
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

E½�Ã�ÄãÝ Ê¥ S�ÙçÃ ®Ä � Sãç��ÄãÝ RÊ�Êã®�Ý PÙÊ¹��ã - A C�Ý� Sãç�ùE½�Ã�ÄãÝ Ê¥ S�ÙçÃ ®Ä � Sãç��ÄãÝ RÊ�Êã®�Ý PÙÊ¹��ã - A C�Ý� Sãç�ùE½�Ã�ÄãÝ Ê¥ S�ÙçÃ ®Ä � Sãç��ÄãÝ RÊ�Êã®�Ý PÙÊ¹��ã - A C�Ý� Sãç�ùE½�Ã�ÄãÝ Ê¥ S�ÙçÃ ®Ä � Sãç��ÄãÝ RÊ�Êã®�Ý PÙÊ¹��ã - A C�Ý� Sãç�ù

SubmiĴed: 5th May 2013; accepted: 30th June 2013

Reinhard Gerndt, Ina Schiering, Jens Lüssem

DOI: 10.14313/JAMRIS_1-2014/5

Abstract:
RoboƟcs compeƟƟons allow self-organised learning in a
quite natural way. In the last years, we have observed an
increasing complexity in these compeƟƟons. At the same
Ɵme, the search for an adequate project organisaƟon be-
camemore andmore important. As tradiƟonal project or-
ganisaƟon methods failed, we adopted Scrum and tried
to adapt this agile methodology to student projects.

Keywords: student projects, roboƟcs compeƟƟons,
project management, self-organisaƟon, agile methods,
Scrum, project-based learning

1. IntroducƟon
Student projects are an integral part within our

robotics teaching activities. In our teaching philoso-
phy [16], we combine traditional learning approaches
with project-based learning [9]. Competitions offer an
interesting environment for student projects [12].

Furthermore, robotic competitions provide an ex-
cellent motivation for students to study in a self-
organised manner, which opens widely the path for
natural curiosity. Competitions provide clear func-
tional objectives and measures of success. Conse-
quently, requirements (in form of rules for the respec-
tive competition) and deadlines (e.g. the daywhen the
competition takes place) are not questioned. Further-
more, competitions offer a means of assessment out-
side of the university grading system.

A couple of years ago, when our student groups
started with participating in competitions, they were
nearly self-organised. Lecturers were in the role of ex-
perts in robotics.

Since then, we have seen an increasing number of
competitions with more and more sophisticated tech-
nical and scientiϐic objectives. Reaching a sufϐicient
quality level and good rankings in the competitions
with student groups became an increasingly challeng-
ing undertaking.

Instead of then taking the role of a projectmanager
and lead the student group, the authors chose a differ-
ent approach. It was perceived that the self-organised
student groups were such a success story that self-
organisation should not be given up too quickly. Espe-
cially young students beneϐit enormously from these
experiences - such as building teams, or managing
changes.

In the past years, it thus became more and more
crucial to ϐind a self-organising project management

approach that preserves the motivational aspects and
leads to at least satisfying results in the competitions.

To address these challenges, we investigated to
which extent agile methods like Scrum can be used for
the management of student projects.

The remainder of the paper is organized as fol-
lows. In Section 2, we introduce the robotics competi-
tions, our student teams have participated in. Section
3 describes the project management methodologies
we applied. Sections 4 and 5 focus on agile methods
and their applicability in student projects. In Section
6 we report our ϐirst experiences in using Scrum for
student robotics projects. Finally, we summarise the
main ϐindings and describe future work in Section 7.

2. RoboƟcs compeƟƟons and their complexity
Robotics competitions differ in many ways. There

have been and still are competitions related to robotic
cars, aerial vehicles, military robotics, just to mention
some. One of the most prominent robotics competi-
tions is the RoboCup [3]. It is based on the challenge
to play a game of soccer with a humanoid robot team
against the humanworld soccer champions in the year
2050. Many of the aspects of this paramount objective
are targeted in individual leagues, some of those fur-
ther subdivided into sub-leagues and partial compe-
titions. To foster exchange with other robotic ϐields,
some peripheral leagues and competitions, which are
not immediately related to robotic soccer have also
been introduced to the RoboCup. Aside of the speciϐic
functional objectives, different aspects of complexity
[8] relate to the partial competitions. As the most ob-
vious aspects, in this section, we present the targeted
competitions with respect to the robotic complexity
and the task complexity. The robotic complexity cov-
ers hardware and immediate, i.e. low-level control or
kinematic complexity. The task complexity describes
the complexity of the functionality a robot may have
to implement for a competition.
2.1. Mixed-Reality compeƟƟon

Initially, the student group joined the RoboCup
Mixed-Reality competition [11]. The challenge is a
robotic soccer game with up to 11 small wheeled
robots per robot team, playing with a simulated, vir-
tual ball. The mixture of real robots and virtual envi-
ronment and ball led to the name. The main task is
implementing a cooperative, possibly swarm-like, be-
haviour of a group of robots. Small, differential drive
cubic robots with a volume of approximately 8 cubic
centimetres are used as players. The playing ϐield is

37



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

a horizontally mounted screen to display the virtual
ϐield and the ball. The robots are controlled via an op-
tical link by software agents, running on a standardPC.
Process information, like the robot position is made
available to the agents bymeansof additional software
packages.

Fig. 1. Standard mixed reality robots used in RoboCup
compeƟƟon

The basic system was developed beforehand by a
specialized development team and made available for
the implementation of robotic soccer functionality by
the student groups. Differential drive robots have a
straight-forward kinematic model, such that robotic
complexity is comparably low. The task for the student
group is to implement the cooperative behaviour of a
groupof robots to play a gameof robotic soccer in soft-
ware. The limited complexity of the agents and loose
coupling of system components allows for individual
students implementing the entire functionality or be-
haviour of a robot. Thus the student group is facing
a relatively low complexity at the robot and the task
level.

2.2. RoboCup kid size humanoid compeƟƟon

Following the initial successes, the signiϐicantly
more complex RoboCup kid size humanoid competi-
tion [4] has been addressed as next major step. The
challenge currently is a “three vs. three” robotic soccer
game. Initially, the main task is realising robots that
are capable of kicking a ball to a goal in a more or less
sophisticated way. The size of the humanoid robots
with 18 or more drives is in the range of 30–60 cm.
The ϐield is six times four meters. A tennis ball is used
to play the game. Goals, the ball and the robot teams
are colour coded. The robot is controlled by one or
more on-board computers and carries all its human-
like sensors.

Designing and building the robots now is part of
the competition. In addition, low-level control and
kinematics became signiϐicantly more complex. Fur-
thermore, acquiring information on the environment
in sight of unreliable data from the sensors and wear
of hardware adds to the robotic complexity. The task
complexity is basically comparably to the complexity
in the Mixed-Reality competition. However, introduc-
ing a real ball slightly added to the task complexity.

Fig. 2. Current humanoid robot, adapted from open
source robot plans

As a general property, the humanoid robots require a
closer cooperation at software and hardware level and
at the hardware-software interface and thus required
closer cooperation between members of the develop-
ment team.
2.3. RoboCup@work compeƟƟon

As a currently ϐinal step, the RoboCup@work com-
petition [5] related to an industrial workshop situa-
tion with the Youbot, a miniature version of a real mo-
bile industrial robot, has been addressed. The chal-
lenges within the competition include navigating in a
workshop situation and manipulating and transport-
ing work pieces. The robot consists of a 60 x 40 cm
omnidirectional mobile base with very user-friendly
kinematics and a 60 cm industrial robot arm with ϐive
degrees of freedom. It has been delivered operational
with a Robot Operating System (ROS) basic software
[6].

Fig. 3. Kuka YouBot robot without team-specific en-
hancements

Thus a basic operational software and hardware
platform was available from the very beginning, like
in the Mixed Reality competition. However, all sen-
sors, like cameras and laser range scanner had to be
selected, integrated and maintained by the student
group. Typically software libraries were available to
access the sensors. Thus the robotic complexity was
lower than in the humanoid competition, but signif-
icantly higher than in the Mixed Reality challenge.

38



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

Functional requirements include localizing, identify-
ing and grabbing different work pieces and carrying
out different tasks, thus resulting a higher task com-
plexity. With a larger community, working with the
Youbot, reliability issues are less dominant. However,
the large set of (sub-) functions that make up a robot
task requires close cooperation of the student group
at software level.

The robot and task complexities of the three com-
petitionsweparticipated in are summarized in the fol-
lowing ϐigure.

Fig. 4. Complexity of roboƟcs compeƟƟons

3. Philosophy and the management of com-
plexity

3.1. Teaching philosophy: roles and requirements
In robotics education we combine “traditional”

learning methods with learning-by-teaching and
problem-based learning approaches. For us, problem-
based learning is not only an additional teaching
method, it’s rather the most important brick in our
teaching strategy [12] which follows the European
Qualiϐication Framework.

Robotics competitions offer a wide range of prob-
lems student groups can tackle. In our teaching philos-
ophy, students must have the chance to solve this kind
of problems (practically) on their own. Therefore, we
avoid an involvement in the day-to-day project work.
Consequently, we act as experts and are often in the
role of an advisor or mentor. So, self-organisation is
our main requirement for the student group.

Further sources for requirements are the students
themselves. Ourmore technical oriented student team
aims to focus on robotics (i.e. hardware and software
development).

Competitionorganisers are a last important source
of requirements. The organisers set the rules for the
competition including constraints on the robots and
the underlying infrastructure.

The most important requirements are shown in
Figure 5.
3.2. Managing complexity: project organisaƟon

During the last seven years our student team par-
ticipated in three different competitions (see Figure
4). At the beginning we did not pay too much atten-
tion on project organisation or project management.

Fig. 5. Requirements and constraints

This attitude changed drastically as we started in the
Kid Size Humanoid League Competition.

Mixed-Reality CompeƟƟon Initially, a self-organising
merely unstructured approach was chosen. Every
member of the group felt responsible for the over-
all outcome. The speciϐic implementation that was to
be used for an ofϐicial competition event was cho-
sen by internal competition. Different competencies
among group members had some inϐluence on the se-
lection process, but rarely inϐluenced the decision dur-
ing this phase of project management. If intermediate
results, especially during an ofϐicial competition, indi-
cated the necessity for changes in the software, spe-
ciϐic branches of the implementation have been devel-
oped from the selected version and selected by im-
mediate comparison. In some rare cases, the group
switched to one of the previously discarded imple-
mentation and carried on with it after unanimous de-
cision.

Eventually, a hierarchical project management
structure evolved. Students had to take over organi-
sational duties, like interacting with the competition
organisers and organising travel and accommodation
and thus turned into acting management students.
They, however, often could not copewith the high, also
emotional stress during competition events sooner or
later and resigned. It is worth to mention, that mem-
bers with high technical and scientiϐic competencies
always concentrated on the technical and scientiϐic
work and did not take over management duties.

In the technical domain, clearly bounded responsi-
bilities evolved and all individual tasks were covered
by individual members of the team. The boundaries,
however, due to the considerably low complexity and
loose coupling evolved naturally and required no spe-
ciϐic agreements among group members. Deϐinition of
interfaces was obvious and none to very little project
management activities were required.

Kid Size Humanoid League CompeƟƟon Driven by the
success, subsequently activities in the humanoid sec-
tor have been started. Initially the same project man-
agement and iterative individualized design proce-
dures have been used. Members of the group concen-
trated on their speciϐic segment. They deϐined indi-

39



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

vidual measures of success and evaluated the devel-
opment outcome against their own partial test cases.
Often, the ofϐicial competitions were the only integra-
tion tests. However, with a high degree of indepen-
dence students individually prefer to addnew features
instead of working for quality. By constantly mixing
debugging and developing new features, they jointly
never reach a release that could be used as a fall-back
position.

From the accomplishments it becameobvious that,
with the signiϐicantly more complex functionality and
higher interdependencies among system components,
now a more extensive project management was a ne-
cessity. Furthermore, the considerably small team re-
lied on ϐinding synergies to handle the overall com-
plexity of the robotic system.

RoboCup@Work compeƟƟon The activities related
to the industrial robot started from a similar point.
However, with a clearly deϐined hardware and soft-
ware architecture and somebasic software functional-
ity available, the well-known iterative approach could
be followed for some time. However, eventually, by im-
proving existing hardware and software components
and adding new functionality, the overall complexity
rose in such a way that project management now be-
came necessary. As a consequence an agile approach
was proposed to the student group.

3.3. Student feedback

In order to conϐirm our impression, we carried out
a survey among students with at least 6 months of in-
volvement in the robotic work group. In one section of
our questionnaire, we asked students for their priori-
ties in the robotic projects. The results showed a clear
priority for a self-organised approach over guidance
by a lecturer. Priorities for individual work and team-
work were almost leveled, with a small bias towards
teamwork. Spending time for meetings or individ-
ual work was leveled, like having fun versus achieve-
ments in competitions. As an interesting result stu-
dents claimed to prioritise quality over adding new
features, which was not fully in line with the impres-
sion of the authors, while guiding the team.

Another part of our questionnaire was dedicated
to project management methods. According to the
feedback, all studentswere quite familiar with thewa-
terfall model. The waterfall model is an early model
for software engineering where the phases require-
ments, design, implementation, test and maintenance
are performed sequentially. V-model and the iterative
approaches like the spiral model were known less and
the spread of familiarity was larger. The V-model is
a an enhancement of the waterfall model. In the V-
model, the development of tests for the test phase is
already started after the requirements are speciϐied.
The spiral model was developed based on the experi-
ences made with the waterfall model. The central idea
is that it is challenging to develop complex projects in
one step. Hence the project is divided into so called
interations. In each iteration a development cycle as

in the sequential models is performed. Hence expe-
riences with ϐirst prototypes and changes can be in-
cluded into the next iteration.

Agile methods, e.g. Scrum were known even less
with a considerable large spread of familarity, even af-
ter some exposure during the project. However, vot-
ing on the expected suitability of the respective meth-
ods showed a clear preference for agile and a little less
for iterativemodels. V- andwaterfallmodelswere con-
sidered not suitable. In general the ϐindings correlate
with the project management approaches that have
been used so far and currently are used (ϐig. 6).

Fig. 6. Project management approaches in the students’
team

Agile approaches and their usage in our student
group will be discussed in detail in the following sec-
tions.

4. Agile Methodologies
The investigation of agile methodologies was

started as a reaction to experiencesmadewith thewa-
terfall model in the 1990s based on ideas of lean pro-
duction. At around the same time the imperative pro-
gramming paradigm was accompanied and in parts
replaced by object oriented programming. Also the
phase of the so-called new economy started which
led to shorter time-to-market and therefore also to
shorter product life cycles and frequent changes of re-
quirements during projects. These requirementswere
difϐicult to realisewith existingmethodologies like the
waterfallmodel, but alsowith the iterativemethodolo-
gies.

The aim of agile processes developed in this pe-
riod was to create an environment that facilitated
the collaboration of people and tried to enhance the
productivity of developers. The focus is on creating
value for users and allow for recent changes of user
requirements. The most known agile methodologies
developed by this time were XP [14] (eXtreme Pro-
gramming) and Scrum [19]. For an overview of agile
methodologies and a review of studies about adoption
and experiences of these methodologies see [10]. XP
and Scrum are both often used in teaching environ-
ments, which are specialised courses concerning XP

40



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

[15], general software engineering courses [20] or the
management of student projects integrated in courses
[18], [17]. Since these case studies were very positive
in general, we tried to adapt agile methodologies to
self-organised student groups.

The agile manifesto describes the values incorpo-
rated in agile methodologies [7]. The following values
are the basis for agile methodologies and processes:
- Individuals and interactions over processes and
tools

- Working software over comprehensive documenta-
tion

- Customer collaboration over contract negotiation
- Responding to change over following a plan

In the following we give a short introduction to XP
and Scrumwhich are the best knownexamples of agile
methodologies.

4.1. XP

eXtreme Programming (XP) was developed by
Kent Beck, Ward Cunningham et al. [14]. The focus
of XP is on the close communication with users, ex-
tremely short development cycles which are called it-
erations. They are typically 1 to 2 weeks long. Dur-
ing this iteration the typical phases of software engi-
neering (analysis, design, coding and testing) are per-
formed.Wepresent XPhere by stating the XPpractices
according to Beck [14] which are often used also out-
side of XP:
- The Planning Game — During the planning game
the next release and the tasks of the iteration are
planned.

- Small releases—Small releases are realised that are
put into production quickly. It is possible to have e.g.
daily releases or weakly releases.

- Metaphor — The system as a whole and all compo-
nents should have names that are easy to remember
and relate to the use of the component.

- Simple design — The architecture of the software
should be as simple as possible. There are no prepa-
rations for future features. Additional complexity
that is no longer needed is reduced by Refactoring.

- Testing—Programmers write unit tests to test their
code continuously during development. These tests
must run ϐlawlessly to demonstrate that a feature is
ϐinished.

- Refactoring — Programmers restructure the code
and adapt the internal structure of the system as of-
ten as appropriate without changing its external be-
haviour. This can be assured by testing. The com-
bination of Testing and Refactoring is called Test
Driven Development.

- Pair programming — Two programmers work to-
gether. One programmer is writing code while the
other one reviews it, thinks about improvements
and is able to give immediate feedback. The roles are
switched regularly.

- Collective ownership — The code is collectively
owned by the team. Every programmer has access
to the whole code and is able to change code every-
where.

- Continuous integration—The software is build and
integrated regularly. This could be done several
times a day or at least alwayswhen a developer com-
pletes a task.

- 40hourweek—Toworkovertime shouldbe avoided
as a general rule, because the quality of the code
would not be appropriate when written in a stress
situation.

- On-site customer— It is expected that real users are
available thewhole day for the team to answer ques-
tions.

- Coding standards—Write Code according to agreed
Coding Standards. The resulting code should be easy
to read.

4.2. Scrum
Scrum was developed at the same time as

XP (amongst others) by Jeff Sutherland and Ken
Schwaber. This software development framework
consists of the following elements (see [13]): Scrum is
based on short releases of about 2-4 weeks which are
called Sprint. To organise the development in these
short releases the following elements are deϐined:
- Roles: Product Owner, ScrumMaster, Team
- Ceremonies: Sprint Planning, Sprint Review, Daily
ScumMeeting

- Artifacts: Product Backlog, Sprint Backlog, and
Burndown Chart
The Product Owner is the representative of the

users. The responsibility of this role is to deϐine the
features to be realised. These features are described
and prioritized in the Product Backlog. This is often re-
alised in the form of User Stories. Beside the prioriti-
zation the complexity of the user stories is estimated.
This is often realised by estimating not the effort of
user stories but the relative complexity. To avoid the
inϐluence of other participants often a so called plan-
ning poker is used. At the end of the Sprint the Prod-
uct Owner has to check and accept the results of the
Sprint.

The Scrum Master has to ensure that the collabo-
ration inside the team leads to cooperative work and
that the Scrum process is followed.

The teamorganises the developmentwork and de-
ϐines the Sprint Goal. This is based on features of the
Product Backlog. The selected features are transferred
to the Sprint Backlog. The team plans the develop-
ment work in the Sprint Planning at the beginning of
the Sprint. There, concepts concerning the architec-
ture and ideas for tests are detailed. Also open issues
can be clariϐied with the Product Owner.

Based on this plan the team is responsible to ϐinish
the Sprint Goal at the end of the Sprint and to present
the results to the Product Owner. The progress of the
team is denoted in a Burndown Chart where ϐinished

41



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

user stories are marked. A user story is ϐinished, if
it is ”done”. This notion of done incorporates thor-
ough testing of the solution. Every day there is a short
(stand-up) meeting, the so called Daily Scrum to dis-
cuss questions, talk about the progress and organise
the work of the day. In Scrum the team chooses ap-
propriate methods for the development work. There
are no regulations concerning the organisation of soft-
ware development from the Scrum methodology. Of-
ten some of the practices of XP are used, but these
practices are selected by the team and are not manda-
tory.

At the end of the Sprint there is a review of the re-
sults and the process in the Sprint Review. Afterwards
the next Sprint starts again with the Sprint Planning.

5. Elements of Agile Methodologies Proposed
to Student Group
The speciϐic situation in a mostly self-organised

student project imposes a number of constraints on
the selection of the project management elements.
However, the necessity of a project management to
handle the technical complexity andorganise thework
sets limits to the constraints. As a result a not fully ho-
mogeneous set of elements of agilemethodologies has
been identiϐied as a base for project management in
such projects.

Fig. 7. Scrum MeeƟng of RoboƟcs Team

Fromtheexperienceof projectmanagement in stu-
dent projects a very critical point was the difϐiculty in
estimating efforts. The reasons are the lack of expe-
rience and that the projects are very innovative and
hence the technical challenges are not clear at the be-
ginning. Furthermore, hardware failures and the re-
sulting procurement of replacement parts often intro-
duce delays. Therefore, project plans were typically
too ambitious and the students left work packages
semi-ϐinished, because of the pressure of the plan.

Another important area are the special aspects of
working with students: The work must be fun, be-
cause the students are working voluntarily. Also they
are pursuing their studies and are attending lectures
and doing study projects as a main priority. Hence the
time they got for the robotics activities is difϐicult to
plan and interfaces between work packages are criti-

cal. Therefore team building and ϐlexible planning are
important aspects.

An important point is the communication not only
inside the single activities but the transparency and
sharing of knowledge between the activities. The idea
here is to try to build upon common experience e.g.
concerning architecture like the Robot Operation Sys-
tem (ROS), blackboard architecture and artiϐicial intel-
ligence.

Therefore a project management methodology for
self-organised teams of students in robotics projects
should address the following aspects:
- Easy estimation of work packages
- Innovation oriented ϐlexible project planning
- Quality checks and testing
- Team building
- Transparency

In general the values of the agile manifesto stated
above arewell suited to address the special challenges
of student projects as stated in the description of the
requirements: The individual and the team are in the
focus of the work, recent changes to the plan are ac-
cepted and working software is the aim. Also quality
management is incorporated and the agile method-
ologies are inherently transparent. Therefore we pro-
posed to the student group to use an agile methodol-
ogy for project management as stated above.

For the decision concerning the agile methodol-
ogy to use we considered the following aspects: XP
is very much concentrated on organising the soft-
ware development itself by prescribing engineering
practices, whereas Scrum allows the team to choose
the practices for development themselves. Also XP as-
sumes that a user is always available (On-Site Cus-
tomer)whereas Scrumaccepts that a representative is
available at least during Sprint Planning and Review.
Since some of the XP practices as Pair Programming,
On-Site Customer and the strict use of unit tests for
Testing are difϐicult to realise in a robotics project, we
decided to use a variant of Scrum adjusted to the spe-
cial requirements of self-organised student projects.

We startedwith Sprints of 2weeks length and user
stories to formulate a Product Backlog. With this form
of a rough planning in general and a detailed plan
made just at the beginning of the sprint it was eas-
ier for the students to estimate efforts and plan com-
munication and interfaces in the project. The project
planning in the form of Sprint Planning turned out to
bemore realistic because the students had to work on
their User Stories (work packages) until theywere ϐin-
ished and had to explain progress and difϐiculties to
their fellowgroupmemberswhere fruitful discussions
followed. But we observed that until now often User
Stories were not ϐinished in one Sprint which is an is-
sue.

Daily ScrumMeetings are not possible, because the
students do notwork on a daily basis on their projects.
The compromise was the relatively short length of the
Sprints. We used at least weekly meetings for the last
weeks before the competition.

42



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

The testing and quality checks which are the basis
for the deϐinition of done of a user story were difϐicult
to realise: We used continuous integration and coding
standard as elements of XP for improved code quality.
But the use of test driven development and automated
unit testing in general is not possible to this extent in a
robotics environment. Hence the quality checks were
reduced to simulations where possible and tests with
the robots,which is quite resource consuming. Alsowe
perceived the issue thatmechanical elements broke or
at least changed their behaviour over time, e.g. due to
wear, which makes the notion of done difϐicult.

The role of the Product Owner could not be re-
alised until now. Hence the only external checks are
the competitions and someworkshops. This is not suf-
ϐicient andwe are evaluating other ideas as getting ex-
ternals as Product Owner, having group events where
results are presented or planning presentations to in-
ternational guests of the university etc. as a substitute.
At themoment the Sprint Review is realised in form of
a group meeting accompanied by the advisers.

The students experienced the Team role as very
helpful. The role of the ScrumMasterwas taken by one
of the authors in the form of a coach.

Instead of Burndown Charts and Scrum Boards
we used the ticket tools Redmine [2] in combination
with the continuous integration system Jenkins [1] as
a source of continuous feedback to the group. Since
the parts of the group working together are relatively
small it was important to realise the transparency of
all projects. The Product Backlog and the Sprint Back-
log were also realised via this ticket tool. A monitor
with an actual status of the projects is placed in each
laboratory. The central idea was to choose tools that
are open source and used frequently for the organisa-
tion of software projects.

Fig. 8. Status of Projects in the Laboratory

6. Experiences and Ideas for Adjustments
In general, the feedback of the students was very

positive. They appreciated the transparency and com-
munication. The regular meeting was excellent to cre-
ate a team spirit and allowed them as a group to lead
the project. Hence it is a very promising approach for
self-organised student projects in robotics. In the fol-
lowingwediscuss our experiences andpresent the on-

going discussion with the group about adjustments of
the methodology.

With a group of volunteers with changing time
budgets, the stringency of the Scrum philosophy is
problematic. Students are not available full time and
sprints may need to be re-adjusted dynamically to
account for unforeseen external and internal to the
project distractions. External distractions may result
from speciϐic requirements of students to follow lec-
tures, prepare assignments or earnmoney for a living.
This speciϐically holds for undergraduate and gradu-
ate students. As a major internal source of distrac-
tion, we identiϐied hardware failures, which required
lengthy repair or ordering of replacement parts. Based
on the observations, any unforeseen event to cause an
extra work load of about 2 days is considered as a dis-
traction. Apparently, any individual shorter distrac-
tion canbemostly compensatedwithin a typical sprint
period. However, if distractions result in delays and
notmeeting the time-line too often, the self-improving
estimation of effort for speciϐic tasks is jeopardised.
Furthermore, not meeting deadlines becomes a regu-
lar case. Having a set of identical hardware unit avail-
able helps to carry on with a task with less delay.
However, identifying deviations from an expected be-
haviour as a hardware issue still consumes time. Fur-
thermore, hardware units need to be in an equal state.
This, however, may be a challenging if not infeasible
requirement for hardware systems that suffer from
wear or from performance deterioration due to con-
sumption of material, building up of heat or other
physical effects.

Fig. 9. RoboCup team during a compeƟƟon

On the other hand, agility very much is in line with
the expectations of a group of volunteers working on
a project. Agile methods account for a high degree
of self-organisation. With their typical culture of fre-
quent meetings, they foster a high degree of trans-
parency. However, lacking a clear Product Owner role
during the development phase negatively affects the
quality of the results. Often only the competitions take
over a Product Owner role to identify the major short-
comings of the current implementation. For many of
theRoboCup student groups, the authors observed the
most agile development phase between the national
competitions in spring that communicate clear user

43



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

requirement and the international event in summer.
Additional smaller events may contribute to a ’virtual’
Product Owner, but need to be considered carefully
with respect to the objectives and the time budget.

One of themajor problems before the introduction
of Scrum was project planning and the estimation of
work packages. We noticed that User Stories and dis-
cussing only the next Sprint supported the students
in the group to structure their work better than be-
fore. At the moment many of the User Stories are too
long to be ϐinished in one Sprint (so called Epics) and
therefore could not be ϐinished in one Sprint as in-
tended. This was a compromise since the group re-
alised a complete change to a blackboard architecture.
Concerning this issuewewill need to extend the length
of Sprints from 2 to perhaps 4 weeks and to get ex-
perience how to break down User Stories. This is one
of our main goals for the next period. Additionally,
the group has to decide how often they want to meet
to discuss their actual tasks for status and feedback.
Since the student group has now experiences in the
methodology they are able to decide as a group how
to adjust Sprints and additional meetings.

In the third section of our questionnaire, stu-
dents were asked for recommendations to organise
the Scrum approach. Therewas a clear vote for sprints
of twoweekswith ’Daily’ Scrummeetings once aweek.
This is in line with an average involvement of about 2
days per week in the robotics group activities. Hence
the student group needs to investigate how to break
up user stories andmust concentrate on estimation of
user stories. As an additional tool the Planning Poker
will be evaluated.

Although students were often not able to ϐinish
their task during the Sprint, the regular meetings
helped them to explain the reasons to the entire group
and discuss the status openly and straightforward
because of the notion of ’done’. Hence the regular
meetings improved the communication in the group
and the transparency between the different activities.
Some of the students addressed that they would like
to try a Scrum Board instead of the solution with Red-
mine used at the moment to enhance transparency
further.

Fig. 10. Example of a Scrum Board

Additionally to the more reliable status, the fact

that the students had to explain their progress to their
friends in the group led to a better commitment of
the students that work voluntarily for their projects.
These positive effects were also described in the case
studies about agile methodologies in a teaching con-
text.

Beside these positive effects of Scrum we still per-
ceive the following issues. The role of the Product
Owner is still open. This role is in some ways taken
by the student group itself and there is the ϐinal
check during the competition. But an accepted Prod-
uctOwneroutside the groupwouldhelp to lead thede-
velopment to the features needed in the competition.

Another issue is testing and quality assurance. In
a robotics project automated tests are only possible
if there exists a simulation environment. A test with
robots is always very resource consuming. Concern-
ing quantity and type of tests, no clear vote could be
extracted from the answers in the questionnaire. The
issues concerning the Product Owner (resp. Customer
in the case XP is used) and testing were also perceived
in [15]. In [17] and [20] the instructor is chosen as the
Product Ownerwhich is not possible here because the
student group should not be guided by an instructor
in this setting.

The authors consider carrying out more tests in
simulation environments as an analogy to regression
testing during continuous integration in software en-
gineering and integrating regular testing of the com-
petition requirements at least at the end of each
Sprint. It also needs to be investigated how to reduce
the “cost” of testing and how to reach a mindset that
test is as important as development and that it is valu-
able to invest time for testing.

Additionally, a more in-deep investigation of the
alteration of hardware over the time is required, be-
cause this has an immediate inϐluence on the pre-
dictability of effort for user stories and the quality of
the resulty.

7. Conclusion and Future Work
Competitions offer a motivating environment for

student-driven projects. The higher the complexity of
this environment, the more crucial are the project
management methodologies used - not only to en-
sure good results in the competition, but also to pre-
serve the motivation of the student groups. Here, tra-
ditional project management approaches like the wa-
terfall model or the V-model failed.

Agile methods enabled the student group to man-
age a number of aspects of a complex project in a
self-organised way. By introducing basic elements of
Scrum, the student group got more control over the
project. Starting from this baseline the student group
discussed anddecidedhow to address the issues expe-
rienced. Hence the student group was enabled to ad-
just their ownway of work to the needs they perceive.
We feel that this is an important step to tackle the com-
plexity of advanced robotics competitions while keep-
ing alive the concept of self-organised student groups.

However, there still are a number of open ques-

44



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 1 2014

tions, minor shortcomings and incompatibilities be-
tween Scrum and a self-organised system develop-
ment which are mainly the length of Sprints, break-
down of User Stories, the role of the Product Owner,
testing and quality assurance and the alteration of
hardware over time. Based on the experiences and
ideas presented here, these issues will be further in-
vestigated in order to allow student groups to shape
their own agile methodology based on Scrum.

AUTHORS
Reinhard Gerndt∗ – Ostfalia University of Applied
Sciences, Wolfenbuettel, Germany, Wolfenbuettel,
Germany, e-mail: r.gerndt@ostfalia.de.
Ina Schiering – Ostfalia University of Applied Sci-
ences, Wolfenbuettel, Germany, Wolfenbuettel, Ger-
many, e-mail: i.schiering@ostfalia.de.
Jens Lüssem – University of Applied Sciences Kiel,
Kiel, Germany, e-mail: jens.luessem@ϐh-kiel.de.
∗Corresponding author

REFERENCES
[1] “Jenkins”. http://jenkins-ci.org/.
[2] “Redmine”. http://www.redmine.org/.
[3] “Robocup”. http://www.robocup.org/.
[4] “Robocup - soccer humanoid league”.

http://www.robocup.org/robocup-soccer/
humanoid/.

[5] “Robocup@work”. http://www.
robocupatwork.org/.

[6] “Robot operating system”. http://www.ros.
org/.

[7] K. Beck, M. Beedle, A. van Bennekum, A. Cock-
burn, W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, et al., “The
agile manifesto”, http://www. agilemanifesto.
org/principles. html. Acesso em, vol. 7, no. 08,
2001, p. 2009.

[8] J. Dessimoz, ed., Cognitics, Roboptics Editionsr,
2011.

[9] J. Dewey, Experience and Education, Touchstone,
1938.

[10] T. Dybå and T. Dingsøyr, “Empirical studies of ag-
ile software development: A systematic review”,
Information and software technology, vol. 50, no.
9, 2008, pp. 833–859.

[11] R. Gerndt, M. Bohnen, R. da Silva Guerra, and
M. Asada. “The robocup mixed reality league - a
case study”. In: The Engineering of Mixed Reality
Systems, pp. 399–418. 2010.

[12] R. Gerndt and J. Lüssem, “Mixed-reality robotics
- a coherent teaching framework”. In: R. Stelzer
and K. Jafarmadar, eds., Proceedings of 2nd Inter-
national Conference onRobotics in Education (RiE
2011), vol. 1, 2011, pp. 193–200.

[13] K. S. J. Sutherland. “The scrum papers: Nuts,
bolts, and origins of an agile process”, 2007.

[14] C. A. KentBeck,ExtremeProgrammingExplained:
Embrace Change (2nd Edition), Addison-Wesley
Professional, 2004.

[15] P. Lappo, “No pain, no xp observations on teach-
ing andmentoring extreme programming to uni-
versity students”, Agile Aliance, vol. 1, 2002.

[16] J. Lüssem, F. Pavkovic, U. Samberg, and A. Struck,
“Combining learning paradigms to ensure suc-
cessful learning outcomes in the aera of sotware
development”. In: Proceedings of 3rd Interna-
tional Conference onEducation andNewLearning
Technologies (EDULEARN 2011), vol. 1, 2011, pp.
81–87.

[17] L. Pinto, R. Rosa, C. Pacheco, C. Xavier, R. Bar-
reto, V. Lucena, M. Caxias, and C. Figueiredo, “On
the use of scrum for the management of practcal
projects in graduate courses”. In: Frontiers in Ed-
ucation Conference, 2009. FIE ’09. 39th IEEE, vol.
1, 2009, pp. 1–6.

[18] D. Sanders, “Using scrum to manage student
projects”, J. Comput. Sci. Coll., vol. 23, no. 1, 2007,
pp. 79–79.

[19] K. Schwaber, “Scrum development process”. In:
Proceedings of the 10th Annual ACM Conference
on Object Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), vol. 1, 1995,
pp. 117–134.

[20] A. Shukla and L. Williams, “Adapting extreme
programming for a core software engineering
course”. In: Software Engineering Education and
Training, 2002. (CSEE T 2002). Proceedings. 15th
Conference on, vol. 1, 2002, pp. 184–191.

45

http://jenkins-ci.org/
http://www.redmine.org/
http://www.robocup.org/
http://www.robocup.org/robocup-soccer/humanoid/
http://www.robocup.org/robocup-soccer/humanoid/
http://www.robocupatwork.org/
http://www.robocupatwork.org/
http://www.ros.org/
http://www.ros.org/

	Introduction
	Robotics competitions and their complexity
	Mixed-Reality competition
	RoboCup kid size humanoid competition
	RoboCup@work competition

	Philosophy and the management of complexity
	Teaching philosophy: roles and requirements
	Managing complexity: project organisation
	Student feedback

	Agile Methodologies
	XP
	Scrum

	Elements of Agile Methodologies Proposed to Student Group
	Experiences and Ideas for Adjustments
	Conclusion and Future Work

