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Abstract:
�n this paper we inves�gate methods �or sel�-locali�a�on
o� a walking robot with the �inect �� ac�ve range sen-
sor. The �tera�ve �losest �oint (���) algorithm is consid-
ered as the basis �or the computa�on o� the robot rota-
�on and transla�on between two viewpoints. As an alter-
na�ve, a �eature-basedmethod �ormatching o� �� range
data is considered, using the Normal Aligned Radial Fea-
ture (NARF) descriptors. Then, it is shown that NARFs can
be used to compute a good ini�al es�mate �or the ��� al-
gorithm, resul�ng in convergent es�ma�on o� the sensor
egomo�on. ��perimental results are provided.

Keywords: �� percep�on, salient �eatures, itera�ve clos-
est point, visual odometry, walking robot

�� ��trod�c�o�
In recent years the research on Simultaneous Lo-

calization and Mapping (SLAM) in robotics heads to-
wards more challenging scenarios, mostly in three-
dimensional (3D) environments. Mobile robots mov-
ing in 3D require three-dimensional positioning, with
regard to six degrees of freedom (DOF). The 6-
DOF pose contains the position in three dimen-
sions, orientation, and pitch and roll angles: xR =
[xr yr zr θr ϕr ψr]

T . Self-localization with regard to
6-DOF is particularly important in the case of walk-
ing robots, because the discrete nature of theirmotion
causes sudden and frequent changes in the robot’s
trunk roll, pitch and yaw angles with regard to the
global reference frame [2].

Various sensing modalities can yield the data nec-
essary for 6-DOF SLAM or self-localization. Recent
SLAM algorithms focus on the use of passive vision
sensors (cameras) [20]. However, passive vision re-
quires speci�ic photometric features to be present in
the environment. Encountering areaswith ill-textured
surfaces and few visually salient features the systems
relying on passive vision usually cannot determine the
pose of the robot, and easily get lost. Therefore, active
range sensors seem to be more practical solution for
many mobile robots, particularly those, which have to
work in highly unpredictable environments, such like
disaster sites explored by robots during search and
rescue missions.

Often point clouds yielded by 3D laser scanners
are matched against each other in order to obtain the
displacement between two poses of the sensor. This
approach, known as scan matching, is characterized
by high reliability and relative independence from the

characteristics of the environment, because in scan
matching dense point clouds arematched against each
other, not against a particular type of features. The
scan matching procedure is typically implemented
with the Iterative Closest Points (ICP) algorithm. How-
ever, implementation of 6-DOF scan matching with
data from laser scanners inmost of thewalking robots
is hardly possible because of the tight size, mass, en-
ergy and computing resources limits in such robots –
there are no 3D laser scanners that could be placed
on board of a typical walking robot. A solution to this
problem would be to use a compact 3D range sen-
sor, which has no moving parts. In this context an
interesting device is the integrated 3D sensor devel-
oped and patented by PrimeSense [21], then intro-
duced to themarket by Asus as Xtion and byMicrosoft
as Kinect. These sensors are compact and affordable,
and as shown by the recent research [31], the range
measurement accuracy up to the distance of about 3.5
m is comparable to that achieved by a 3D laser scan-
ner.

This paper addresses the issues of reliable in-
cremental self-localization for the six-legged walking
robot Messor equipped with the Kinect sensor. Only
the rangedata fromKinect areused, becausewewould
like to have a procedure that is portable to other 3D
range sensors, such as the VidereDesign STOC (STereo
On a Chip) camera that yields a dense depth map in
real-time using hardware-embedded image process-
ing. This camera was already successful used on the
Messor robot for terrain perception [15]. Anothermo-
tivation for using only the rangedata fromKinect is the
fact, that the Messor robot is designed for patrol and
search missions in buildings [32], and it should not
much rely on the natural lighting of the scene, which
in such an application scenario may be insuf�icient.

We evaluated performance of the standard ICP al-
gorithm on Kinect range data in tests that simulated
a scenario typical to a walking robot traversing rough
terrain. Because these tests revealed that matching
consecutive point clouds obtained from Kinect by us-
ing the ICP algorithm requires a good initial estimate
of the robot displacement we propose a two-stage
point cloudmatching procedure exploiting salient fea-
tures in the range data. The feature-based matching
procedure employs the NARF detectors/descriptors
[29] and yields reliable initial alignment, which is then
re�ined using the ICP.

This work is an extension of our previous confer-
ence papers [16, 17]. The major difference is evalu-
ation of the proposed approach on more realistic in-

43



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  7,      N° 4       2013

Articles 43

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N◦ 4 2013

door datasets acquired with the Messor robot, and on
a publicly available dataset. Moreover, presentation of
the state of the art has been signi�icantly extended. In
the remainder of this paperwe brie�ly review the state
of the art (section 2), then we present the concept of
the incremental self-localization system for the Mes-
sor robot with Kinect (section 3). Next, we examine
theoretical foundations of the point cloudmatching al-
gorithms (section 4), and in section 5 we show how
the sought rotation and translationbetween twoview-
points can be computed robustly. We demonstrate ex-
perimentally the performance of the proposed self-
localization system, at �irst using an industrial manip-
ulator to move the sensor, and then on the actual Mes-
sor robot (section 6).We conclude the paper in section
7with some remarks as to the directions of further re-
search.

2. State of the art
Nowadays passive vision is considered the most

affordable exteroceptive sensing modality for mobile
robots, and vision systems receive much attention in
the SLAM research. In particular, the monocular EKF-
based SLAM algorithm [6] with its numerous exten-
sions is considered one of the most successful so-
lutions to the 6-DOF self-localization problem. How-
ever,monocular vision provides only bearing informa-
tion without a range to the detected features, which
leads to data association problems. Although it was
demonstrated that a real-time, monocular SLAM can
be implemented on a walking robot [28], in a search
and rescue scenario, which is considered for our Mes-
sor robot, the machine often explores new areas, and
avoids returning to previously visited places. There-
fore a self-localization system that is rather a form of
visual odometry with some mapping capabilities, like
in [30], seems tobemoreappropriate for this task than
a SLAM algorithmmaintaining a global map of the en-
vironment.

Active sensors, such like laser scanners and 3D
range cameras do not depend so much on both the
natural illumination of the scene, and the ubiquity of
salient photometric features. As it was shown in our
previous work [27] the pose of a walking robot can be
precisely estimated by using 2D laser scan matching
and data from an inertial measurements unit. How-
ever, this approach works only in man-made environ-
ments, where �lat walls are available. In an unstruc-
tured environment, lacking such features like long �lat
walls, point clouds yielded by a 3D laser scanner can
be used for self-localizationwith regard to 6-DOF [18],
but a 3D laser scanner cannot be used on Messor due
to the mass and size limits.

Recently, a number of research teams demon-
strated the use of Kinect/Xtion sensors for self-
localization or SLAM. The 3D range data stream ob-
tained from a Kinect-like sensor is very intensive.
Therefore, the ICP algorithm, which tries to establish
correspondences between all the available points re-
quires much time for each iteration. Such amount of
data can be processed using a parallel implementa-

tion of ICP on GPU [19]. Also the approach presented
in [11] heavily uses the GPU to run the ICP algorithm
on the Kinect range data. It is demonstrated that this
method is enough for real-time tracking of the sen-
sor with unconstrained motion, but this solution is
not available for on-board processing inMessor,which
uses a single-core x86 processor.

The amount of data being processed can be re-
duced substantially if salient features are detected
in the range or photometric data obtained from the
Kinect sensor. Endres et al. [8] demonstrated recently
a SLAM system using Kinect RGB and range informa-
tion. This solution relies mostly on the photometric
data for salient feature detection, and then uses the
depth image to locate the keypoints in 3D space.While
this system shows good performance on large data
sets it is unclear how the solution based on photomet-
ric features (SIFT, SURF, ORB) will work on the walk-
ing robot, which has the sensor pointed partially to-
wards the ground, where the number of photometric
features can be much smaller. This system needs also
small displacements between the consecutive frames.
Therefore, the RGB-D images from Kinect have to be
processed at the frame rate, which is impossible with
the on-board computer of our robot. Also in [10] fea-
tures extracted from PrimeSense camera’s RGB data
are used. Feature matching initializes combined fea-
ture and ICP optimization. The RGB-D ICP algorithm
proposed in [10] uses photometric features and their
associated range values to obtain an initial alignment,
and then jointly optimizes over the sparse feature
matches and dense 3D point correspondences.

Range-only features are used in [23] by an ini-
tial alignment algorithm that transforms the 3D point
clouds to the convergence basin of an iterative reg-
istration algorithm, such as ICP. In this case persis-
tent feature histograms are used. They are scale and
pose invariant multi-value features, which generalize
the mean surface curvature at a point. The approach
is shown to work indoors and outdoors, but only with
rather good quality data from mechanically scanning
3D laser sensors.

3. Concept of the Kinect-based self-
locali�a�on s�ste�

3.1. Kinect as a sensor for the walking robot

The 3D ranging technology used in Kinect is
patentedbyPrimeSense, and thus fewdetails concern-
ing the characteristics of the sensor are publicly avail-
able. Therefore, we present a short overview of the
principle of operation and basic uncertainty charac-
teristics of Kinect, which are relevant to our applica-
tion.

Kinect is a device consisting of several compo-
nents, and is intended to be used for natural interac-
tion with computer games. The basic functionality of
the Kinect sensor allows to obtain color images (RGB)
and range images of 640×480 resolution,which gives
307200 points in 3D space. By combining informa-
tion from the range image and the RGB image the
RGB-D image can be obtained, in which RGB values
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are allocated to the points in the 3D space. The range
measurements are obtained by the principle of trian-
gulation, using structured light. The laser projector
operates in the infrared range, with the wavelength
of about 830 nm. The laser beam passes through a
diffraction grating to form a constant pattern of spots
projected onto the observed surfaces. The image of
this pattern is captured by the CMOS infrared cam-
era, and comparedwith a stored reference pattern, ob-
tained by projecting the spots onto a plane located at
a known distance from the sensor (Fig. 1).
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Fig. �. �rinciple of opera�on of the structured light sen�
sor. Inset image shows the actual light spots projected
by Kinect on a flat surface

Spatial density of the measured points is de�ined
by the number of projected spots per unit area. It de-
creases with the square of the measured distance. For
the measured range of 2 m the distance between the
dots is about 3mm.Because the number of spots in the
projected pattern is smaller than the number of pixels
in the captured infrared image, somepixels have inter-
polated values. The depth resolution decreases with
the increasing distance to the sensor. For the mea-
sured range of 2 m the depth resolution is about 1 cm,
and falls exponentially for longer distances. Kinect is
also very prone to errors due to environmental condi-
tions, especially the ambient light. Too strong ambient
light, and the sunlight in particular, reduces the con-
trast of the infrared spots in the captured image, often
rendering the range measurements impossible.
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Fig. �. �eometric con�gura�on of the Kinect�based per�
cep�on system for the Messor robot

On the walking robot Messor the Kinect sensor is
mounted on a mast (Fig. 2). The sensor is located at
the elevation of 46 cm above the ground, assuming

the neutral (default) posture of the robot. Since the
main task of Kinect in this con�iguration is to observe
the area in front of the robot, it was tilted down by
27◦. This con�iguration of the perception system al-
lows both to measure the shape of the terrain in front
of the robot, and to perceive larger objects being lo-
cated farther from the sensor (Fig. 3). These objects
are important for the self-localization task, because
they often provide more salient features than the ter-
rain itself.

Fig. 3. Messor walking robot with the Kinect sensor

The most important limitation imposed on the
self-localization method by the resources available on
our walking robot is the processing speed. The single-
board PC used by the robot cannot process the range
data at full frame rate, no matter which algorithm is
applied for matching of point clouds. Thus, 3D points
canbe acquiredonly at selected locations. On theother
hand, the ICP with Kinect 3D data is effective only for
small values of translation (a few centimeters) and
rotation (up to about 5◦) between the consecutive
point clouds, as it was shown in our preliminary ex-
periments (see Section 6.1). For bigger translations
and�or rotations the ICP algorithmusually only �inds a
local minima. In ICP scanmatching on wheeled robots
this problem is usually alleviated by obtaining a fairly
good initial estimate of the displacement from odom-
etry, but in walking robots proprioceptive sensing is
unreliable [9].

Therefore, we are looking for a self-localization
system, which uses range data and can process iso-
lated point clouds, tolerating larger displacements
(both translations and rotations) between the points
of data acquisition. Moreover, we would like to avoid
use of any additional hardware (such like a GPU
board), which is not available to the Messor robot.
Finally, we decided to use feature-based point cloud
matching to �ind a better initial guess for the ICP algo-
rithm. The implementation uses the open source Point
Cloud Library (PCL) [24] to manipulate the 3D points,
and to detect the salient features. Also the implemen-
tation of ICP is taken from the PCL.

The whole procedure of self-localization is imple-
mented in several steps. At �irst, the range data are
trimmed to discard themeasurements shorter than50
cm and longer than 350 cm, that is unreliable or of low
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depth resolution. Then, the VoxelGrid �ilter from the
PCL library is used on both data sets with the voxel
size of 2 cm. This �ilter reduces the number of points
and decreases the in�luence of small range measure-
ment errors. We do not use other �ilters available in
the PCL, as their use did not improve the results, while
it consumed additional time for processing. NARF key-
points are detected in both point clouds under consid-
eration, and then their descriptors are computed. The
next step is matching of the descriptors as described
in Section 4.2. The kinematic constraints are imposed
in this step. If a suf�icient matching is found, the trans-
formation between the two point clouds is estimated,
and the data set A is transformed to the new coordi-
nates. Then, the standard ICP procedure from the PCL
library is applied to the twodata sets in order to obtain
a more precise transformation.

4. Methods for range data matching
4.1. The ICP algorithm

There are many variants of the ICP algorithm de-
scribed in the literature. The basic version was pro-
posed in [4], while the improvements introduced later
involve speeding up the algorithm [22], improving its
robustness to noise in range data, and improving ro-
bustness to wrong initial guess of the transforma-
tion [25]. In this paper, the standard ICP algorithm
is used, in the implementation available in the PCL
library. This choice makes it possible to asses how
much the proposed feature-based matching method
improves the self-localization with regard to the base-
line method.

Generally, the ICP algorithm is aimed at match-
ing of two sets of spatial data (usually represented by
points) describing the same object or part of a scene,
and then to represent these sets in a common coor-
dinate system. In each iteration, the ICP algorithm se-
lects the closest points (Euclidean distance) in both
clouds as the matching points. For matching points,
the rotation R and translation t are computed, which
minimize the criteria:

( R, t) = argmin
R, t


nA∑
i=1

nB∑
j=1

wi,j∥ pAi
− ( R pBj

+ t)∥2
 ,

(1)
where nA and nB are the numbers of points in the
cloudsA and B, respectively, wi,j are weights de�ined
as wi,j = 1 when points pAi

and pBj
are closest

neighbors orwi,j = 0otherwise. Assuming that points
are matched correctly, the transformation ( R, t) is
computed by using the SVD method.

When the transformation that minimizes (1) is
computed, the A set of points is transformed to the
new position and new correspondences of points are
established. Due to the search for the closest neigh-
bors the computational complexity of ICP is quadratic
with regard to the number of points in the two clouds.
A more effective way of searching neighbors can be
achieved using k-d trees to represent the data.

It is necessary to introduce a limit for the max-
imum Euclidean distance between neighbors, be-

cause the clouds may not represent the same part of
the scene, and unlimited search for correspondences
could yield a completely wrong spatial transforma-
tion. This limit, expressed by the dmax distance, pre-
vents the algorithm frommatching points that are too
far away from each other. The ICP algorithm is only
guaranteed to converge to a localminima, andmay not
reach the global one [4]. Because of this, it is extremely
important to have a good initial guess for the sought
( R, t) transformation.

4.2. Feature-based matching of range data

An alternative approach to matching 3D data ex-
ploits salient features of various types. This approach
is similar to matching 2D photometric images [14]. It
is based on �inding some characteristic keypoints in
both data sets, then describing them with unique de-
scriptors, and �inding the matching between the com-
puted descriptors. These features are salient points,
which do not represent pre-speci�ied structures, and
commonly appear in both man-made and natural en-
vironments.

Because we are interested in the range data from
Kinect, which we consider to be a richer representa-
tion of the environment than the photometric (RGB)
data, we choose the Normal Aligned Radial Feature
(NARF) detector/descriptor for our implementation
of the feature-based point cloud matching procedure.
The NARF concept was introduced for object recog-
nition from 3D range data [29]. The NARF detector
searches for stable areas with signi�icant changes in
the neighborhood, that can be keypoints looking sim-
ilar from various viewpoints. Detection is done by de-
termining the plane minimizing the mean square er-
ror between the processed point, and other points
contained in the prede�ined sphere around this point.
When themean square errordoesnot exceed the given
threshold, the tested point is considered to be a NARF
keypoint. The most important parameter of the NARF
detector is the diameter of the sphere around the pro-
cessed point. This sphere contains points, which dom-
inant directions are used to determine the �coef�icient
of interest”, and then to detect the keypoints.

Then, descriptors are built upon the areas around
the keypoints. The NARF descriptor characterizes the
keypoint by determining depth changes in each di-
rection, calculating an aligned range value patch, and
identifying the dominant orientation of this patch.
Thus, descriptors are the normalized values of gradi-
ent in n directions with regard to the keypoint. The
number of directions is also the length of the NARF
descriptor, here n=36 is used. The number of NARF
descriptors in a dataset depends on the environment
characteristics, but in some cases hundreds of descrip-
tors in one point cloud can be established.

�. Transforma�on between two �oint clouds
with salient features
Once the keypoints and NARF descriptors are de-

termined in both point clouds under consideration it
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is necessary to compute the rotationR and translation
t between these two data sets.

In this step of the self-localization method the in-
put data consists of a point setA (the �irst cloud) and
a point setB (the second cloud). The set of all possible
pairs of descriptors is de�ined as Z . For each descrip-
tor of the �irst point cloud all possible pairingswith the
descriptors of the second cloud are established. For
the set Z the matchings are de�ined by the descrip-
tor dissimilarity function, which in our application is
given as:

fk = min
j=0,1,...,mB−1

36∑
i=1

|pk[i]− qj [i]|, (2)

where fk is the value of dissimilarity, which is the sum
of absolute differences between 36 values describing
the k-th descriptor of the cloudA, and the correspond-
ing values of thedescriptor of the cloudB. Thedescrip-
tor of the cloud B is chosen to minimize the value of
fk . In equation (2) pk[i] is the i-th value of the k-th de-
scriptor of the �irst point cloud, while qj [i] is the i-th
value of the j-th descriptor of the second point cloud,
and mB is the number of descriptors of the second
cloud. Then again, all pairings of the given descrip-
tor of A are investigated, and the pairs for which the
dissimilarity value is greater than 3 times fk are dis-
carded as incorrect.

Unfortunately, among the accepted pairing there
could be incorrect correspondences, minimizing (2),
but leading to a clearly incorrect estimate of the ego-
motion. To solve this problem we exploit the fact, that
the walking robot is a physical system, having limited
motion capabilities with regard to acceleration, veloc-
ity, and direction of motion. Taking this into account it
is possible to introduce a set of constraints on themax-
imum translations and rotations with regard to the
particular axes of the robot’s coordinate frame. These
constraints are used to discard pairs of the descriptors
for which the distance between their keypoints is big-
ger than the maximum distance:

ddes =
√
d2desX + d2desY + d2desZ , (3)

where ddesX is themaximumdistance in xr axis, ddesY is
the maximum distance in yr axis, and ddesZ is the max-
imum distance in yr axis. Formula (3) is simpli�ied in
order to allow fast computations, and does not take ex-
plicitly into account rotation of the robot, but for the
limited range of Kinect measurements it is a reason-
able approximation, as we do not expect to have key-
points on objects located far away. This condition al-
lows to discard most of the incorrectly matched pairs
from the Z set.

However, the set of matched NARF pairs still can
contain some outliers. Therefore, the point cloud
transformation algorithm is applied within the robust
estimation framework based on the RANSAC scheme.
In each of its iterations RANSAC de�ines a subsetN of
the set Z , which contains 3 unique descriptor pairs.
The next step of the algorithm computes the transfor-

mation between those pairs:

argmin
T

∥ T P− Q∥, (4)

where Tmeans the transformation combined of rota-
tion R and translation t, while P and Q are matrices
built from the coordinates of keypoints as follows:

P =

 x11 y11 z11
x12 y12 z12
x13 y13 z13

 , (5)

Q =

 x21 y21 z21
x22 y22 z22
x23 y23 z23

 , (6)

where x1i, y1i, z1i are the coordinates of the i-th key-
point from the cloud A, belonging to the set N , while
x2j , y2j , z2j are the coordinates of the j-th keypoint
from the cloud B, also belonging to the setN .

The 3D rigid body transformation that aligns two
sets of points for which correspondence is known can
be computed in several ways. In [7] four algorithms
are compared, each of which computes the rotation R
and translation t in closed form, as the solution to a
formulation of the problem stated by (4). The results
of comparison presented in [7] show that for the al-
gorithms under study there is no difference in the ro-
bustness of the �inal solutions, while computing ef�i-
ciencymainly depends on the implementation. There-
fore, to solve (4) we chosen the algorithm based on
Singular Value Decomposition (SVD) computation us-
ing the standard ( R, t) representation of the transfor-
mation. Although this method has been for the �irst
time proposed byKabsch [12] often amuch laterwork
on computer vision [1] is cited as the origin.

After computing the transformation Tnewcoordi-
nates for the points of the cloudA are calculated. The
next step involves computing the matching error:

ϵ =

nA∑
i=1

( hi− dj)
2 for j = argmin

j=0,1,...,nB−1
( hi− dj)

2,

(7)
where hi is the vector of coordinates of i-th keypoint
of the point cloud A transformed by T, dj is the vec-
tor of coordinates of the j-th keypoint of the cloud B,
which is the closest to hi. When the value of ( hi −
dj)

2 is greater than a �ixed parameter, the keypoint is
treated as an outlier and the computed distance is not
counted in (7).

The necessary condition of stopping RANSAC is
achieving the error ϵ below a preset value, or not im-
proving the best model for a �ixed number of itera-
tions, or exceeding the number ofmaximum iterations
[17]. Alternatively, in the new version of our software
the necessary number of RANSAC iterations can be es-
timated using a simple probabilistic model [5], which
slightly improves on the computing time.

WhenRANSAC is �inished, the transformationwith
the minimal error is performed on all points of the
cloud A. This method transforms the point clouds to
the convergence basin of the ICP algorithm, thus im-
proving the chance of �inding the globalminimum. The
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points belonging to cloud A are transformed to the
new coordinates by the formula:

p′
A[i] = R pA[i] + t for i = 1, 2, ..., nA (8)

where pA[i] means the i-th point of the �irst point
cloud. The newly computed set A′ is then the point
cloud for the ICP algorithm searching for a more pre-
cise transformation ofA′ into B.

6. ���erimental e�al�a��n �� t�e met���
6.1. Preliminary tests

Testing Kinect as a sensor for walking robot self-
localization we conducted several experiments to
evaluate robustness of the basic ICP algorithmand our
NARF-based method for initial alignment of the point
clouds. These initial tests were performed on pairs
of point clouds obtained for various data sampling
rates along the path of the sensor motion. First tests
were aimed at determining the approximate maxi-
mum translational and rotational distance for which
two Kinect point clouds can be successfully aligned by
the ICP algorithm. Then, we tested if these limits can
be relaxed by applying the NARF-based method.

a

b

c

d

Fig. 4. Experiment with the industrial robot: terrain
mockup as seen by Kinect (a), point clouds with NARFs
prior to matching (b), matching result with ICP (c),
matching result with NARF+ICP (d)

Experiments were carried out using the Kuka KR-
200 industrial robot, which allowed us to obtain

ground truth for the sensor’s trajectory. The Kinect
sensor was moved over a mockup of rocky terrain.
The sensorwas attached to the robot’s wrist and tilted
down at an angle of 27◦, as in the con�iguration used
on thewalking robot. An RGB-D rendered image of the
experimental setup is shown in Fig. 4a. The process-
ing times mentioned further in the paper were mea-
sured under Linux on a low-end PC notebook with an
Intel Core2duo T6500 2.1GHz processor and 4GB of
RAM. Although the notebook had a dual-core proces-
sor the single-thread program didn’t use this feature,
effectively running in a single core con�iguration, sim-
ilar to the one used on the actual Messor robot.

In the experiment shown in Fig. 4 the robot’s
end effector moved 20 cm along a straight line. Two
datasets were obtained at the beginning, and at the
end of the trajectory (Fig. 4b). The �irst dataset (A) is
depicted by darker points, while the second one (B) is
shown in lighter shade of grey. The small squaresmark
NARF keypoints for each of the point clouds, while de-
scriptors that were used to determine the transfor-
mation between the clouds are marked with larger
squares.

a

b

Fig. �. Rota�onal mo�on o� the sensor: point clouds
with NARFs prior to matching (a), matching result with
NARF+ICP (b)

Results of this simple test have shown that for the
displacement of 20 cm the standard ICP algorithmwas
unable to �ind any satisfying estimate of the egomo-
tion of the sensor (Fig. 4c). It was not possible de-
spite the fact that we have tested various values of
the dmax parameter and allowed for thousands of iter-
ations of the algorithm. In our experiments for large
initial displacements between the point clouds the ICP
algorithm usually converged to a local minima, yield-
ing a wrong egomotion estimate. However, the NARF-
based matching algorithm was able to �ind a good ini-
tial transformationof theAdataset, located in the con-
vergencebasin of the ICPalgorithm.Thus, the ICPused
as the second step of the self-localization method was
able to �ind an acceptable estimate of the displace-
ment: 17.3 cm, and a good alignment of the two clouds
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(Fig. 4d). The time required by particular parts of the
registration procedurewas: detection and description
of the NARFs 0.84 s, matching with the RANSAC pro-
cedure 0.25 s, and then the ICP algorithm 0.27 s.

A similar experiment was performed with the ro-
tational motion of the sensor. The robot wrist was ro-
tated by 10◦ between two poses of point cloud ac-
quisition (Fig. 5a). Again, the standard ICP could not
�ind a satisfying transformation between the clouds.
The initial displacement found by the NARF-based
method was quite imprecise – a rotation by 4.7◦ and
small translations along all axes. However, this initial
transformation turned out to provide a good enough
starting point for the ICP algorithm, transforming the
clouds to its convergence basin. As the result of the
two-step registration procedure a good alignmentwas
achieved (Fig. 5b), with the rotation value close to the
actual 10◦.

a b

c d

Fig. 6. Results for the publicly available dataset: a view
of the environment from the Kinect camera (a), point
clouds with NARFs prior to matching (b), NARF-based
ini�al alignment (c), matching result with NARF���� (d)

Unfortunately, we do not have a motion capture
system that can provide reliable ground truth for en-
vironments more extended than the relatively small
mockup used with the industrial robot. Therefore, we
evaluated the performance of our self-localization sys-
tem also on a publicly available dataset1. This dataset,
which contains RGB-D data from Kinect, and time-
synchronized ground truth poses of the sensor ob-
tained from a motion-capture system was recently
used to evaluate a SLAM algorithm [8]. Figure 6a
shows an example RBG image taken from this dataset,
while Fig. 6b presents two point clouds taken from
this sequence (the �irst one is synchronized with the
shown RGB image) with detected NARF keypoints. As
it can be seen in Fig. 6c the NARF-basedmatching pro-
cedure provides quite good initial alignment of the
two clouds, which is however further re�ined by the
ICP method (Fig. 6c). Quantitative results (in meters)
for this experiment are presented in Tab. 1. For this
dataset the detection and description of NARFs took
0.735 s, and the estimation of initial alignment using
RANSAC required 0.291 s.

Displacement [m] ∆xr ∆yr ∆zr
Ground truth 0.040 -0.028 -0.011
NARF-based alignment 0.069 -0.051 -0.076
NARF+ICP estimate 0.046 -0.048 -0.040

�ab. �. �s�mated egomo�on for the publicly available
data

6.2. Indoor tests on the Messor robot

Next, the proposed method was veri�ied on the
Messor robot. Because we do not have any external
motion capture system to measure the pose of the
robot during the experiments, we compare the re-
sults of the Kinect-based self-localization to the re-
sults obtained from another self-localization system –
Parallel Tracking and Mapping (PTAM) software [13],
which uses monocular vision data from another cam-
era mounted on Messor. The PTAM system offers pre-
cise tracking of the camera pose, andwas already eval-
uated on the Messor robot with positive results [3].
However, PTAM works well only in environments rich
in photometric features, and is limited to rather small
workspaces. Therefore, PTAM was unable to provide
self-localization results for longer trajectories, and we
have decided to show here only results of pair-wise
matching of two point clouds, similarly to the the in-
dustrial robot experiments.

a b

c d

Fig. 7. Results for the Messor robot traversing a sim-
ple mockup: a view from the Kinect camera (a), point
clouds with NARFs prior to matching (b), NARF-based
ini�al alignment (c), matching result with NARF���� (d)

Although Messor does not have reliable odometry,
the knowledge of the motion direction and the esti-
mated length of the stepwas used to impose kinematic
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constraints on the egomotion estimates computed by
the self-localization algorithm. The constraints are not
so tight: 50 cm translation along each axis, and 30◦ ro-
tation around each axis are allowed. These values are
not violated even by sudden and unpredictable mo-
tions related to slippages of the walking robot [2].
They simply re�lect the fact, that the robot cannot be
“teleported” during the relatively short time between
the two moments of range data acquisition.

Displacement [m] ∆xr ∆yr ∆zr
PTAM results 0.043 0.188 0.003
NARF-based alignment 0.047 0.186 0.069
NARF+ICP estimate 0.039 0.187 0.007

�ab. �. �s�mated egomo�on for the simple moc�up e��
periment

The �irst dataset was obtained for translational
motion of the Messor robot on a simple terrain
mockup, which is visible in Fig. 7a. This environment
contained few larger geometric features, so the NARF
descriptors were mostly located on the borders of
the mockup and on more distant objects, outside the
mockup (Fig. 7b). Table 2 provides the egomotion es-
timation results for two versions of the range-data-
based point cloud registration procedure: the initial
transformationwith NARF keypoints (Fig. 7c), and the
two-step procedure applying the ICP algorithm to the
initially aligned point clouds (Fig. 7d). These results
are compared to results provided by the PTAM sys-
tem, which could be considered very accurate in this
experiment, because the surface of the mockup is rich
in photometric features. The NARF detection, descrip-
tion, and computation of the initial alignment required
1.055 s, while the whole self-localization procedure
between two point clouds, with theNARF-based align-
ment and ICP took 1.543 s on a single-core PC.

A similar experiment was conducted in one of cor-
ridors in our building. This corridor is ratherwide and
contains some furniture, as seen in Fig. 8a. The camera
yielding images for the PTAMalgorithm ismounted on
Messor similarly to theKinect sensor – it is tilted down
in order to see the surface in front of the robot. There-
fore, PTAM in our application relies mostly on photo-
metric features found on the ground. In the corridor
the �loor is very dark, and fewnatural photometric fea-
tures can be found here, which makes PTAM quite un-
reliable in this environment. Therefore we put some
small stones on the �loor to increase the number of
features for PTAM. Table 3 provides results for the ini-
tial NARF-based transformation (Fig. 8c), and the full
NARF+ICP version of the proposed method (Fig. 8d).
In this case the NARF detection, description, and com-
putation of the initial transformation took 1.756 s, be-
causemore RAN�AC iterations were needed to �ind an
acceptable initial estimate of the egomotion. This was
in turn caused by small number of NARFs that were
found on the �loor. The whole self-localization proce-
dure including ICP required 2.315 s. However, these
results are still acceptable for our application, as the

a b

c d

Fig. 8. Results for theMessor robotmoving in a corridor:
a view from the Kinect camera (a), point clouds with
NARFs prior to matching (b), NARF�based ini�al align�
ment (c), matching result with NARF+ICP (d)

walking robot needed four seconds to cover the dis-
tance of about 20 cm, using a tripod gait and making
steps of the length of 5 cm. Thus, our system was able
to complete all self-localization steps between the two
consecutive data acquisition events.

Displacement [m] ∆xr ∆yr ∆zr
PTAM results -0.027 0.217 0.016
NARF-based alignment -0.468 0.246 0.021
NARF+ICP estimate -0.042 0.244 0.018

�ab. �. �s�mated egomo�on for the corridor e�peri�
ment

6.3. Outdoor tests on the Messor robot

In order to further verify the Kinect applicability to
walking robot self-localization, experiments were car-
ried out also in outdoor environment (Fig. 9a). When
the sensor was exposed to direct sunlight, it was not
possible to get any usable range measurements. How-
ever, it was possible to use Kinect for self-localization
in the shadeof a buildingwall. �ecause of the in�luence
of sunlight (even in a shaded place) the obtained point
clouds had only about 30% of the number of points
typically obtained indoors (Fig. 9b). During the exper-
iment, the robot moved forward, roughly along its y
axis, on slightly uneven ground. The reduced number
of points turned out to be suf�icient for the proposed
algorithm. This is due to the fact that the visible (mea-
sured) areas are almost the same for both point clouds
(Fig. 9c). Thus, the algorithmhas found the correct dis-
placement in spite of the environment conditions be-
ing dif�icult for the Kinect sensor (Fig. 9d). The time
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required to �ind the NARFs and build the descriptors
was only 0.15 s, obviously due to to the small num-
ber of points. The RANSAC procedure took 0.28 s –
this value is quite stable across all our experiments. Fi-
nally, the ICP procedure required only few iterations
to converge from a very good initial guess, thus the
time was only 0.06 s.

a

b

c

d

Fig. 9. Outdoor experimental setup (a), outdoor scene
as seen by Kinect (b), two point clouds prior to match-
ing with NARF correspondences (c), results of matching
with NARF+ICP (d)

7. Conclusions
This paper presented a two-step range data regis-

tration method, which is suitable for the inexpensive
Kinect 3D range sensor mounted on a walking robot.

The experiments have shown that the use of NARF
descriptors matching brings the point clouds close to
the correct position even for relatively large transla-

tions and rotations between the viewpoints. This pro-
cedure provides a good initial estimate of the ego-
motion, which is within the convergence basin of the
ICP algorithm. In turn, the ICP algorithm allows pre-
cise alignment of the two point clouds, using all the
range information. The combinationof these twosteps
yields a robust estimate of the robot’s egomotion in
various environments, evenundermoderately varying
lighting conditions.

Further studies will be carried out to accelerate
the ICP implementation, and to fully exploit the com-
bined RGB-D data. Using the range and photomet-
ric information the robot should be capable of self-
localizing in both featureless areas (e.g. long corri-
dors), and poorly illuminated areas. Implementation
of a full scan-matching-based visual odometry system
for the walking robot is also a matter of further re-
search.

Notes
1Data downloaded from:

http://vision.in.tum.de/data/datasets/rgbd-dataset
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