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Abstract:
In this paper an idea of the elas c band method was ex-
ploited to design a repeatable inverse kinema cs algo-
rithm for robot manipulators. The method incorporates
an op miza on process at many stages of its perfor-
mance and admits some extensions. Performance of the
algorithmwas illustrated onmodels of the three DOF pla-
nar pendulum and the PUMA robot. A comparison with a
standard pseudo-inverse Jacobian algorithm, which does
not preserve repeatability of inverse kinema cs, is also
provided.
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1. Introduc on
Robot manipulators are frequently used to per-

form repeatable tasks (assembling, drilling, painting)
on a factory loor. From a technological point of view,
it is desirable to follow exactly the same trajectory
by a manipulator when performing a repeatable task.
In this case the problem of avoiding obstacles can be
signi icantly reduced as only one trajectory should be
tested for the collision avoidance. Therefore, one of
the most popular tasks in robot manipulators is a re-
peatable inverse kinematic task. The task is to ind a
loop (closed path) in a con iguration space that corre-
sponds to a prescribed cycle of the end-effector in a
taskspace [1]. This task is meaningful only for redun-
dantmanipulators because for non-redundantmanip-
ulators a solution of the inverse kinematic task is de-
termined uniquely if only a trajectory does not meet
any singular con iguration.

A standard approach to construct repeatable in-
verse kinematic algorithms relies on extending orig-
inal (redundant) kinematics by some extra functions
(n − m items) to get extended kinematics which is
non-redundant [10]. Outside singular con igurations
of the original kinematics, the added functions should
preserve full rank of the square Jacobian matrix of the
extended kinematics (in other words, they should not
introduce extra singular con igurations not present in
the original kinematics).

This constraint is not too restrictive thus there ex-
ist many functions to ful ill the aforementioned min-
imal requirement. So, naturally, one wants to get an
optimal set of functions with respect to a prescribed
quality function [5]. This line was exploited in Karpin-
ska’s PhD thesis [4].

In this paper we follow a quite different approach
that does not add any extra functions and avoids a

computationally expensive problem of their optimiza-
tion. The proposed approach is based on the elastic
band method, developed by Quinlan and Khatib [8],
which was primarily designed to optimize a path of
a mobile robot [2]. The idea of this method is the fol-
lowing: an initial admissible path is assumed, then it is
deformed iteratively to optimize a given quality func-
tion until a stop condition is satis ied. The deforma-
tion was originally based on a potential ield method
that tried to avoid obstacles, bymaximizing a distance
from the path to obstacles, and make the path short
and smooth. This idea is very close to a more gen-
eral approach known in mathematics as a continua-
tion method [9]. The continuation method construct
a inal solution also in an iterative process. The irst
approximation (maybe not admissible, i.e. not satisfy-
ing all requirements imposed on the original task) of
the solution should be known (and usually it is sim-
ple todetermine). Then, a sequence of solutions is con-
structedwhichdecrease a certain quality function that
measures how far the current solution is from that one
which satis ies all requirements. In the limit a solution
of the original task is determinedwhich satis ies all re-
quirements imposed.

In our adaptation of the elastic band method to
repeatable inverse kinematic tasks a role of the de-
formed pathwill play a cyclic trajectory in the con igu-
ration space. It will be modi ied in such a way that the
modi ied trajectory remains cyclic and its image, via
forward kinematics, is closer to the prescribed cyclic
path in the taskspace.

In this paper we use the term trajectory as a
synonym for a function in a con iguration space
parametrizedwith the same variable that parametrize
the prescribed path in the taskspace. Usually the tra-
jectory is described as a function of time.

The paper, being the extended version of [3], is or-
ganized as follows. In Section 2 the repeatable inverse
kinematic task is de ined formally. In this section an
algorithm based on the elastic band method to solve
the task is discussed with details. Simulation results
of the proposed algorithm are collected in Section 3.
Section 4 concludes the paper.

2. Elas c band method in repeatable inverse
kinema c task
Forward kinematics of a robot manipulator is a

mapping [11]

k : Q ∋ q → x = k(q) ∈ X ⊂ SE(3), (1)
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where q is a con iguration living in the con iguration
spaceQ and x denotes a point in the taskspaceX . For
redundant manipulators dimensionallity of the con-
iguration space is larger than dimensionallity of the
taskspace,

dimQ = n > m = dimX. (2)
With thekinematics (1) a Jacobianmatrix is associated
and given by J(q) = ∂k/∂q.

Let a loop (a closed path)
{x(s), s ∈ [0, smax], x(0) = x(smax)} (3)

be given in the taskspace and also an initial con igura-
tion q0 is knowncorresponding to the start point of the
loop, k(q0) = x0. The task of repeatable inverse kine-
matics is to ind a trajectory q(s) in the con iguration
space satisfying
∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax) = q0. (4)

Additionally, the sum of squares of lengths of the sub-
trajectories in the con iguration space

smax∫
0

(
∂q

∂s

)T (
∂q

∂s

)
ds =

smax∫
0

⟨∂q
∂s

,
∂q

∂s
⟩ds. (5)

shouldbeminimized. In (5)T stands for transposition,
and ⟨·, ·⟩ introduces the inner product. We prefer to
evaluate a trajectory according to Eq. (5) as it is faster
to compute than to determine the total length of the
trajectory.

The basic algorithm exploited in solving the afore-
mentioned task is the Newton algorithm designed to
solve the inverse kinematics when the goal is to reach
a single point in the taskspace. The algorithm is de-
scribed by the iteration process [7,11] with a possible
optimization in the null space of the Jacobian

qi+1 = qi + ξ1 · J#(qi) (xf − k(qi))+

+ξ2
(
I − J#(qi)J(qi)

) ∂f(q)
∂q |q=qi ,

(6)

where J# = JT (JJT )−1 is the pseudo-inverse of the
Jacobian matrix, q0 is the initial con iguration of the
manipulator, xf denotes a current goal point in the
taskspace, I is the (n× n) identity matrix and a scalar
function f(q) is to be optimized (the optimization can
be switched-off by setting the value of ξ2 to 0.

Below main steps of the algorithm based on the
elastic band method applied to repeatable inverse
kinematic task are presented
Step 1 Select an initial loop in the con iguration space

q(s), s ∈ [0, smax], (q(0) = q(smax)).

The loop becomes a current trajectory.
Step 2 De ine an error function that assigns to a cyclic

trajectory q(·) accumulated distance of its image
(via forward kinematics) to the traced path x(·)
in the taskspace

err(q(·)) =
smax∫

s=0

||x(s)− k(q(s))||ds, (7)

where || · || is an assumed norm.

Step 3 Compute the error (7) for the current trajec-
tory.

Step 4 If the error is below an acceptable threshold,
complete the computations andoutput the result-
ing current trajectory. Otherwise progress with
Step 5.

Step 5 Modify the current trajectory (either at a sin-
gle point or on an interval) preserving cyclicity of
the trajectorywith the aim to decreased the value
of error (7). Themodi ied trajectory becomes the
new current trajectory. Continue with Step 3.

More details concerning the algorithm follow.
- A few terms and notations extensively used later on
are introduced:
- a node point is any point placed on the given path
x(·),

- a node con iguration is a con iguration which im-
age via forward kinematics is a node point,

- a node con iguration q when included into a tra-
jectory q(s) gets the same argument s as the corre-
sponding node point x(s). The argument s of x(s)
is determined uniquely,

- (q(s), x(s)) = Newton(q0, x(s), f(q)) denotes
that the Newton algorithm (6)with the initial con-
iguration q0, the ixed goal pointx(s) (as s is ixed)
and minimizing the quality function f(q) was run
and produced as its output the pair node con igu-
ration - node point (q(s), x(s)).

- A selection of the initial (passing through q0) cyclic
trajectory is unrestricted. However, its selection im-
pacts both the speedof convergence aswell as its op-
timality. The best natural choice (and simplest one
as well) is a trivial loop, i.e. ∀s ∈ [0, smax] q(s) = q0.

- Consecutive node con igurations are interpolated
linearly, although higher order polynomials are also
possible.

- An invariant of the algorithm (characteristics that
does not change from one iteration to another) is
the cyclicity of the current trajectory. Initially there
is a trivial loop q(0) → q(smax) = q(0). After
adding a single node con iguration, say q(smax/2)
corresponding to x(smax/2), the closed loops is the
following q(0) → q(smax/2) → q(smax) = q(0), etc.

- The norm used in Eq. (7) depends on the nature of
the taskspace. When all coordinates are positional,
the Euclidean norm will be the most proper. When
the taskspace includes also angle coordinates some
norm inherited from the special Euclidean group
SE(3) [12] should be used. To simplify computa-
tions, the integral (7) can be replaced by a sum of
local errors for arguments s between currently ex-
isting node con igurations.

- The key step of the algorithm, Step 5, can be imple-
mented at least in two possible ways:

Scheme 1: on a prescribed path x(·) the furthest
node point x(s⋆) from the x(0) is determined.
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Then, the Newton algorithm is run

(q(s⋆), x(s⋆)) = Newton(q(0), x(s⋆), f(q)).

where f(q) = ||q − q(0)||. The follow-
ing computations are de ined recur-
sively. Let us assume that a sequence
S = ((q(si), x(si)), si < si+1) of pairs node
con iguration-node points has been already
determined. After the irst stage we have S =
((q(0), x(0)), (q(s⋆), x(s⋆)), (q(smax), x(smax))).
Note that the sequence is cyclic (i.e. the last
pair in the sequence is the same as the irst
one; the only difference is that the argument is
equal to smax instead of 0). In each (or some)
of the sub-intervals [si, si+1] the furthest node
x(s⋆) from the line x(si)x(si+1) is selected.
The Newton algorithm is run

(q(s⋆), x(s⋆)) = Newton(qini, x(s
⋆), f(q))

initialized at the con iguration

qini = λq(si) + (1− λ)q(si+1), (8)

with
λ =

s⋆ − si
si+1 − si

∈ (0, 1). (9)

qini is theweighted sumof the twoneighboring
node con igurations while the optimized func-
tion is given as

f(q) = ||q − q(si)||+ ||q − q(si+1)||. (10)

The resulting pair (q(s⋆), x(s⋆)) is added to S
and the S is sorted to get ∀i si < si+1. This
idea is illustrated graphically in Fig. 1a.

Scheme 2: let a sequence of node points be given
(x(s1), . . . , x(sk)) with 0 < si < si+1 < smax.
Simultaneously, a set of i ∈ {1, . . . , k} Newton
algorithms is run Newton(q(0), x(si), f(q))
with the quality function, cf. Fig. 2

f(q) = ||q − q(sji )||+ ||q − q(sji+1)||, (11)

where q(sji ) denotes the con iguration ob-
tained in the j-iteration of the Newton algo-
rithm run for the i-the node point. Obviously,
not all tasks i ∈ {1, . . . , k} will be completed
after the same number of iterations. If the i-th
task has been inished after ji iterations, it is
assumed that ∀j > ji : q(s

j
i ) = q(sjii ). Graphi-

cally this idea is visualized in Fig. 1b.

The two schemes rely on the same idea: generate
a new con iguration to approach the required node
pointwhile increasing the length of trajectory as small
as possible. However, the irst scheme realizes it se-
quentially while the second one – in parallel.

The procedure of generation new node con igura-
tions is repeated until their number is large enough
to considered the resulting trajectory to be the solu-
tion of the repeatable inverse kinematic task. To this
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0

Fig. 1. a – genera on of node points with Scheme 1,
(numbers correspond to a phase of adding the nodes),
b – genera on of node points with Scheme 2
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Fig. 2. Evolu on of configura ons from q0(sm) to q(sm)
to reach the point k(q(sm)) = x(sm)

aim let us de ine for a set of node con igurations SQ =
{(q(si)), = 1, . . . ,K}, extracted from the sequence S
the distance d

d(k(SQ), x(·)) =
maxi=1,K−1 ||k

(
q(si)+q(si+1)

2

)
− x

(
si+si+1

2

)
||.
(12)

If the condition

d(k(SQ), x(·)) ≤ δ, (13)

(where δ denotes an assumed acceptable error) is sat-
is ied, the loop in the con iguration space has been
found (with the linear interpolation of consecutive
node con igurations as an output). Otherwise in those
segments where condition (13) was violated, compu-
tation progresses according to a selected scheme.

One more aspect of the algorithm (6) with opti-
mization in the null space of the Jacobianmatrix (ξ2 ̸=
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0) should be considered because this algorithm is run
many times and it greatly impact overall computa-
tional complexity.

The simplest choice of coef icients ξ1, ξ2 is to set
their values small and constant. However, probably
this is not the best possible choice. To support this
claim let us notice that
1) computational scheme (6) is valid only for a small

con iguration increase∆qi = ξ1∆q1i + ξ2∆q2i , be-
cause Eq. (6) is based on linearization of kinemat-
ics around a current con iguration

2) the nature of components
∆q1i = J#(qi)(xf − k(qi)) (14)

and

∆q2i =
(
I − J#(qi)J(qi)

) ∂f
∂q

|q=qi (15)

are quite different although both generate val-
ues in Rn. They values may strongly depend on a
stage of computations. For example the irst com-
ponent (14) takes smaller and smaller values as
a point corresponding to a current con iguration
gets closer and closer to the goal point in the
taskspace. The irst component (14) is responsible
for convergence of the algorithm (6) so it should
have got higher priority than the other (15), re-
sponsible for optimization of f(q).
Therefore in practical implementation of the New-

tonalgorithm(6)wepropose the followingprocedure:
let us assume that the length of admissible change
of con iguration in a single iteration is equal to ∆. In
a current con iguration qi, the components ∆q1i ,∆q2i
are computed. Then, the values of ξ1, ξ2 are set to get
||∆qi|| = ∆. Finally, one dimensional optimization
process is invoked with the quality function f(qi +
ξ1∆q1i + ξ2∆q2i ) and the independent variable ξ2.
ξ1(ξ2) is computed from

||ξ1∆q1i + ξ2∆q2i || = ∆ (16)
while the convergence condition
||k(qi+ ξ1∆q1i + ξ2∆q2i )−xf || < ||k(qi)−xf ||. (17)
must hold. If the condition (17) is not satis ied (i.e.
there does not exist admissible ξ2), the value of ∆
should be decreased and once again the procedure is
run. Obviously, in a close vicinity of the goal point the
value of∆ is decreased obligatory,∆ = ||k(qi)− xf ||.

Because forward kinematics k(q) as well as the
quality function f(q) are continuous functions of q,
the aforementioned optimization process is conver-
gent outside singular con igurations (where the ma-
trix J# becomes ill-posed), and the convergence is rel-
atively fast because in one dimensional optimization
only computationally cheap kinematics is invoked.

It is worth noticing that in a close vicinity of sin-
gular con igurations a robust inverse pseudo-inverse
should be used. Temporarily, J# is replaced there by
JT (JJT + γI)−1 with a small parameter γ. Conse-
quently, the loop in the con iguration space can be
generated even in this case.

3. Simula ons
An illustration of the elastic band method to re-

peatable inverse kinematic task was performed on
two robots. The irst model is the 3-dof planar pendu-
lum visualized in Fig. 3 with its kinematics given by[

x
y

]
=

[
a1c1 + a2c12 + a3c123
a1s1 + a2s12 + a3s123

]
, (18)

where ai denote lengths ofmanipulator’s links. A stan-
dard robotic convention is exploited to abbreviate
trigonometric functions, c12 = cos(q1 + q2), s123 =
sin(q1 + q2 + q3). In all simulations all lengths of links
of the planar pendulum were assumed equal to 1.

q

q

q
2

3

1

x

y

a

a

1

a
2 3

Fig. 3. Kinema c structure of the 3-dof planar pendulum

As the second model, the industrial robot PUMA
was chosen (Fig. 4). PUMA’s positional kinematics
(x, y, z) is given by [6] x

y
z

 =

 c1A− s1(d2 + d6s4s5)
s1A+ c1(d2 + d6s4s5)

−a2s2 + d4c23 + d6(c5c23 − c4s5s23)


(19)

where A = a2c2 + d4s23 + d6(c4s5c23 + c5s23) and
geometric parameters are equal to a2 = 0.432m, d2 =
0.0745m, d4 = 0.432m, d6 = 0.056m.

Fig. 4. Kinema c structure of the PUMA robot

In order to compare the performance of both
schemes two closed-loops in the taskspace were
designed (cf. Fig. 5). The irst path (Path 1)
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(x1(s), y1(s), z1(s)) is a circle
x1(s) = xc +R cos(2πs),

y1(s) = yc +R sin(2πs),

z1(s) = zc +R cos(2πs), s ∈ [0, 1].

(20)

The second path (Path 2) (x2(s), y2(s), z2(s)) is
a Lissajous-like curve

x2(s) = xc +R sin(2πs),

y2(s) = yc +R sin(πs)− 1
4R cos(8πs)

z2(s) = zc +R cos(2πs), s ∈ [0, 1]

(21)

For both loops the radius is equal to R = 0.9 and the
center point is placed at (xc, yc, zc) = (1, 1, 0). For
the 3-dof pendulum the third component of the vector
(x, y, z) is neglected everywhere.

a

0.5

1.5x

0.5

1.5y

0.5

z

b

0.5

1.5

x

1.5
y

0.5

z

Fig. 5. a – Path 1 – the circle, b – Lissajous-like Path 2

An admissible error to reach each consecutive goal
point in the Newton algorithm was set to 0.001, while
the maximal change of con iguration in a single itera-
tionwas equal to∆ = 0.5o. Theparameter ξ1 of theba-
sic Newton algorithm (6)was derived from∆, i.e. ξ1 =
∆q1i /∆, cf. Eq. (14). When the null-space optimization
was preformed (cf. Eqns. (16-17)), scales ξ1, ξ2 of the
lengths ∆q1i , ∆q2i , Eqns. (14-15), were determined in
one dimensional optimization process, preserving the
inal length of con iguration change equal to∆.

Two versions of the elastic bandmethodwere run.
For Path 1 and Path 2, initial con igurations were se-
lected as follows q1(0) = (−18.96◦, 37.93◦, 70.54◦)T

a

0.2 0.4 0.6 0.8 1.0
s@-D

50

100

150
q@°D

q1

q2

q3

b

0.2 0.4 0.6 0.8 1.0
s@-D
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q@°D

q1

q2
q3

c

0.2 0.4 0.6 0.8 1.0
s@-D

-50

50

100

q@°D

q1

q2 q3

Fig. 6. Trajectories of the 3-dof pendulum generated for
Path 1 with: a) the pseudo-inverse Jacobian method, b)
the elas c band method (Scheme 1), c) the elas c band
method (Scheme 2)

and q2(0) = (−26.05◦, 58.80◦, 104.92◦)T , respectively,
which corresponds to the initial point of the cyclic
path (x(0), y(0))T1,2. The results for the 3-dof pendu-
lum are visualized in Figs. 6-7(b-c) while the strobo-
scopic view of several postures of the manipulator is
depicted in Fig. 8.

Tab. 1. Numerical results for the 3-dof pendulum

Path 1
method lenght [o] num. of pts. time [s]
pseudo-inverse 253.05 201 0.10
Scheme 1 241.41 201 2.10
Scheme 2 241.08 257 0.50

Path 2
method lenght [o] num. of pts. time [s]
pseudo-inverse 253.78 201 0.11
Scheme 1 254.48 201 2.30
Scheme 2 254.04 257 0.59
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Fig. 7. Trajectories of the 3-dof pendulum generated for
Path 2 with: a) the pseudo-inverse Jacobian method, b)
the elas c band method (Scheme 1), c) the elas c band
method (Scheme 2)

To compare ef iciency of the elastic band method
with the Jacobian pseudo-inverse method (i.e. the al-
gorithm (6) with ξ2 = 0) some more tests were car-
ried out. The irst task of the pseudo-inverse Jaco-
bian method was run with the initial con iguration
q0 and the goal xf = x(∆s) where ∆s = 0.005.
Consecutive goals were selected as xf = x(i∆s),
i = 2, . . . , smax/∆s and the node con iguration from
the (i − 1)-st task became an initial one for the i-th
task. The pseudo-inverse algorithm does not guaran-
tee repeatability. Final con igurations for Path 1 and
Path 2 q1(1) = (−6.03◦, 12.30◦, 88.81◦)T , q2(1) =
(−24.32◦, 56.56◦, 106.96◦)T , respectively, did not meet
the initial con igurations q0.

The length of resulting trajectories, computed as∑K−1
k=0 ||q(sk+1)− q(sk)||whereK is the inal number

of node con igurations, number of iterations to com-
plete the algorithms and the elapsed time (algorithms
were implemented in the Mathematica package and
run on 2 × 3.3 GHz computer) for Scheme 1 and 2,

a
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-1 2 3
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-1
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2

3
y

b
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-1 2 3
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-1
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y
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-1 2 3
x

-1

1

2

3
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Fig. 8. Stroboscopic view of the 3-dof pendulum follow-
ing Path 2with: a) the pseudo-inverse Jacobianmethod,
b) the elas c band method (Scheme 1), c) the elas c
band method (Scheme 2)
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aswell as for the pseudo-inverse Jacobianmethod, are
gathered in Table 1.

The results seem to be rather unexpected as more
constrained method (the repeatable inverse) gener-
ated shorter (or almost the same length) trajecto-
ries as unconstrainedmethod (pseudo-inverse). To ex-
plain this phenomenon let us notice that the pseudo-
inverse method optimizes a change of con iguration
locally (from one iteration to another) while the elas-
tic band method exploits global distribution of con-
secutive node points. For this particular robot and
Path 1, it appears that the global knowledge in con-
strained task impacts the inal trajectory more than
a local optimization in unconstrained task. It can be
easily noticed, cf. Table 1) that the pseudo-inverse
method without optimization within the null space
of the Jacobian matrix is the fastest among methods
tested and Scheme 2 generated results much faster
than Scheme 1.

Finally, two schemes were tested on the
PUMA robot using cyclic Path 1 and Path 2. Once
again, a comparison with the pseudo-inverse
Jacobian method was preformed. For Path 1,
the initial con iguration was chosen as q(0) =
(−0.84◦, 62.40◦,−67.05◦, 46.58◦, 44.06◦, 45◦)T while
the inal con iguration was computed as q(1) =
(9.29◦, 66.17◦,−64.37◦,−24.97◦, 15.93◦, 45◦)T . The
pseudo-inverse method run for Path 2 also did
not satisfy the repeatability condition as q(0) =
(−11.25◦, 57.87◦,−78.52◦, 41.93◦, 34.17◦, 45◦)T and
q(1) = (−6.67◦, 61.80◦,−77.17◦, 43.16◦, 21.58◦, 45◦)T .
Numerical characteristics were gathered in Tab. 2
while the computed trajectories were plotted in
Figs. 9-10. As expected, the pseudo-inverse method
did not generate a closed-loop trajectory in the
con iguration space. When an elastic band method
was applied, for both of the schemes, the resulting
trajectory remained cyclic. The ordering of the tested
methods, with respect to the elapsed time to complete
prescribed tasks, observed for the model of 3-dof
pendulum remains valid also for the PUMA robot. One
can notice that the length of trajectories for the 3-dof
planar pendulum is almost the same for both initial
paths given in R2 while lengths of trajectories for
the PUMA robot differ signi icantly where paths are
given in R3. This observation should attract attention
of path designers to appropriately locate the path
within a taskspace (usually the shape of the path is
determined by technological requirements, but its
location not necessary).

4. Conclusions
In this paper an adaptation of the elastic band

method to repeatable inverse kinematic task was pre-
sented. Advantages of the proposed approach include:
an application of known and simple methods (the
Newton algorithm with an optimization in the null
space of the Jacobian matrix) simplicity of kinematic
computations which allow to implement this algo-
rithm also in on-line regime, admittance of many vari-
ants of changing the current cyclic trajectory as well
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Fig. 9. Trajectories of the PUMA robot generated for
Path 1 with: a) the Jacobian pseudo-inverse method, b)
the elas c band method (Scheme 1), c) the elas c band
method (Scheme 2)

Tab. 2. Numerical results for the PUMA robot

Path 1
method lenght [o] num. of pts. time [s]
pseudo-inverse 347.59 201 0.39
Scheme 1 384.79 201 9.06
Scheme 2 344.26 257 1.62

Path 2
method lenght [o] num. of pts. time [s]
pseudo-inverse 236.62 201 0.37
Scheme 1 249.12 201 7.14
Scheme 2 237.84 257 1.47

as optimization at many stages of the algorithm (the
Newton algorithm, selection the number and distribu-
tion of node points). This algorithm admits also exten-
sion inoptimizing the initial node con iguration (in the
current version is was assumed as a given initial data).
One more way to extend the proposed algorithm is to
adapt it to obstacle-cluttered environements, possibly,
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Fig. 10. Trajectories of the PUMA robot generated for
Path 2 with: a) the Jacobian pseudo-inverse method, b)
the elas c band method (Scheme 1), c) the elas c band
method (Scheme 2)

via rede ining quality function f to punish approach-
ing to obstacles.
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