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Abstract: 
This paper contains a review of literature concerning 
the packing of hard-blocks (of fixed dimensions) and 
soft-blocks (of fixed area – changeable within specified 
constraints). These considerations are applicable to the 
designing of large scale integration chips. In order to 
solve the problem of packing soft-blocks, three 
algorithms are introduced and compared: simulated 
annealing, heuristic constructional algorithm based on 
five operations to improve packing quality and the 
algorithm which combines two previous algorithms. 
Experiments were conducted to compare these 
algorithms to the best from the literature. 
 
Keywords: soft-blocks, hard-blocks, VLSI, packing 
problem. 
 
 
1. Introduction 

The continuous development of technology 
facilitates the lives of the users of modern devices, on 
the one hand, but also generates new problems to be 
faced by designers and engineers. One of such 
problems that challenge designers can be a physical 
synthesis of very large scale integration (VLSI) 
layouts. When one deals with billions of elements to 
be packed on a chip board (e.g. the most recent 
graphic card AMD Radeon HD 7970 has GPU with 
4.31 billion transistors), the synthesis, which is the 
implementation of the physical packing of chip 
elements and interconnections according to a logical 
scheme, becomes a critical point at the stage of design 
because it directly influences the chip price. For 
example, a 1% increase in the size of an Intel Pentium 
4 chipset would result in the annual increase of 
production costs amounting to $63.5 million (1.5%), 
whereas a size increase by 15% would induce the 
additional annual cost of $961 million (22%), see [7]. 
This implies the need to create algorithms which 
minimize the area needed to pack elements (or 
blocks, in general) on the chip surface at preset 
constraints in order to obtain the correct packing of 
elements and interconnections. 

Two types of blocks have been distinguished: 
rectangle of fixed dimensions referred to as hard-
block and rectangle of fixed area referred to as soft-
block (additional constraints may also exist). Recent 
methods concerning block packing are largely based 
on so-called sequence-pair, introduced by [14], and 
a constraint graph. However, existing approaches for 
hard-blocks based on sequence-pair and constraint 
graph cannot perform for soft-blocks, especially if no 

starting dimensions are specified at the beginning. 
Nevertheless, it is necessary to consider algorithms 
solving the problem of minimizing the area of 
floorplans for soft-blocks, because they are frequently 
used at the early stages of chip designing, when not 
all the details have been provided. 

Many algorithms for the soft-blocks packing problem 
may be found in the literature. Most of them were 
initially created to deal with the hard-blocks packing 
problem, and were adapted to soft-blocks as 
a consequence. Kirkpatrick in [11] described 
a simulated annealing (SA) algorithm which, since 
the first time it was used [15], has become one of the 
most frequently applied algorithms for packing hard-
blocks ([19], [3], [21], [4], [9], [5]). Also other 
metaheuristics algorithms exist, e.g. genetic algorithm 
[16], evolutionary algorithm ([18], [12]) or an 
algorithm, which is based on the primary principles of 
ant colony optimization [6]. There are also some 
implementations of SA for soft-blocks. The simplest one 
randomly modifies block dimensions within possible 
range during the neighbourhood modification [13]. 
Kang and Dai in [10] presented another heuristic 
method of how to calculate optimum width to height 
ratio regardless of packing generated by simulated 
annealing algorithm. A more sophisticated method of 
blocks adjustment during neighbourhood modifications 
was designed in [8]. Block dimensions adjustment based 
on Lagrange relaxation algorithms was introduced in 
[23].  The branch and bound algorithm in [1] gives the 
best results – in some cases the solution derived from 
this algorithm is optimal, but the time needed for finding 
a solution is unacceptable. 

In this paper we propose a quick heuristic 
(constructional) algorithm for floorplan minimization 
for soft-blocks. This algorithm requires an initial packing, 
which is then modified to eliminate empty spaces 
between blocks. The idea is based on the definition of 
soft-blocks – ability to change height and width within 
specified constraints. In this algorithm, were introduced 
some operations to improve the quality of the solution. 
The method was implemented in such a way, so that it 
could start from initial packing provided by any 
algorithm. In this paper, to generate the initial packing, 
simple implementation of simulated annealing 
algorithms based on the sequence-pair packing 
representation was used. 

This paper is organized as follows. The problem is 
formulated in section 2. Then, section 3 provides  
a description of sequence-pair and constraint graph used 
to represent packing. Simulated annealing algorithm 
was described in section 4 and the essential 
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constructional algorithm in section 5. Section 6 
demonstrates the results of experiments and it is 
followed by a summary and conclusion in section 7. 

 
2. Problem Formulation 

A set B = {B1, B2, …, Bi, …, Bn} of soft-blocks is given 
to be packed into rectangular area. Each block Bi is 
described by its area Ai as follows: 

 
 �� ∶=  ℎ� �  ��  , (1)
 
where  hi – block height, wi – block width, further-
more, the ratio �� = ��

��
 is in the range: 

 
 �����  �  �� � ����� ,  � = 1, 2, � , �, (2)
 
where kmin and kmax are explicitly given parameters. 

 
The packing which satisfies requirements (1) and 

(2), and no two blocks overlap, would be called 
a feasible one. 

The problem is to find a feasible packing where 
dead-space (DS) is as close to 0% as possible. 
The minimized criterion DS is given as follows [17]: 

 
 �� = ��∑ ������

∑ ������
× 100 [%] , where (3)

  
− U is a total area of a floorplan for packing and 
− ∑ ���

���  is a sum of areas of packed blocks (Ai is an 
area of block i). 
 
To solve this problem, the simulated annealing 

algorithm is used (section 4) modified for 
a considered problem and a constructional algorithm 
using the following operations: sliding, scaling, 
scaling with displacement, eliminating dead spaces 
and rotating layout (section 5). The third algorithm 
proposed in this paper combines both previous 
algorithms. 
 
3. Floorplan Representation – Sequence-pair 

and Constraint Graphs 
Both sequence-pair and constraint graphs are used to 

describe topological relation of blocks within a packing. 
A sequence-pair is an ordered pair of n-element block 
index sequences, both sequences contain exactly the 
same elements (indices of all blocks from the set B) 
arranged in specific order. The position of two particular 
elements in both sequences determines the topological 
relation of them. For given blocks indices i,j ∈ {1, 2, 3, …, 
n} and i ≠ j, relation of blocks i and j will be horizontal, if 
in both sequences i comes first before j (4). Otherwise, 
the relation is vertical (5). 

 
(< .., i, .., j, .. >,< .., i, .., j, .. >) �  i ��j (4)
(< .., j, .., i, .. >,< .., i, .., j, .. >) �  i ��j (5)

 
The topological relations of blocks can also be 

calculated by using constraint graphs, provided that one 
knows the height and width of every block. The 
horizontal (vertical) graph marked as Gh (Gv) has n 

vertices and n edges of specified weight. Vertices 
represent blocks, whereas edges represent topological 
relations. The edge between the vertex i and vertex j of 
weight equal to wi (width of block i) is added to the 
horizontal graph when the condition (4) is fulfilled. If 
the condition (5) is fulfilled, the edge between vertex i 
and j of weight equal to hi (height of block i) is added to 
the vertical graph. Thus one adds an edge to Gh and Gv 
for every pair of blocks in both sequences. Created 
constraint graphs are used to calculate a width (from the 
graph Gh) and a height (from the graph Gv) of the whole 
floorplan represented by these graphs. For this 
calculation one can use, for instance, the algorithm 
finding longest path in the graph [20]. 

In the Cartesian coordinate system the horizontal 
relation of i and j means that on the plane,  block  j is 
situated to the right of the block i, so xj ≥ xi + wi, where 
xi is a horizontal coordinate of the lower left vertex of 
the block i and wi is a width of the block i. In the same 
way, for the vertical relation, block j is situated over 
the block i, so yj ≥ yi + hi, where yi is a vertical 
coordinate of the lower left vertex of the block i and hi 
is a height of the block i. As a consequence, horizontal 
relation determines packing of blocks from left to 
right, and the vertical one from the bottom to the top. 
 
4. Simulated Annealing Algorithm 

The method described in [11] (or rather 
methodology, to be more specific) called simulated 
annealing, perfectly simulates the process, which is well-
known in metallurgy as annealing (heating up an 
element and then cooling it down very slowly). 
Parameters required to apply this method are initial 
temperature (Tp), terminating temperature (ϵ), 
temperature change (α), neighbourhood function (to 
generate a new state) and goal function (calculation of 
state energy). 

A great advantage of simulated annealing is that in 
the course of calculations, a worse solution can be 
accepted that can lead to a better one finally This 
method is partially based on a modified version of the 
Monte Carlo method called random walk method. This 
method assumes an acceptance of the obtained result 
that is worse than the best one, which had been found so 
far. The probability of acceptance of a worse solution is 
expressed by formula exp (∆������

� ), where ∆energy is 
a difference between the previous and current state 
energy, and t is a current temperature. Temperature 
dependence induces a higher probability that worse 
results shall be accepted at the first stage of method, 
when the temperature is higher. The lower the 
temperature is, the more often better results are 
accepted. As a consequence, during the final stage when 
the temperature is the lowest, the current solution can 
be improved as much as possible without replacement. 

In this paper an algorithm was constructed, which is 
based on this method. During the annealing process, 
a sequence-pair is modified very simply, by the random 
exchange of two elements and the next obtained 
solution is evaluated by calculating the packing area 
(this is the cost function). Initial sequence-pair is 
generated randomly and used both in SA and the 
proposed algorithm described in the next section. 
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5. Constructional Algorithm 
In this section, a new heuristic constructional 

algorithm is presented, which uses the operations 
described below to improve a solution. The algorithm 
starts from the same initial solution as simulated 
annealing and executes the following steps to 
improve this solution: 
Step 1. Save the initial solution IS as a current 

solution CS (CS = IS) and as the best solution 
BS (BS = IS). Set rotation to 0o (R = 0o). 

Step 2. Modify CS by executing operations in the 
following order: blocks sliding, blocks 
scaling, scaling with displacement, 
elimination of dead empty spaces; until the 
area is reduced as much as possible. 

Step 3. If CS is better than BS (the dead space (DS) of 
CS is smaller than in BS), save CS as BS  
(BS = CS). 

Step 4. If rotation is 270o (R = 270o), go to Step 5.  
If rotation is different than 270o, add 90o to 
current rotation value (R = R + 90o), save  
IS as CS (CS = IS) and rotate CS clockwise by 
R value, then go to Step 2. 

Step 5. End of the algorithm, BS is the final solution 
given by constructional algorithm. 

 
5.1 Blocks Sliding 

To simplify the description, only the first quarter 
of the Cartesian coordinate system is used, where 
both coordinates (x, y) are positive, so the lower left 
corner of the floorplan is in the point (0, 0). Blocks 
sliding is the operation of moving blocks as close to 
the origin of the coordinate system as possible – 
down and left (two separate operations), only if  there 
is enough space to move them – blocks cannot 
overlap after being moved. Sliding takes place 
recursively, beginning with the blocks, which are 
closest to the point of origin (from the left or from the 
bottom) – Figure 1. 

 

 
a) initial packing b) after sliding 

  Fig. 1. Example of blocks sliding to the left 
 
5.2 Blocks Scaling 

Blocks sliding operation eliminates empty spaces, 
which are on the left or below each of the blocks. Soft-
blocks allow constrained modification of height and 
width. Using this property for each block with an 
empty space on the right, the algorithm changes the 
width or height (within the preset constraints – see 
(2)) to fill in the empty space if it is possible. This 
operation is called blocks scaling. 

Figure 2 shows an example of blocks scaling. The 
height of the first two blocks in the lower left corner 

(blocks 2 and 6) was increased and the width was 
decreased (the overall area did not change). As a 
result, the empty space over blocks was filled by 
reducing the width of 2 and 6 and this enabled 
shifting other blocks from right side to the left. 
 

 
a) initial packing b) packing after scaling 

Fig. 2. Example of blocks scaling 
 

 
a) initial packing 

 
b) horizontal scaling 

 
c) blocks displacement  

and scaling 
d) final packing 

Fig. 3. Example of scaling with displacement
 
5.2 Scaling with Displacement 

The two operations described above (sliding and 
scaling) can be used independently, but in some cases, 
using sliding and scaling independently does not give 
the desired results, e.g. the packing in Figure 3a is 
specific – the empty space is only around block 5. 
Therefore, sliding causes no changes and scaling would 
only turn the square block 5 into a rectangle – Figure 3b. 
In this case the desired result was not achieved – the 
area of the floorplan was not reduced. 

Scaling with displacement is an ‘intelligent’ 
scaling performed as follows: the block with an empty 
space above is moved in up and scaled in order to 
increase height at the expense of width. The same 
action is performed also for each block which is 
below the moved one (Figure 3c). Then the algorithm 
starts to slide blocks – all of them are moved down as 
far as possible. The whole cycle is repeated until there 
are no empty spaces above the blocks (Figure 3d) or 
the height or width constraint is reached. 

The above description refers to the operation of 
scaling with displacement for vertical orientation. 
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The algorithm also works the same for horizontal 
orientation. 
 

 
a) initial packing b) packing after the elimination of 

the deadlocked empty spaces 

Fig. 4. Example of eliminating deadlocked empty spaces 
between blocks 9, 8, 0, 1 and 7, 1, 2, 4 
 

 
a) initial packing b) packing without rotation 

Fig. 5. Example of optimization without rotation
 
5.4 Elimination of Deadlocked Empty Spaces 

In some cases there are deadlocked empty spaces 
between four adjacent blocks, e.g. empty space 
between blocks 9, 8, 1 and 0 or 7, 1, 2 and 4 in Figure 
4. Such a situation cannot be solved using the 
previous operations, because none of the blocks can 
be displaced or scaled. Any action would cause an 
overlap, which is not acceptable. 

Optimization starts from spreading the blocks 
apart. For the example in Figure 4, the following 
operations will be performed: block 9 is expanded to 
the width of block 8 to fill in the empty space. At the 
same time, all blocks on the right of block 9 are 
shifted to the right by the resulting difference, so that 
they do not overlap (block 9 is a little different in its 
width from block 8 which is a consequence of other 
operations performed later). Analogically, in the 
second case, block 1 is expanded to the width of block 
7 and block 2 is moved to the right so that it does not 
overlap with the expanded block 1. 

 
5.5 Layout Rotation 

The four previous operations do not solve the 
problem, when the empty space is located in the 
middle of the layout or close to the origin of 
coordinate system (see an example of the described 
packing – Figure 5). In this case, the empty space is 
moved as close to the upper right corner of floorplan 
as possible by rotating the whole layout. Rotation is 
made in clockwise direction, around the origin of 
coordinate system by 90° or a multiple of it. 

Figure 5 shows that the process of packing 
optimization failed (four previous operations without 
rotation were used). The empty space decreased, but 

has not disappeared. For the same initial packing an 
optimal solution was obtained after rotation by 180° 
and using scaling and displacement operations 
(Figure 3d). 

 

 
a) initial packing b) rotation by 90o 

 

 
c) rotation by 180o d) rotation by 270o 

Fig. 6. Example of packing rotation by 90o, 180o or 270o

 
In the case, when the empty space is on the right or 

at the top of the floorplan, the results can be worse after 
rotating the layout. Therefore, the constructional 
algorithm is executed starting from initial and three 
rotated packings and chooses solution with the smallest 
value of DS as the final solution.  
 
6. Experimental Analysis 

Experiments were based on MCNC benchmarks 
available in the literature [22]. Four benchmarks were 
chosen (the value in the brackets is a number of blocks): 
apte (9), xerox (10), hp (11), ami33 (33). For all of these, 
constraints were determined kmin = 0.5 and kmax = 2.0. For 
the experiments a computer was used with the 
following parameters: Windows 7, Intel(R) Core(TM) i7 
CPU Q 840 @ 1.87GHz and 8 GB RAM. 

Both simulated annealing algorithm (SA) (see 
section 4) and constructional algorithm (CA) (see 
section 5) require initial sequence-pair. This pair was 
generated randomly and was the same for both 
algorithms. The experiments were performed also for 
the algorithm, which combines the SA and CA (marked 
as SA+CA). In this algorithm, solutions obtained from 
the SA algorithm became the initial solutions for the CA 
algorithm. 

10 different initial packings were randomly 
generated. For every one of these, we executed each 
algorithm separately: SA, CA and SA+CA. 
A constructional algorithm was run once for a single 
initial packing, because of its determinist operating. The 
SA algorithm was executed 50 times for every initial 
packing. The best from 50 results was chosen, which 
was considered as a final solution. For each trial the 
following parameters of simulated annealing were used 

The algorithm also works the same for horizontal 
orientation. 
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Fig. 4. Example of eliminating deadlocked empty spaces 
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Fig. 5. Example of optimization without rotation
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apte (9), xerox (10), hp (11), ami33 (33). For all of these, 
constraints were determined kmin = 0.5 and kmax = 2.0. For 
the experiments a computer was used with the 
following parameters: Windows 7, Intel(R) Core(TM) i7 
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section 5) require initial sequence-pair. This pair was 
generated randomly and was the same for both 
algorithms. The experiments were performed also for 
the algorithm, which combines the SA and CA (marked 
as SA+CA). In this algorithm, solutions obtained from 
the SA algorithm became the initial solutions for the CA 
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generated. For every one of these, we executed each 
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(determined during experiments): Tp = 400, ϵ = 0.001, 
α = 0.999. 

 
Experiment 1 

The simulated annealing algorithm requires hard-
blocks to operate correctly. Hard-blocks were obtained 
from soft-blocks by setting three constant values of  
k = {0.5; 1.0; 2.0}, so the first stage of the algorithm is to 
create hard-blocks according to these three values. 
During the first experiment, results were obtained and 
compared for three algorithms (SA, CA, SA+CA) applied 
to 10 initial packings generated randomly and for three 
values of k ratio. 

Bolded values in Table 1 are the best dead-space 
(DS) values for a particular benchmark, the same 
algorithm and three chosen values of k. The simulated 
annealing algorithm (SA), constructional algorithm (CA) 
and a combination of the two (SA+CA) are the most 
effective for blocks created for k = 1.0, that is for square 
blocks (4 out of 36 values turned out to be better for  
k = 0.5). 
 
Table 1. Comparison of results obtained at different 
values of k for the simulated annealing algorithm (SA), 
constructional algorithm (CA) and a combination of 
the two (SA+CA). The table contains minimum, 
maximum and average percentage value of the DS 
criterion for 10 different initial solutions. BIS (Best 
Initial Solution) lines include values of the DS obtained 
for the initial solution which gave the best result 
 

Be
nc

hm
ark

 k = 0.5 k = 1.0 k = 2.0 

SA 
[%] 

SA 
+CA 
[%] 

CA 
[%] 

SA 
[%] 

SA 
+CA 
[%] 

CA 
[%] 

SA 
[%] 

SA
+CA 
[%] 

CA 
[%] 

ap
te

 

BIS 49.83 6.93 7.80 12.22 11.93 1.32 16.15 15.72 5.29

min 24.96 6.93 7.80 4.93 1.94 1.32 16.15 11.34 5.29

avg. 44.02 19.97 20.90 13.07 9.82 5.46 39.95 21.67 30.56

max 55.45 26.98 44.38 20.07 15.18 8.18 59.88 34.38 49.83

xe
ro

x 

BIS 44.73 27.87 11.40 37.75 5.21 1.45 41.37 28.29 7.29

min 25.63 16.67 11.40 25.36 5.21 1.45 25.65 11.36 7.29

avg. 35.75 22.82 24.25 43.73 16.63 15.45 46.10 16.95 28.06

max 45.84 31.33 49.99 58.65 32.55 28.12 66.77 32.56 53.35

hp
 

BIS 47.42 13.82 5.39 27.68 7.41 6.49 41.64 8.78 7.77

min 28.55 13.53 5.39 27.68 7.41 6.49 20.97 8.78 7.77

avg. 43.58 23.45 16.35 43.23 18.90 12.16 45.04 30.41 25.75
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the sample apte from 49.83% to 6.93%. To conclude, 
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those produced by algorithms from the literature. In 
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despite the fact that it gives solutions with worse DS, is 
faster than the other algorithms. This is the reason why 
it may be applicable to chips, which consist of a large 
number of elements where time is a considerable factor. 
It may also be used as an algorithm to improve packing 
results produced by an algorithm, which minimizes the 
length of interconnections [2]. 
 
7. Summary 

The constructional algorithm CA described in this 
paper, significantly decreases the value of the DS 
criterion, and consequently, reduces the overall area of 
the floorplan for all tested benchmarks. It should be 
emphasized that the best results are obtained for those 
layouts that consist of square blocks in their initial 
packing (k    =  1.0). A great advantage of the algorithm is a 
short execution time and ability to start from any initial 
packing represented in Cartesian coordinate system. 
The proposed algorithm may be used to improve results 
obtained from other algorithms. 
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