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Abstract:
The paper presents a mo�on planning algorithm for
a robot wal�ing on rough terrain. The mo�on�planer is
based on the improved RRT (Rapidly Exploring Random
Tree���onnect algorithm. The �ar�cle �warm �p�mi�a�
�on (���� algorithm is proposed to solve a posture op��
mi�a�on problem. The steepest descent method is used
to determine the posi�on of the robot�s feet during the
swing phase. The gradient descent method is used for
smoothing the �nal path. The proper�es of the mo�on
planning algorithm are presented in four cases� mo�on
planning over a bump, concavity, step and rough terrain
moc�up. The maximal si�es of par�cular obstacle types
traversable by the �essor robot with the new, op�mi�ed
mo�on plan are given.

Keywords:wal�ing robot,mo�on planning, rough terrain
locomo�on

�� ��trod�c�o�
Most of the outdoor mobile robots are equipped

with tracks or wheels. This kind of locomotion is very
ef�icient on �lat terrain. When the terrain is rough the
mobility of such robots is limited by the size of obsta-
cles (rocks, logs, etc.). Moreover, the tracked drive de-
stroys the ground especially when the robot is turn-
ing round. Walking is more ef�icient on rough terrain.
Thus, to improve the mobility of legged mobile robots
onvarious types of terrainnewmotionplanningmeth-
ods are needed. Recently, quadrupeds and bipedal hu-
manoid robots are gaining popularity, but during Ur-
ban Search and Rescue (USAR) missions multi legged
robots are more suitable due to their inherent static
stability.

The nature of legged locomotion is discrete – dif-
ferent than wheeled locomotion. Usually, the wheels
of a robot should have continuous contact with the
ground, whereas each leg of a walking robot has a se-
quence of swing and stance phases. The feet of a robot
have point-like contact with the ground. As a result,
the locomotion task includes a sequence of robot’s
postures and transitions between these postures (in-
terpreted as discrete states).

Motion planning of a robot walking on rough ter-
rain is a complex task. Walking robot can’t be repre-
sented as a point in an environment with obstacles.
While walking on rough terrain the robot should take
into account full shape of the terrain. Collisionwith the
ground as well as static stability and workspace of the
robot (a space which the feet of the robot can reach)

should be considered. Finally, motion planning for a
walking robot is a problem with many constraints,
and the solution has to be determined in a multi-
dimensional solution space.
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The posture of our walking robot (the state of the
robot) Messor [24] is determined in a 24-dimensional
space. The kinematic structure of the robot is pre-
sented in Fig. 1. The position of the robot’s body in
the reference frame O is determined by a 3D vec-
tor [xR, yR, zR]

T . Orientation of the robot’s body is
given by three RPY (roll-pitch-yaw) angles θR, φR, γR.
Each joint position is given by αi value. The num-
bering of joints starts from the shoulder servomotor
of the �irst leg, and ends on the joint between tibia
and femur of the sixth leg (Fig. 1). The posture is de-
termined by 18 reference values for servomotors lo-
cated in robot’s legs and six values representing po-
sition and inclination of the robot’s platform (q =
[α1, ..., α18, xR, yR, zR, θR, φR, γR]

T ). We are looking
for methods which can deal with multi-dimensional
solution space to �ind a path for the robot walking on
rough terrain. Moreover, the sought algorithm should
be fast enough to operate in real time. To �ind feasi-
blemotion of the robot themotion planner should �ind
theway how to go round obstacles and, if necessary, to
�ind the way how to climb obstacles.

�inematic structure of a robot in�luences the ap-
proach to motion generation. Various approaches are
used to obtain ef�icient locomotion on rough ter-
rain. The rimless wheel structure is used in the RHex
robot [21]. The rotational motion of the shaft is con-
verted into walking behavior through �lexible spokes.
Robust locomotion on rough terrain can be also gen-
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erated by using reactive controllers. The example of
such a robot is the BigDog [29]. Both methods will fail
whenever the robot has to deal with very risky en-
vironment e.g. while crossing the stream. Without a
foothold selection method the robot will fall down. In
our approachwe precisely plan a full path of the robot.
The robot determines its posture, selects footholds,
plansmotion of the feet and body. It also checks stabil-
ity, workspace and avoids collisions with the ground
and self-collisions.

By planning full motion of the robot it is also possi-
ble to avoid deadlocks (situationswhen the robot can’t
movebecause of the lack of stability or lack of the kine-
matic margin). Planning motion of the robot also al-
lows to avoid local minima (here understood as a loop
ofmoving backwards and forwards, oscillating around
what is in these circumstances a lower-dimensionality
local minimum [1]), and to avoid obstacles. This be-
havior is possible when a reactive controller is used.
A reactive controller computes next action taking into
account a current context. Thus, the reactive controller
might cause ’in�inite loops’ in robot’s behavior, e.g. ac-
cording to the current context the next motion of the
robot is step forward, then step back and again for-
ward, back, etc. To avoid the robot getting trapped in
local minima the deliberative paradigm is used in the
control software of the machine.

The paper presents recent improvements of the
motion planning method for the Messor six-legged
robot. Thismethod is based onRapidly-exploringRan-
dom Trees Connect algorithm (RRT- Connect) [16].
During execution of the planned path the robot cre-
ates an elevation map of the environment using the
Hokuyo�RG-04L� laser range �inder [3]. Then, the ob-
tained map is used to plan the motion of the robot.
Themethods presented in this paper increase the ef�i-
ciency of themotion planningmethod.With the recent
improvements the robot is capable to climb higher
obstacles by avoiding deadlocks. The deadlocks are
caused by the lack of static stability or the lack of a
kinematicmargin. The results are obtained using vari-
ous optimizationmethods to �ind a path of feet during
swing phase, to optimize posture of the robot and to
smooth the obtained path.
1.1. Related work

Autonomous walking on rough terrain is much
more challenging than indoor locomotion [20]. Many
impressive results were obtained using the LittleDog
robot [6, 19, 32]. In this case the robot also uses var-
ious optimization methods during motion planning.
The trajectory of the robot is optimized to maximize
the stability and kinematic reachability. In the work
of Ratliff et al. [19] the trajectory optimization is per-
formed using the gradient-based Covariant Hamilto-
nian Optimization and Motion Planning (CHOMP) al-
gorithm. Similarly, Kalakrishnan et al. proposed the
use of optimizationmethods to improve the trajectory
of the robot’s body with respect to the initial Zero Mo-
ment Point (ZMP) trajectory [7]. To plan the motion
of the robot the Anytime Repairing A* (ARA*) algo-
rithm [18] is used. The algorithmmaximizes footholds

rewards from the initial to the goal position.
Most of thewalking robots aswell as controlmeth-

ods are inspired by biological systems. Inspirations for
six-legged robot are taken from behavior of stick in-
sects [15]. The robot can use a dynamic gait which
is based on results of Nature observations [30]. Pe-
riodic signals to control gait of the robot can be ob-
tained using a Central Pattern Generator (CPG). The
concept of CPGs is based on the real nervous structure
which can be found in living creatures [31]. This con-
cept is also successfully applied in multi-legged walk-
ing robots [9].

In our research we also take inspiration from bi-
ology. Our robot uses statically stable gaits and the
leg coordination patterns, as stick insect do. It walks
on rough terrain using secure and rather slow type of
locomotion. The control system of the Messor robot
strongly depends on the exteroceptive sensory sys-
tem. Dynamic control techniques require high-torque
drive units and precise proprioceptive sensing [14],
which are not available to the Messor robot walking
on rough terrain. Thus, the dynamic capabilities of our
robot are limited.

Not only optimization and inspirations from the
Nature can be used to obtain control system for walk-
ing robot. The robot can also learn how towalk. In [26]
a modi�ied Reinforcement Learning algorithm is pre-
sented. It was shown that the robot can utilize past ex-
perience and faster learn ef�icient locomotion on �lat
terrain. Similarly, a gait of humanoid robot can be op-
timized to obtain maximal linear velocity [27].

Some procedures for control of six-legged robots,
which allow them to climb high, but structural ob-
stacles like steps [5] and stairs [25] are known from
the literature. However, in our work we don’t as-
sume particular shapes of the obstacles. The robot au-
tonomously can deal with various obstacle. This be-
havior is obtained using RRT-based planner and opti-
mization methods which support motion planning.

In ourworkweutilize hybrid deliberative/reactive
paradigm.When the initial path of the robot is planned
the robot can execute the planned motion using re-
active and fast controller which guarantees more ro-
bust locomotion. Moreover, during execution of the
planned motion the robot uses simple leg compliant
strategy. The robot stops the leg’s motion whenever
contact force at leg’s tip exceeds given thresholds. The
compliant strategy is very important to robust loco-
motion [10,31] or motion of a robot arm [13,28].

�. �o�o� �la����� al�or�t��
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The RRT-Connect-based integrated motion plan-
ner [2] creates two trees, which are extended alter-
nately. The root of the �irst tree is located in the initial
position of the robot. The root of the second tree is lo-
cated in the goal position of the robot. At the beginning
the algorithm tries to add new node to the �irst tree
(E����� procedure). The position of the new node is
determined randomly. If the robot can reach the next
goal position q(k · dSTEP) the node is added to the tree.
Then, the second tree is extended in the direction to
the new node. In the following iteration of the algo-
rithm the sequence is swapped and the second tree is
extended in the random direction at the beginning.

The core of theRRTalgorithm is theE�����proce-
dure (Fig. 2). The procedure checks if the transition in
the desired direction is possible. If themotion is possi-
ble the procedure plans the precise path for the body
and each foot. The previous version of the procedure
has beenmodi�ied [2]. First, the new procedure deter-
mines the maximal step length in the desired direc-
tion (dSTEP). The maximal step length is found using
kinematic and collision constraints. To determine the
maximal lengthof the stepwecreate the initial posture
of the robot qsimp. The procedure assumes initial hori-
zontal orientation of the robot’s body. The distance to
the ground is set to such a value that guarantees se-
cure clearance between robot’s body and the ground
(in experiments the clearance is set to 0.1m). The sub-
procedure, which plans the path for the next robot
step, is executed �ive times for various step lengths
k · dSTEP (k ∈ {0.2; 0.4; ...; 1.0}). For the next poten-
tial node of the tree the robot �inds footholds and op-
timizes the posture [3, 4]. Next, the procedure plans
path of feet during swing phase. The path of the body
is straight between two neighboring nodes. Then, the
procedure checks if the execution of the planned path
is possible. Workspaces of the robot’s feet, collisions
and static stability are checked. Theprocedure returns
the planned path for themaximal possible step length.

The RRT algorithm determines a new (xR,yR) po-
sition of the robot in the global coordinate system. For
this position the planning procedure determines full
state (posture) of the robot (vertical position of the
robot’s platform zR, inclination and leg’s con�igura-
tion). To this end, the elevation map of the environ-
ment is used. The direction of motion is represented
by the vector

−−−−→
pi
Rp

i+1
R identifying the previous position

of the robot pi
R = [xi

R, y
i
R] and the next position of the

robot pi+1
R = [xi+1

R , yi+1
R ]. The orientation of the robot

on the surfaceγR is equal to the angle between thevec-
tor

−−−−→
pi
Rp

i+1
R and x axis of the global coordinate system.

If the desired rotation around z axis can’t be executed
with the given kinematics of the robot (the reference
angle γR is not reachable) the reference rotation an-
gle γR is limited to maximal rotation which can be ex-
ecuted by the robot in a single step. In all experiments
presented in the paper the maximal rotation angle is
set to 0.2 rad.

For the new position pi+1
R = [xi+1

R , yi+1
R ] the robot

selects footholds [3]. Inclination of the robot’s plat-
form (θR, φR) and distance to the ground zR are de-
termined by the posture optimization procedure.

The optimization procedure searches for the vec-
tor pR = [θR, φR, zR]

T which determines the pos-
ture of the robot with maximal kinematic margin of
the robot dKM:

arg max
pR

{dKM(q(pR))},q(pR) ∈ Cfree,q(pR) ∈ Cstab,

(1)

where:
q(pR) – posture of the robot for the given con�ig-
uration pR and position of feet determined using
foothold selection algorithm,
dKM(q(pR)) – kinematic margin of the robot,
Cfree – con�igurations of the robot which are col-
lision free (lack of collisions with the ground and
between parts of the robot) and inside of the robot’s
workspace,
Cstab – statically stable con�igurations of the robot.

To �ind theoptimal postureof the robot theParticle
Swarm Optimization (PSO) algorithm is used [4, 12].
The kinematic margin diKM of the i-th leg is de�ined as
the distance from the current position of the feet to
the boundary of the reachable area of the leg [17]. To
compute kinematic margin dKM of the robot the dis-
tance from current positions of the feet to the bound-
aries of the legs workspace are computed. The small-
est distance (min(di=1

KM ), ..., di=6
KM )) determines the dKM

value [4]. The computation of the kinematic margin
should be fast. It is important because the kinematic
margin is computed hundred of times during single
optimization run. The analytical relation between con-
�iguration of the leg and the value of the kinematic
margin is found to speed up the computations [4]. To
obtain this relation, the approximation with mixture
of Gaussian functions is used.

When the posture of the robot is determined the
robot plans the path of each foot from the current
to the next foothold. The initial paths are located on
the plane which is perpendicular to the gravity vector.
The initial and the goal footholds are located on this
plane. The shapeof the initial path is createdaccording
the the vertical cross-section of the obstacles between
footholds [2]. The safety margin is added to decrease
the risk of collision. However, the found path does not
guarantee proper execution of the planned motion.
Some points of the planned path might be unreach-
able for the robot (the positions of feet are outside of
the robot workspace). Moreover the legs of the robot
might collide with other parts of the robot. Thus, it is
necessary to modify the position of feet in the direc-
tion perpendicular to the direction of the foot motion.
We call it leg-end optimization during swing phase.
During the optimization the inverse and forward kine-
matic of the leg are known, thus we can switch easily
between the leg con�iguration and position of the foot.
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We use both representations in the optimization pro-
cedure. For example we use leg con�iguration to com-
pute kinematic margin and we use position of the foot
to check collisions with the ground.

�ig� �� ���ss�se���n �� �he �eg w���spa�e an� p��g�ess
�� �he g�a�ien���ase� �p��i�a��n �e�h�� ���ing
swing phase

�ig� �� �p��i�a��n �� �he �eg�en� p�si��n ���ing swing
phase ��� �he �����wing p�in�s �� �he ini�a� pa�h

The goal of the optimization (in our
case sub-optimization) is to �ind the po-
sition of the i-th foot during swing phase
pi
f = [xi

f , y
i
f , z

i
f ]

T (expressed in the global coor-
dinate systemO) which satis�ies the requirements for
the value of the i-th leg kinematic margin diKM:

diKM(p
i
f ) > dsafeKM ,pi

f ∈ Cfree, (2)

where Cfree are leg’s con�igurations which are colli-
sion free and inside of the workspace of the robot and
dsafeKM = 8 cm.

We decided to use sub-optimization instead of
full optimization because looking for leg-end position
which satis�ies safety requirements is suf�icient. The
sub-optimization stops searching when the kinematic

margin is bigger than dsafeKM = 8 cm. This approach
speeds up the optimization procedure. The procedure
is run for each leg-end position and all points of the
initial path during swing phase (Fig. 4).

To �ind the optimal foot position the method of
steepest descent is used [11]. The cross-section of the
leg workspace and progress of the gradient-based op-
timization method during swing phase are shown in
Fig. 3. If the initial position of the foot FSTART is out-
side of the workspace of the leg the robot searches
for the acceptable leg’s con�iguration (reference val-
ues for servomotors) which has positive value of the
kinematic margin. To this end, the current position
of the foot is moved iteratively in eight main direc-
tions (Fig. 3). When the foot is inside of the workspace
of the robot, the procedure continues with gradient-
based optimization. The position of the foot is mod-
i�ied in the direction perpendicular to the direction
of the foot motion (vertical cross-section through the
leg’s workspace). The search space is limited by the
shape of the obstacles increased by the safety margin
(in the simulations presented in this paper the safety
margin is 3 cm).

2.3. Path smoothing

The �inal path found by the RRT-based algorithm is
made from straight lines which connect optimal pos-
tures of the robot. Thus, the motion of the robot is not
smooth. In the nodes of the tree (positions of the robot
where all feet are located on the ground and optimal
position is determined) the robot rapidly changes the
direction of themotion. To avoid rapidmovements we
use path smoothing on the results obtained from the
RRT-based planner [8].

The goal of the path smoothing is the minimiza-
tion of �itness function Fsm. The arguments of Fsm are
the positions of points in the initial path p found by
the RRT-based algorithm, and positions of the points
in the smooth path p′:

arg min
p′

Fsm(p′) =

n∑
i=0

{
α
2 (pi − p′i)

2 + β
2 (p

′
i − p′i−1)

2 + β
2 (p

′
i − p′i+1)

2
}
.

(3)
The element of the �itness function Fsm which de-

pends on the β coef�icient is responsible for path
smoothing. Additionally, the element which depends
on the α coef�icient is introduced. Without this ele-
ment the optimal solution is a straight line (the po-
sitions of the initial and �inal points are not opti-
mized). To �ind the optimal value of the function (3)
the gradient-based optimization is used [11]. At the
beginning of the optimization the smoothed path p′ is
the same as the initial path p. In the following step of
the optimization the algorithm modi�ies the position
of the new path according to the equation:

p′
new
i = p′i + α(pi − p′i) + β(p′i−1 + p′i+1 − 2p′i).

(4)
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The positions of footholds are not modi�ied by the
optimization. Similarly, the points of the path are not
modi�ied if the new position is outside of the robot
workspace, if it causes collisions, or the new position
of the robot is not statically stable. Theprocedure ends
when the new modi�ication of the path ∆p is bellow
the pre-determined value∆max:

∆p =
n∑

i=0

|p′newi − p′i| < ∆max. (5)

3. Results
The results of the procedure which optimizes the

position of feet during swing phase is presented in
Fig. 5. During the experiment the robot was climbing
a step. When the optimization is used the robot modi-
�ies the initial path of feet.Without using the proposed
method the desired position of foot is outside of the
robot’s workspace. The execution of the planned mo-
tion is not possible. When the proposed optimization
procedure is used the robot moves its leg sideway to
increase kinematic margin to avoid collisions with the
obstacle. This optimization procedure allows to climb
higher obstacles and avoid deadlocks.
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Before execution of the planned motion the path
is smoothed. Th sequence of the body positions
[xR, yR, zR, θR, φR, γR] as well as path of each foot is
modi�ied. Example results of path smoothing for vari-
ous values of parameters are shown in Fig. 6.When the

parameter β is increased and the parameter α is de-
creased the obtained path is smoother. when param-
eter α is increased and parameter β is decreased the
obtained path is similar to the initial path (Fig. 6).

The parameters are set to α = 0.01 and β =
0.99 when the path for the body is smoothed. The pa-
rameters are set to α = 0.8 and β = 0.2 when
the paths of feet are smoothed. The goal is to obtain
smooth path for the robot’s body to limit unwanted
suddenmotions. The paths of feet aremore constraint
(workspace of the robot and collisionswith obstacles).
The footholds can’t be modi�ied in this stage thus the
path is only slightly smoothed.

The proposed methods were veri�ied in the re-
alistic simulator of the Messor walking robot [24].
Dynamic properties of the robot are simulated us-
ing the Open Dynamics Engine [22]. The software li-
brary detects collisions between parts of the robot’s
body and simulates behavior of the colliding objects
(static and dynamic friction). The simulator also con-
tains the software controller of the real robot. The en-
vironment, the state of the robot, and paths obtained
using themotionplanning algorithmarepresentedus-
ing OpenGL procedures.

The properties of the proposedmethodswere pre-
sented in simulations using three various obstacles1: a
bump (Fig. 7a), concavity (Fig. 7b) and step (Fig. 7c).
Using standard shape of the obstacles we can present
ef�iciency of the proposed methods. We found the
maximal size of the obstacles which can be covered by
the robot using various variants of the motion plan-
ning approach (Table 1). It should be also mentioned
that the proposed method is universal and does not
assume any particular model of the obstacle.

Tab. 1. Maximal size of the obstacles which can be cov-
ered b� the robot using various variants of the mo�on
planning approach. Table presents three variants: mo-
�on planningwithout op�miza�on �1�� with posture op-
�miza�on ��� and with all op�miza�on procedures ���.

variant bump [m] concavity [m] step[m]
Fig. 7a Fig. 7b Fig. 7c

1 0.13 -0.17 0.15
2 0.16 -0.185 0.18
3 0.16 -∞ 0.25

To show the ef�iciency of using presented opti-
mization procedures we performed simulations with
three different obstacles: a bump, a concavity and a
step. In the �irst simulation the robot plans its mo-
tion using only the RRT algorithm. The position of the
robot’s platform is determined using a simple strat-
egy – the orientation of the robot’s body is the same
as the average slope of the terrain. The distance to the
ground is set to a value which is minimal but safe and
guarantees that the motion is collision free [2]. In the
second simulation the robot uses posture optimiza-
tion algorithm to determine its posture in the nodes of
theRRT trees. In the third simulation the robot uses all
methods presented in this paper (posture optimiza-
tion, feet path planning during swing phase and path
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smoothing).
When the robot does not use optimization meth-

ods themaximal height of the bumpwhich can be cov-
ered by the robot is 13 cm (Tab. 1). Using posture op-
timization procedure the robot is capable to climb a
bump which is 3 cm higher. The maximal height of
the obstacle is the same when the optimization dur-
ing swing phase is used. To deal with the obstacle the
robot has to put its legs on the ground level and on
the obstacle at the same time. If the obstacle is too
high the reference position of the the feet are outside
of the workspace of the robot. The optimization dur-
ing swing phase does not bring additional advantages.
The path obtained using all optimization methods is
shown in Fig. 7a.

When the posture optimization is used duringmo-
tion planning the maximal depth of the concavity is
18.5 cm. If necessary the robot decreases the distance
to the ground to reach the bottom of the concavity
and safely moves to the other side of the ditch. When
all optimization methods are used the depth of the
concavity does not play any role. The ������ proce-
dure (Fig. 2) checks various step lengths. For the given
width of the ditch the robot does not have to place
its feet on the bottom of the concavity. The robot can
make longer steps and place feet on the other side of
the concavity. The ������ procedure proposed in this
paper allows to autonomously modify length of steps
to deal with various obstacles. In this case path opti-
mizationduring swingphasedoesnot bring additional
advantages. The initial path is secure and guarantees
a proper kinematic margin.

The advantages of using optimization procedure
during the swing phase can be observed during step
climbing. The obtained path is shown in Fig. 7C. The
motion of feet is modi�ied to increase kinematic mar-
gin during swing phase. As a result the robot moves
feet sideways when they are above the edge of the
step. The proposed strategy allows to deal with steps
25 cmhigh. If only the posture optimization procedure
is used themaximal height of the step is 18 cm (Tab. 1).

To check the ef�iciency of the algorithm on terrain
with irregular obstacles a simulation on rough terrain
mockup was performed. The results are presented in
Fig. 8. The distance between initial and �inal position
of the robot is 3 m. Because the algorithm is random-
based, the series of 10 simulations was performed. In
each trial the robotwas able to �ind a securepath to the
goal position. The average time of the path planning
is 389 s and standard deviation is 44 s (simulations
were performed on a computer with Intel i7 2.7GHz
processor).

4. Conclusions
The article presents various optimizations strate-

gies to planmotion of the six- legged walking robot on
rough terrain. The PSO optimization algorithm is used
to �ind posture of the robot during phase when all feet
of the robot are placed on the ground. The gradient-
based optimization method is used to determine feet
position during swing phase. A similar method is used
for smoothing the path returned by RRT-based mo-
tion planner. The presented methods are used as core
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elements of the new E����� procedure which deter-
mines the following step of the robot.

The goal of using the optimization methods is to
create algorithmwhich is capable toplanmotionof the
robot on rough terrain with high obstacles. The capa-
bilities of the algorithmwere presented in the simula-
tor. We determined the maximal size of the obstacles
which can be covered by the robot using the presented
methods. The goal of the optimization can be easily
modi�ied. It could be the maximal security margin (a
sum of three weighted coef�icients: value of distance
between feet and obstacles, kinematicmargin and sta-
bility margin) or combination of few coef�icients. In
the future we are going to implement the proposed
optimization methods on the real Messor robot. To
this end, we are going to integrate the mapping algo-
rithmwhich uses �okuyo laser range �inder and a self-
localization algorithms.

5. Acknowledgement
This work was supported by NCN grant no.

2011/01/N/ST7/02080.
The author would like to thank the anonymous re-
viewers for their valuable comments and suggestions
to improve the quality of the paper.

Notes
1A video with simulation experiments is available on

http://lrm.cie.put.poznan.pl/jamris2013.wmv

AUTHOR
Dominik Belter∗ – Poznań University of Technol-
ogy, Institute of Control and Information Engineering,
ul. Piotrowo 3A, 60-965 Poznań, Poland, e-mail: Do-
minik.Belter@put.poznan.pl.
∗Corresponding author

REFERENCES
[1] G. B. Bell, M. Livesey, ”The Existence of LocalMin-

ima in Local-Minimum-Free Potential Surfaces”,
Towards Autonomous Robotic Systems (TAROS
2005), London, UK,2005 pp. 9–14.

[2] D. Belter, P. Skrzypczyński, Integrated motion
planning for a hexapod robot walking on rough

terrain, 18th IFAC World Congress, Milan, Italy,
2011, pp. 6918–6923

[3] D. Belter, P. Skrzypczyński, ”Rough terrain map-
ping and classi�ication for foothold selection
in a walking robot”, Journal of Field Robotics,
vol. 28(4), 2011, pp. 497–528

[4] D. Belter, P. Skrzypczyński, ”Posture optimiza-
tion strategy for a statically stable robot travers-
ing rough terrain”. In: Proc. IEEE Int. Conf. on In-
telligent Robots and Systems, Villamoura, Portu-
gal, 2012, pp. 2204–2209,

[5] S. Fujii, K. Inoue, T. Takubo, T. Arai, ”Climbing up
onto Steps for Limb Mechanism Robot “ASTER-
ISK””, In: Proc of the 23rd International Sympo-
sium on Automation and Robotics in Construction,
2006, pp. 225–230

[6] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, S.
Schaal, ”Fast, robust quadruped locomotion over
challenging terrain”. In: Proc. IEEE Int. Conf. on
Robotics and Automation, Anchorage, USA, 2010,
pp. 2665- -2670

[7] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry,
S. Schaal, ”Learning, planning, and control for
quadruped locomotion over challenging terrain”,
Int. Journal of Robotics Research, vol. 30(2), 2010,
pp. 236– 258.

[8] D. Dolgov, S. Thrun, ”Detection of principal direc-
tions in unknown environments for autonomous
navigation”, In: Proc. of the Robotics: Science and
Systems, 2008

[9] A. Gmerek, ”Wykorzystanie quasi-chaotycznych
oscylatorów do generowania rytmu chodu
robotów kroczacych”, Postępy robotyki 2012, K.
Tchoń, C. Zieliśki (Eds.).

[10] A. Gmerek, E. Jezierski, ”Admittance control of
a 1-DoF robotic arm actuated by BLDC mo-
tor”. In: 17th International Conference onMethods
and Models in Automation and Robotics (MMAR),
2012, pp. 633–638.

[11] C.T. Kelley, Iterative methods for optimization,
SIAM, Philadelphia, 1999.

[12] J. Kennedy, R.C. Eberhart, ”Particle swarm
optimization”. In: Proc. IEEE Int. Conf. on

41



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  7,      N° 4       2013

Articles 41

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N◦ 4 2013

Neural Networks, Piscataway, Australia, 1995,
pp. 1942–1948.

[13] M. Kordasz, R. Madoński, M. Przybyła, P.
Sauer, Active Disturbance Rejection Control
for a Flexible-Joint Manipulator, Lecture Notes
in Control and Information Sciences, Robot
Motion and Control 2011, K. Kozłowski (Ed.),
Springer-Verlag, 2011, pp. 247–256.

[14] M. Kowalski, M. Michalski, D. Pazderski,
Quadruped walking robot WR-06 - design,
control and sensor subsystems, Lecture Notes in
Control and Information Sciences, Robot Mo-
tion and Control 2009, Springer-Verlag, 2009,
pp. 175–184.

[15] S. Krenich, M. Urbanczyk, ”Six-Legged Walking
Robot for Inspection Tasks”, Solid State Phenom-
ena, vol. 180, pp. 137–144, 2011

[16] J.J. Kuffner, S.M. LaValle, ”RRT-Connect: An ef�i-
cient approach to single-query path planning”.
In: Proc. IEEE Int. Conf. on Robotics and Automa-
tion, San Francisco, USA, 2000, pp. 995–1001.

[17] P. D. Kumar, D. Kalyanmoy, and G. Amitabha, ”Op-
timal path and gait generations simultaneously
of a six-legged robot using a GA-Fuzzy approach”,
Robotics and Autonomous Systems, vol. 41, no. 1,
2002, pp. 1-20.

[18] M. Likhachev, G. Gordon, S. Thrun, ”ARA*: any-
time A* with provable bounds on suboptimal-
ity”.In: Advances in Neural Information Process-
ing Systems 16: Proceedings of the 2003 confer-
ence, 2003.

[19] N. Ratliff, M. Zucker, J.B. Andrew, S. Srini-
vasa, ”CHOMP:Gradient optimization techniques
for ef�icient motion planning”. In: Proc. IEEE
Int. Conf. on Robotics and Automation, Kobe,
Japan, 2009, pp. 489– 494.

[20] R.B. Rusu, A. Sundaresan, B. Morisset, K. Hauser,
M. Agrawal, J.C. Latombe, M. Beetz, ”Leav-
ing �latland: ef�icient real-time 3D perception
and motion planning”, Journal of Field Robotics,
vol. 26(10), 2009, pp. 841–862.

[21] U. Saranli, M. Buehler, D.E. Koditschek, ”RHex:
a simple and highly mobile hexapod robot”, In-
ternational Journal of Robotics Research, vol. 20,
2001, pp. 616–631.

[22] R. Smith, Open Dynamics Engine,
http://www.ode.org, 2012.

[23] K. Walas, D. Belter, ”Supporting locomotive func-
tions of a six-leggedwalking robot”, International
Journal of Applied Mathematics and Computer
Science, vol. 21, no.2, 2011, pp. 363–377.

[24] K. Walas, D. Belter, ”Messor – Versatile walking
robot for search and rescue missions”, Journal
of Automation, Mobile Robotics & Intelligent Sys-
tems, vol. 5, no. 2, 2011, pp. 28-34.

[25] K. Walas, A. Kasiński, ”Controller for Urban Ob-
stacles Negotiation with Walking Robot”. In:
Proc. IEEE Int. Conf. on Intelligent Robots and Sys-
tems, Villamoura, Portugal, 2012, pp. 181–186.

[26] P. Wawrzyński, ”Real-Time Reinforcement
Learning by Sequential Actor-Critics and Expe-
rience Replay”, Neural Networks, vol. 22, no. 10,
Elsevier, 2009, pp. 1484-1497.

[27] P. Wawrzyński, ”Autonomous Reinforcement
Learning with Experience Replay for Humanoid
Gait Optimization”, Proceedings of the Interna-
tional Neural Network SocietyWinter Conference,
Procedia, 2012, pp. 205–211.

[28] T. Winiarski, A. Woźniak, ”Indirect force con-
trol development procedure”,Robotica, vol. 31, 4,
pp. 465–478, 2013.

[29] D. Wooden, M. Malchano, K. Blankespoor, A.
Howardy, A.A. Rizzi, ”Raibert, Autonomous nav-
igation for BigDog”. In: Proc. IEEE Int. Conf. on
Robotics and Automation, Anchorage, USA,
2010, pp. 4736–4741

[30] T. Zielińska, ”Biological inspiration used for
robots motion synthesis”, Journal of Physiol-
ogy – Paris, vol. 103(3-5), September 2009,
pp. 133–140, 2009.

[31] T. Zielińska, A. Chmielniak, ”Biologically inspired
motion synthesis method of two-legged robot
with compliant feet”, Robotica, vol. 29, no. 7,
2011, pp. 1049–1057.

[32] M. Zucker, J.A. Bagnell, C.G. Atkeson, J. Kuffner,
”An optimization approach to rough ter-
rain locomotion”. In: Proc. IEEE Int. Conf. on
Robotics and Automation, Anchorage, USA, 2010,
pp. 3589–3595

42


