about 15 m and the
arena contained 29 balls for each of the three colors.
Themorningwasdevoted to setup of themobile robot,
to parameter tuning and system conϐiguration testing
whenever the ϐield was available. Assignment of ball
colors and of the rounds have been announced to the
teams just before the morning trials. The competition
started at 2 pm by alternating 10 rounds of 10minutes
each.

In its ϐirst round, Red Beard Button had to col-
lect green balls. The detection algorithm has always
been able to correctly identify the itemswith this color
both during the morning tests and in the competi-
tion. In fact, during the competition the robot has col-
lected 7 green balls in the assigned time. However, Red
Beard Button hit the arena fence four times due to too
low safety distance in the ball dropping phase. Hence,
the ϐinal awarded score was 5, accounting for 2 point
penalty assigned.

In the second round, Red Beard Button was re-
quired to collect white balls. As mentioned above, cor-
rect white ball detection was an unsolved problem.
Due to the non-uniform lighting and too strong false
positive control, Red Beard Button was unable to fully
identify white balls in the arena. Thus, the ball detec-
tion method never estimated false positives, whereas
other teams incurred in signiϐicant penalties due to the
collection of balls with the wrong color.

The 5points score achieved in the ϐirst round even-
tually won our team the ϐirst place in the competition,
with the second and third teams obtaining 3 points
and 1 point respectively. The whole system imple-
mented in Red Beard Button has worked properly, ex-
cept for the arena edge hits in the ϐirst round and the
white ball detection problem in the second one.

5. Discussion
Experiments and the competition itself have al-

lowed the team member to learn some lessons about
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thedesign and implementationof autonomous robotic
systems. In the following, we propose a list of sugges-
tions that summarize our experience.
- Perception is themost important reason for the suc-
cess or failure in accomplishing a given robotic task.
The correct detection of green balls has allowed the
successful execution of the foraging task, while the
uncertain identiϐication of white balls within cau-
tious acceptance policies has led to an opposite re-
sult. The interpretation of sensor measurement is
critical when the decisions of the autonomous robot
depend on the outcome of a classiϐier.

- The robotic system becomes more efϐicient and less
prone to error when the sensor measurements are
collected and organized in a coherent representa-
tion. The importance of the environment represen-
tation increases with the complexity of the task and
the scale of the environment where the robot op-
erates. This lesson has been proven both by the
ball tracking module and by the robot global local-
izer. The formermethod is an example of short-term
memory suitable to track dynamic and ephemeral
objects like balls. The success of localization de-
pends on the presence of invariant elements of the
environment that can be used as landmarks.

- The complexity of the solution should be propor-
tional to the complexity of the problem. The color
segmentation used to detect balls in images has
proven unsatisfactory in many cases. Such naive ap-
proach has not worked well for white balls out-
side the robotic laboratory, whenever the color is
not an invariant property of the target objects. On
the other hand, solutions like the general segment-
based graphical map algorithm have proven too
complex for the problem.

- Robot system development should be guided by ex-
periments on the complete system. Each robot com-
ponent has been tested in depth in the lab before the
integration tests in the gym, but the problems arose
only with the complete system. Unpredicted condi-
tions may depend on the interaction between robot
components and the environment: perception deϐi-
ciencies may appear only when the robot (and the
sensor)moves, themotion of the robot and the actu-
ated componentsmay be affected by objects (e.g. the
fork blocked by a ball), etc. Furthermore, the exper-
imental setup should be as similar as possible w.r.t.
light conditions, dimension, etc. to the environment
where the taskmust be performed. Of course, exper-
iments are time consuming and the complete system
is not available until the development reaches an ad-
vanced state.

- Robot developers often design and implement the
system under uncertain information and cannot
control all the possible conditions. For example, the
color of the ballswas not initially known and the ball
detector has been designed without exploiting such
information. Moreover, the high density of balls in
the competition arena, which could be critical for a
planner, was apparent only the day of the competi-

tion. Several critical conditions arose onlyduring the
last extensive experiments. Thus, the only possible
countermeasure is to arrange multiple solutions to
address the same task and to anticipate the criticali-
ties by performing experiments in difϐicult environ-
ments. Indeed, we developed two ball carrying tools
and two localization methods, and for each feature
the most effective approach has been selected.

6. Conclusion
In this paper,we have presentedRedBeardButton,

a robotic systemdesigned for the Sick Robot Day 2012
competition, and the lessons learned during its devel-
opment. The aimof the contestwas to detect, fetch and
carry balls with an assigned color to a dropping area,
similarly to a foraging navigation task. The developed
robot system consists of several software and electro-
mechanical components to perceive colored balls, to
grasp and transport balls, and to localize the robot
andnavigate to assigned areas. Some subtasks like ball
grasping and localizationhavebeenaddressedbymul-
tiple solutions and experiments have proven funda-
mental for selecting the most effective one. Through
extensive tests in the ϐield, the team discovered pit-
falls, revised the initial assumptions and design deci-
sions, and took advantage of the iteration process to
perform successfully at the competition.
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Notes
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source meta-operating system for robots.
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