
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

IÄãÙÊ�ç�®Ä¦ ÃÊ��ÙÄ ÙÊ�Êã®�Ý ó®ã« ROS �Ä� AÙ�ç®ÄÊ, ®Ä�½ç�®Ä¦ ��Ý�
Ýãç�®�Ý

IÄãÙÊ�ç�®Ä¦ ÃÊ��ÙÄ ÙÊ�Êã®�Ý ó®ã« ROS �Ä� AÙ�ç®ÄÊ, ®Ä�½ç�®Ä¦ ��Ý�
Ýãç�®�Ý

IÄãÙÊ�ç�®Ä¦ ÃÊ��ÙÄ ÙÊ�Êã®�Ý ó®ã« ROS �Ä� AÙ�ç®ÄÊ, ®Ä�½ç�®Ä¦ ��Ý�
Ýãç�®�Ý

IÄãÙÊ�ç�®Ä¦ ÃÊ��ÙÄ ÙÊ�Êã®�Ý ó®ã« ROS �Ä� AÙ�ç®ÄÊ, ®Ä�½ç�®Ä¦ ��Ý�
Ýãç�®�Ý

SubmiĴed: 28th May 2013; accepted: 25th July 2013

Igor Zubrycki, Grzegorz Granosik

DOI: 10.1431/JAMRIS_1-2014/9

Abstract:
This paper describes our experience with introducing
modern roboƟcs through Robot OperaƟng System. ROS
framework allows rapid robot prototyping and gives ac-
cess to many state-of-the-art roboƟc soluƟons. It is how-
ever, soŌware oriented and requires its users to under-
stand well soŌware development ideas and methods.
While teaching undergraduate students ROS,we cameup
with some soluƟons how to introduce it to people with-
out a deep background in computer science. The paper
presents our Mymodel robot applicaƟon that simplifies
modeling of the robots using URDF format and some Ar-
duino based programs. We have also reported results of
students’ projects.

Keywords: ROS, Arduino, RoboƟcs educaƟon

1. IntroducƟon
The robotics curriculum must contain the labora-

tory stage. This is absolutely necessary to familiar-
ize students with real robots, their control systems
and software. However, an interesting approach is to
proceed this stage by modeling and simulation. For
several years we have been using two convenient ap-
plications to teach students how to model and sim-
ulate robots and the whole robotic stands, namely:
the combination of Robotics Toolbox (for Matlab)
with RoboWorks, and the EasyRob software [7]. These
programs provide tools to build graphical models of
robots, to manipulate them, and analyze kinematics
and dynamics. Recently, muchmore powerful solution
appeared that can support both simulation and real
control stages of robotics curriculum.

ROS (RobotOperating System) is an uniϐied and ro-
bust framework for robot modelling, control and vi-
sualisation [9]. It is a more and more popular tool for
rapid prototyping of robot software as it provides an
easy way to integrate, test and reuse algorithms con-
structed by robotic community around theworld. And
it is an open source, too. However, because of its ca-
pabilities and scope, ROS has a fairly steep learning
curve [10]. This problem is more distinct if the user
has only a little background in computer science, what
is the case for the bachelor course in Automatic Con-
trol and Robotics at the Lodz University of Technol-
ogy. We believe though, that the beneϐits of using ROS
are vast and worth our work of ϐinding skillful meth-
ods, easy to use tools and appropriate knowledge, to
involve even less ”computer science type” students to
use this modern robotic tool. In this paper we will de-

scribemethods and tools, thatworkedbest in our case.
Arduino is the hardware platform we have employed
in this quest.

2. MoƟvaƟon
ROS is a tool used by robotic teams worldwide

when designing large robotics systems. The main rea-
sons for its popularity, that also led us to the introduc-
tion of ROS for our students, are as follows [9]:
1) ability to rapid prototype. There is a multitude of

tools and libraries that were created around ROS.
It is possible to connect and ”pipeline” these tools
literally in a few hours. Because of that, relatively
small teams and beginning students do not need to
”reinvent the wheel” and can create entire robotic
applications.

2) modern software architecture. ROS is a modern
software architecture that allows to connect eas-
ily different applications and devices. Users can
build systems where most of processes work in
parallel and on different machines without build-
ing multithreading or networking procedures by
themselves.

3) ”Thin” ideology. Programs to be used in ROS do not
need to be highly integrated. There only has to be
a small executable running that exposes program’s
functionality to ROS or extracts some information
from it. This opens the way to reuse all speciϐic
tools that were created outside ROS.

4) Ease of debugging, visualisation and logging. ROS
has a number of tools that enable users to check
and save system’s state. Users can see system’s
state graph (rxgraph tool), plot different variables
online with rxplot, or visualise whole robot and its
sensors readings by using Rviz. All data can be eas-
ily archived and replayed by using rosbag.

5) ROS is well documented and supported. Beginners
can ϐind tutorials online, there are two ROS books
[6] [8] and lively ROS forum [2].

6) Free and Open Source. Most of ROS packages is
open source and has straightforward licences [3].
This simpliϐies development and allows to engage
wide range of contributors both from within and
outside academia. Open source gives also partial
guarantee that long time development will be pos-
sible – even if library creator stops development,
we will be able to improve and compile it by our-
selves.

69



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

However, the introduction of such sophisticated and
modern framework to our students involved some dif-
ϐiculties, these are the most important we have faced
in our work:
1) transition from simple single threaded systems.

Our students have different computer science
skills but the experience of most of them is lim-
ited to single threaded applications – designed in
theMATLABenvironment or on devices such as At-
mega microcontrollers. To use ROS effectively stu-
dents have to understand its structure and philos-
ophy – mainly the need to treat each functionality
as a single part – that will become ROS Node, and
which will communicate to others only by using
ROS Messages.

2) ROS is an open framework and most of its power
comes from the possibility to use other teams’ so-
lutions. Unfortunately, these solutions are usually
”proofs of concept” and using them becomes an in-
tegration task, which is difϐicult for the peoplewith
little experience with the software development.

3) ROS is a Linux tool and to use it effectively, users
have to have experience in this environment. Basic
parts of ROS are available as Ubuntu Packages but
more advanced and less popular ROS tools are only
available as sources on the Github or other Inter-
net revision control services. Users need to know
basics about version control, compiling, makeϐiles,
etc.

4) ROS framework is rapidly developing, there are
many versions that have different APIs, different
tools and functionalities. Tutorials thatwork in one
ROS version, sometimes do not work or even mis-
lead in other – what is utterly frustrating for the
beginners.

3. Target group
As the Robot Control Department we provide

robotic related courses for students fromdifferent fac-
ulties of our university. We teach basic robotics, robot
control – that are mainly about industrial robotics
as well as more advanced subjects such as mobile
robotics, vision systems or rehabilitation and service
robotics. We understand, that a large part of these
courses can be based on ROS, what would allow stu-
dents to work with single framework or even on one
project throughout different courses.

To derive and test solutions we have conducted
series of workshops for the second year of the sec-
ond year of the bachelor course in Automatic Control
and Robotics ( Fig. 1). This group had already learned
some basic engineering subjects, programming (C++,
MATLAB) and had several courses on the electrical en-
gineering. Unfortunately, these students had very little
experience with subjects from computer science cur-
riculum – software development, object oriented pro-
gramming, etc. Therefore, training them to use ROS
turned out as a challenge.

Fig. 1. Picture from one of our ROS introducƟon work-
shops

4. SoluƟons
To enable our students working with ROS we

came up with a number of ideas. At the beginning
we planned to base our teaching mainly on the in-
ternet tutorials [4] and a textbook [6]. Students were
supposed to build small applications that would con-
tribute in our bigger projects. Meetings were to be
spent on discussing matters related to robotics.

Unfortunately, because of the weaknesses of ROS,
described in Section2, our students, especially the less
computer adept were unable to start practical work,
even after completing all beginners tutorials. Also dis-
cussions with them proved that they do not under-
stand the ROS nomenclature and basics of work.

We understood, that our students would learn
ROS faster if we used their existing skills and divided
their work into practical modules, throughwhich they
would be guided.

4.1. Arduino and rosserial

We have found that students weren’t able to grasp
basic ROS ideas of using Publish/Subscribe and Ser-
vices based only on the tutorials. What helped us
enormously was introduction of rosserial package and
rosserial_arduino [1].

The rosserial is a protocol that allows to connect
different hardware to ROS system using serial con-
nection. The type of activity (Subscriber/ Publisher or
Service) and a message format are deϐined directly on
the device, with the use of rosserial libraries. There is
also apythonnodeon thehost computer that forwards
messages andmakes nodes created on the device visi-
ble to ROS. As long as devices use rosserial format to
communicate using serial connection, they can have
any functionality. It provides an excellent way to com-
municate with simple real time devices such asmicro-
controllers or sensor arrays.We have found that rosse-
rial_arduino – the extension of rosserial for Arduino
platform [1] – can signiϐicantly help in integration of
custom hardware with ROS and is also a convenient
way to teach our students ROS. There are several rea-
sons for that:
1) Arduino has excellent documentation, IDE and

70



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

Fig. 2. ROS ComputaƟon Graph created by our student
Michal Kielan to read IMU sensor (upper picture), visu-
alizaƟon of the readings from this sensor (lower picture)

Fig. 3. Micromouse, a small differenƟal drive robot
based on a modified Arduino board, used on our work-
shops and controlled through bluetooth by ROS

community support. We introduced it indepen-
dently with our robotic platform – robo mouse,
small differential drive robot based onmodiϐied ar-
duino board.

2) Using real sensors or actuators, connected to Ar-
duino, helped our students see and understand
ROS functionality, and beneϐit from it.

3) Students were able to do ”real work” and to use
ROS in their own projects – this was an enormous
motivation.
To test this approach we have used small mobile

robots (see Fig. 3) equippedwith differentially driven
wheels with encoders, IR distance sensors, sonars, RC
receiver, BlueTooth modules, and Romeo controller,
which is Arduino-compatible and integrated with H-
bridges.

Students realized several projects: sonar read-
ing, chaotic movements of the robots with obstacle
avoidance, remote controlled mouse, web-controlled

mouse. Additionally, we have demonstrated other
projects: smartphone-controlled mouse, sensor glove
readings.
4.2. Working in groups

We have also found that working in groups –
pairs or trios –made learningmore effective. Students
shared their experiences fromworking independently
and explained to each other how different functional-
ities of ROS work.

To make teamwork easier we have set up a forum
and encouraged students to use Git-based source code
management (whichwe taught themby using Internet
teaching games).

Teamwork motivated students – it was harder for
them to explain delays or lack of progress to their
peers than to us. It also involved their different skills
– each of the students could work on the part of the
project he felt best in. This somehow reϐlects the ROS
philosophy.
4.3. Robot modeling and debugging

Students from our test group have already passed
Introductory robotics course and have gained some
theory on industrial robots, forward and inverse kine-
matics, and manipulator dynamics. This knowledge
could be easily illustrated byROS set toworkwith sim-
ulation tools such as Gazebo. It has a built-in transfor-
mation system that can dynamically construct a trans-
formation tree – known from kinematics. In order to
further prepare the robot’s visualization or simulation
the URDF model is required. URDF – uniϐied robot de-
scription format is XMLbased structure that describes
important robot properties [5]:
- shape and dimensions (link element’s origin ele-
ment properties and collision element properties)

- visual properties (link element’s visual element
properties)

- inertial properties (link element’s mass and inertia
properties)

- robot joint characteristics and limits (joint element’s
properties)

- placement and properties of sensors (sensor ele-
ment’s properties)

Example of URDF description and resulting tree are
shown in Fig. 4.

Even though the structure of URDF ϐile is quite
clear, students had some problems to create these de-
scriptions from scratch. The biggest reason for that is
the number of steps required to launch such a ϐile to
visualize robot and manipulate its joints. It would be
much easier if they could interactively modify a ϐile
and see results immediately.

Online app Mymodel robot We have created a tool
to simplify testing of URDF model ϐiles by presenting
them directly in the web browser. It is a network tool,
that does not require any installation on the students
behalf – only a modern browser (that supports WebGl
format) is needed. Our aim was to make usage of this

71



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

Fig. 4. Example URDF descripƟon and resulƟng tree

tool as simple as possible. Users only need to put their
URDF ϐile into form ϐield, which is then parsed into a
robot model and shown in the browser with appro-
priate control sliders for all movable joints. Mymodel
robot application diagram is shown in Fig. 5.

The application that doesmost of the processing is
created using modern web applications libraries and
it follows MVC (Model View Controller) model where
data is isolated from its view. The most important ad-
vantages of the proposed application are:
1) Beginning users do not install Linux and ROS

Framework to start working with URDF ϐiles
2) Tool is easy and straightforward, allowing fast

model testing and evaluation
3) Users have an easy way to show their models to

other people
4) As a web tool, there is a guarantee that each stu-

dent uses the same tool, what simpliϐies debugging
Our tool was well received by the participants of

our workshops, we have introduced it also to students
in our normal curriculum, where they could write and
testmodels of industrialmanipulators, an exampleof a
Robotmodel created by our student is shown in Fig. 6.
Also members of ROS Users forum were interested in
our tool. We have received a number of emails with
suggestions for further development or usage. One of
themwas suggesting to use it onROSwebsites to show
the manipulable image of the robot model used in the
project.

Fig. 5.Mymodel robot aplicaƟon diagram

Fig. 6. KAWASAKI R303N robot model created by Pawel
Guzdraj and Patryk Blesinski with Mymodel robot ap-
plicaƟon

Currently, there are some other projects that aim
to make browser based tools for ROS – even move
whole Rviz visualization tool to browser. We expect
that the learning curve for these toolwill be still rather
steep as they are too sophisticated. From our experi-
ence and ROS forum suggestions there is a need for
simple, straightforward tools that can be used by be-
ginners.

4.4. Working on big projects

Students of Automatic Control andRobotics course
usually plan to become engineers. Because of that,
they are entirely focused on acquiring practical skills
and receiving experience thatwouldbe appreciatedby

72



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

Fig. 7. Structure of our Sensor Glove acquisiƟon and con-
trol system [11].

their future employers.
To motivate them more, we tried to involve even

the beginning students in our ”real” work: they could
participate in modeling a mobile manipulator which
we are designing or be involved in the preparation of
robotics contests like Robotour.

ROS is used in all of our current projects and we
demonstrated to our students the functionality that is
available.Wehave spend considerable timedescribing
and demonstrating our in-housemanufactured sensor
glove that was designed to control a three ϐinger grip-
per [11] – right now we are in the process of connect-
ing a real gripper to ROS so that the sensor glove will
not only be controlling a Gazebo simulation(shown in
Fig. 7) but also a mechanical unit.

As a result students becamemuchmoremotivated
as they could see real live applications of ROS frame-
work. They could also relate toROSbetter – their ques-
tions have become speciϐic.

5. Students’ projects and feedback
The group of students from before mentioned

course has been involved in several projects: build-
ing robotic quadcopter, preparing modules to use in
Robotour race (mainly localization and 3D mapping),
high deϐinition vision system for robots.

5.1. Quadcopter
This project is in the early stage of testing compo-

nents and building mathematical model of the driv-
ing system consisting of BLDC driver, motor, and pro-

Fig. 8. Rviz used for showing robot’s path aŌer running
several closed loops.
We can also in-depth analyze some other data coming
from the controller, e.g. errors or control signals, as

shown in Fig. b.

peller. Therefore, ROS is used to easily acquire, save
and process large amount of data. Three nodes have
been prepared:
- Communication with low level controller
- Main program processing data and publishing them
in a convenient form

- Acquiring and saving data to a disk ϐile
5.2. Robot localizer

This project shows the potential of ROS to build
some parts of operator’s console to track robot’s po-
sition on the prescribed path, and speciϐically include:
- wireless communication between operator’s com-
puter and the robot via Bluetooth link,

- receiving information from sensors (encoders, IMU
module)

- processing the received data
- displaying various information interesting for the
user

- graphical representation of the position of the robot
- drawing graphs of various waveforms
- calculation of the robot’s control signals

As a few students were involved in the project the
subtasks were allocated and with help of ROS com-
munication structure sharing and exchanging of all in-
formation was seamless. One of the programs was re-
sponsible for communicating with the robot using Ar-
duino on board. This process simply publishes data re-
ceived from the robot and sends back to the robot con-
trol data. The other process reads data from the topic,
calculates control signal and publishes it for the use
of the former program. Substituting data processing
program, as well as adding any other nodes using data
from the robot is very easy. Using ROS tools we can vi-
sualize interesting signals, as shown in Fig. 8.

We canalso in-depth analyze someotherdata com-
ing from the controller, e.g. errors or control signals, as
shown in Fig. 9.

Yet another way to access data is printing them
directly in the terminal window associated with time
stamp, as shown in Fig. 10.

73



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

Fig. 9. Time plot of the heading error(red) and control
signals (blue).

Fig. 10. Terminal access to topic data using rostopic echo
command.

5.3. Robotour contest

ROS was also used as the main framework for au-
tonomous robot designed for Robotour contest. This
outdoor competitions allows equipping robots with
GPS receivers and additional sensors to keep vehicle
on pavements in the park, also based on the informa-
tion available on open-street-map. In this particular
case students had to solve number of problems:
- communicating with the low-level controller based
on Arduino,

- acquiring and interpreting data from the GPS re-
ceiver,

- gathering and interpreting data from the laser scan-
ner,

- capturing and processing data from the camera,
- planning route and calculating control signals.

Students prepared for thismatter network of eight
nodes communicating within ROS. Again the main ad-
vantage of ROS environment appeared seamless in-
tegration of different programs prepared by different
people from a team. The second important lessons
learned by students is reuse of software components –
in all shown cases modules related to communication
with Arduino were the same.

Project members appreciated numerous tools
available in ROS for monitoring and visualization
(Rviz, RosGui), as well as rich internet resources and
lively forums. Even in a rather big Robotour project it
was observed that ROS overhead is very small and the
load of the average laptop computer running several
nodes is relatively small.

6. Conclusions
Our main conclusion of the work we have already

done with ROS is that the best way to introduce this
framework is to use simpliϐied solutions. Our students
are not experts in computer science and have little
experience in typical software development. Yet they
have broad knowledge in other disciplines that can be
used to introduce them to ROS. Making use of physical
devices such as Arduino boards with sensors makes
ROS functionality easier to understand aswell as gives
more motivation than just a simulation.

Experiments with online tools convinced us that
this approach is also attractive. We can introduce stu-
dents to some parts of ROS functionality without hav-
ing them install the whole ROS system. This will be
especially valuable in normal curriculum where time
and students’ motivation is limited.

Students work more effectively with some guid-
ance (in addition to tutorials and books) and when
divided into groups working together on the same
project they can teach and motivate each other.

Our last observation is that it is important to show
students some ”impressive demos”. ROS is very broad
and students need to have reasons to explore it. After
showing them our applications which use Kinect, sen-
sor gloves or smartphones they were much more mo-
tivated and wanted to increase their knowledge.

We assessed students’ knowledge and motivation
by inviting them to participate in several projects
where both ROS and Arduino could be used. Then,
we systematically checked their progress and directly
asked them questions about their knowledge and
opinions of ROS and what they plan to do in the future
with the knowledge and skills they acquired. In sur-
veys, when asked what features of ROS they ϐind the
most valuable they pointed: lightweight, strong ROS
community, ease of visualization and modularity. As
the most troublesome disadvantages of ROS students
indicated:
- rather steep learning curve demotivating some of
them,

- frequent changing of versions (Fuerte, then Groovy,
now Hydro) makes it hard for different students to
have the same environment,

- tools such as Gazebo became less integrated and
more difϐicult to use for beginners.

Nevertheless, we are observing snowball effect – new
students are encouraged by seeing what more experi-
enced students did. Also, we havemore in house expe-
riencewith solving and explaining recurring problems
and we can help students better

AUTHORS
Igor Zubrycki∗ – Lodz University of Tech-
nology, Stefanowskiego 18/22, 90-924 Lodz,
e-mail: igorzubrycki@gmail.com, www:
www.robotyka.p.lodz.pl.
Grzegorz Granosik – Lodz University of Technol-
ogy, Stefanowskiego 18/22, 90-924 Lodz, e-mail: gra-

74



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

nosik@p.lodz.pl, www: www.robotyka.p.lodz.pl.
∗Corresponding author

ACKNOWLEDGEMENTS
Researchwas partially supported by theNational Cen-
tre for Research and Development under grant No.
PBS1/A3/8/2012.

REFERENCES
[1] “rosserial tutorials”, October 2011. Accessed: 20

April 2013.
[2] “ROS answers forum”, May 2013. Accessed: 5

May 2013.
[3] “ROS developers guide”, May 2013. Accessed: 5

May 2013.
[4] “ROS tutorials”,May2013. Accessed: 3May2013.
[5] “URDF tutorials”, May 2013. Accessed: 6 May

2013.
[6] P. Goebel, ROS By Example, Publisher is empty!,

2013.
[7] G. Granosik and D. Zarychta, “Application of sim-

ulation software for robot modeling”. In: Proc.
of VII National Robotics Conference, Ladek Zdroj,
pp. 101–109.

[8] A. Martinez and E. Fernández, Learning ROS for
Robotics Programming, Packt Publishing, 2013.

[9] M. Quigley, K. Conley, B. P. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros:
an open-source robot operating system”. In: ICRA
Workshop on Open Source Software, 2009.

[10] B. Smart. “Teaching robotics with ROS: Experi-
ences, suggestions, and tales of woe”, June 2012.
Accessed: 4 May 2013.

[11] I. Zubrycki and G. Granosik, “Test setup formulti-
ϐinger gripper control based on robot operat-
ing system (ros)”. In: Robot Motion and Con-
trol (RoMoCo), 2013 9th Workshop on, 2013, pp.
135–140.

75


	Introduction
	Motivation
	Target group
	Solutions
	Arduino and rosserial
	Working in groups
	Robot modeling and debugging
	Working on big projects

	Students’ projects and feedback
	Quadcopter
	Robot localizer
	Robotour contest

	Conclusions

