
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles 37

 Algorithms for Packing Soft Blocks of Vlsi Systems

Marcin Iwaniec, Adam Janiak

Submitted: 1st August 2012; accepted: 30th January 2013

 Algorithms for Packing Soft Blocks Of Vlsi Systems
Marcin Iwaniec, Adam Janiak

Submitted 1st August 2012; accepted 30th January 2013

Abstract:
This paper contains a review of literature concerning
the packing of hard-blocks (of fixed dimensions) and
soft-blocks (of fixed area – changeable within specified
constraints). These considerations are applicable to the
designing of large scale integration chips. In order to
solve the problem of packing soft-blocks, three
algorithms are introduced and compared: simulated
annealing, heuristic constructional algorithm based on
five operations to improve packing quality and the
algorithm which combines two previous algorithms.
Experiments were conducted to compare these
algorithms to the best from the literature.

Keywords: soft-blocks, hard-blocks, VLSI, packing
problem.

1. Introduction

The continuous development of technology
facilitates the lives of the users of modern devices, on
the one hand, but also generates new problems to be
faced by designers and engineers. One of such
problems that challenge designers can be a physical
synthesis of very large scale integration (VLSI)
layouts. When one deals with billions of elements to
be packed on a chip board (e.g. the most recent
graphic card AMD Radeon HD 7970 has GPU with
4.31 billion transistors), the synthesis, which is the
implementation of the physical packing of chip
elements and interconnections according to a logical
scheme, becomes a critical point at the stage of design
because it directly influences the chip price. For
example, a 1% increase in the size of an Intel Pentium
4 chipset would result in the annual increase of
production costs amounting to $63.5 million (1.5%),
whereas a size increase by 15% would induce the
additional annual cost of $961 million (22%), see [7].
This implies the need to create algorithms which
minimize the area needed to pack elements (or
blocks, in general) on the chip surface at preset
constraints in order to obtain the correct packing of
elements and interconnections.

Two types of blocks have been distinguished:
rectangle of fixed dimensions referred to as hard-
block and rectangle of fixed area referred to as soft-
block (additional constraints may also exist). Recent
methods concerning block packing are largely based
on so-called sequence-pair, introduced by [14], and
a constraint graph. However, existing approaches for
hard-blocks based on sequence-pair and constraint
graph cannot perform for soft-blocks, especially if no

starting dimensions are specified at the beginning.
Nevertheless, it is necessary to consider algorithms
solving the problem of minimizing the area of
floorplans for soft-blocks, because they are frequently
used at the early stages of chip designing, when not
all the details have been provided.

Many algorithms for the soft-blocks packing problem
may be found in the literature. Most of them were
initially created to deal with the hard-blocks packing
problem, and were adapted to soft-blocks as
a consequence. Kirkpatrick in [11] described
a simulated annealing (SA) algorithm which, since
the first time it was used [15], has become one of the
most frequently applied algorithms for packing hard-
blocks ([19], [3], [21], [4], [9], [5]). Also other
metaheuristics algorithms exist, e.g. genetic algorithm
[16], evolutionary algorithm ([18], [12]) or an
algorithm, which is based on the primary principles of
ant colony optimization [6]. There are also some
implementations of SA for soft-blocks. The simplest one
randomly modifies block dimensions within possible
range during the neighbourhood modification [13].
Kang and Dai in [10] presented another heuristic
method of how to calculate optimum width to height
ratio regardless of packing generated by simulated
annealing algorithm. A more sophisticated method of
blocks adjustment during neighbourhood modifications
was designed in [8]. Block dimensions adjustment based
on Lagrange relaxation algorithms was introduced in
[23]. The branch and bound algorithm in [1] gives the
best results – in some cases the solution derived from
this algorithm is optimal, but the time needed for finding
a solution is unacceptable.

In this paper we propose a quick heuristic
(constructional) algorithm for floorplan minimization
for soft-blocks. This algorithm requires an initial packing,
which is then modified to eliminate empty spaces
between blocks. The idea is based on the definition of
soft-blocks – ability to change height and width within
specified constraints. In this algorithm, were introduced
some operations to improve the quality of the solution.
The method was implemented in such a way, so that it
could start from initial packing provided by any
algorithm. In this paper, to generate the initial packing,
simple implementation of simulated annealing
algorithms based on the sequence-pair packing
representation was used.

This paper is organized as follows. The problem is
formulated in section 2. Then, section 3 provides
a description of sequence-pair and constraint graph used
to represent packing. Simulated annealing algorithm
was described in section 4 and the essential

 Algorithms for Packing Soft Blocks Of Vlsi Systems
Marcin Iwaniec, Adam Janiak

Submitted 1st August 2012; accepted 30th January 2013

Abstract:
This paper contains a review of literature concerning
the packing of hard-blocks (of fixed dimensions) and
soft-blocks (of fixed area – changeable within specified
constraints). These considerations are applicable to the
designing of large scale integration chips. In order to
solve the problem of packing soft-blocks, three
algorithms are introduced and compared: simulated
annealing, heuristic constructional algorithm based on
five operations to improve packing quality and the
algorithm which combines two previous algorithms.
Experiments were conducted to compare these
algorithms to the best from the literature.

Keywords: soft-blocks, hard-blocks, VLSI, packing
problem.

1. Introduction

The continuous development of technology
facilitates the lives of the users of modern devices, on
the one hand, but also generates new problems to be
faced by designers and engineers. One of such
problems that challenge designers can be a physical
synthesis of very large scale integration (VLSI)
layouts. When one deals with billions of elements to
be packed on a chip board (e.g. the most recent
graphic card AMD Radeon HD 7970 has GPU with
4.31 billion transistors), the synthesis, which is the
implementation of the physical packing of chip
elements and interconnections according to a logical
scheme, becomes a critical point at the stage of design
because it directly influences the chip price. For
example, a 1% increase in the size of an Intel Pentium
4 chipset would result in the annual increase of
production costs amounting to $63.5 million (1.5%),
whereas a size increase by 15% would induce the
additional annual cost of $961 million (22%), see [7].
This implies the need to create algorithms which
minimize the area needed to pack elements (or
blocks, in general) on the chip surface at preset
constraints in order to obtain the correct packing of
elements and interconnections.

Two types of blocks have been distinguished:
rectangle of fixed dimensions referred to as hard-
block and rectangle of fixed area referred to as soft-
block (additional constraints may also exist). Recent
methods concerning block packing are largely based
on so-called sequence-pair, introduced by [14], and
a constraint graph. However, existing approaches for
hard-blocks based on sequence-pair and constraint
graph cannot perform for soft-blocks, especially if no

starting dimensions are specified at the beginning.
Nevertheless, it is necessary to consider algorithms
solving the problem of minimizing the area of
floorplans for soft-blocks, because they are frequently
used at the early stages of chip designing, when not
all the details have been provided.

Many algorithms for the soft-blocks packing problem
may be found in the literature. Most of them were
initially created to deal with the hard-blocks packing
problem, and were adapted to soft-blocks as
a consequence. Kirkpatrick in [11] described
a simulated annealing (SA) algorithm which, since
the first time it was used [15], has become one of the
most frequently applied algorithms for packing hard-
blocks ([19], [3], [21], [4], [9], [5]). Also other
metaheuristics algorithms exist, e.g. genetic algorithm
[16], evolutionary algorithm ([18], [12]) or an
algorithm, which is based on the primary principles of
ant colony optimization [6]. There are also some
implementations of SA for soft-blocks. The simplest one
randomly modifies block dimensions within possible
range during the neighbourhood modification [13].
Kang and Dai in [10] presented another heuristic
method of how to calculate optimum width to height
ratio regardless of packing generated by simulated
annealing algorithm. A more sophisticated method of
blocks adjustment during neighbourhood modifications
was designed in [8]. Block dimensions adjustment based
on Lagrange relaxation algorithms was introduced in
[23]. The branch and bound algorithm in [1] gives the
best results – in some cases the solution derived from
this algorithm is optimal, but the time needed for finding
a solution is unacceptable.

In this paper we propose a quick heuristic
(constructional) algorithm for floorplan minimization
for soft-blocks. This algorithm requires an initial packing,
which is then modified to eliminate empty spaces
between blocks. The idea is based on the definition of
soft-blocks – ability to change height and width within
specified constraints. In this algorithm, were introduced
some operations to improve the quality of the solution.
The method was implemented in such a way, so that it
could start from initial packing provided by any
algorithm. In this paper, to generate the initial packing,
simple implementation of simulated annealing
algorithms based on the sequence-pair packing
representation was used.

This paper is organized as follows. The problem is
formulated in section 2. Then, section 3 provides
a description of sequence-pair and constraint graph used
to represent packing. Simulated annealing algorithm
was described in section 4 and the essential

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles38

constructional algorithm in section 5. Section 6
demonstrates the results of experiments and it is
followed by a summary and conclusion in section 7.

2. Problem Formulation

A set B = {B1, B2, …, Bi, …, Bn} of soft-blocks is given
to be packed into rectangular area. Each block Bi is
described by its area Ai as follows:

 �� ∶= ℎ� � �� , (1)

where hi – block height, wi – block width, further-
more, the ratio �� = ��

��
 is in the range:

 ����� � �� � ����� , � = 1, 2, � , �, (2)

where kmin and kmax are explicitly given parameters.

The packing which satisfies requirements (1) and

(2), and no two blocks overlap, would be called
a feasible one.

The problem is to find a feasible packing where
dead-space (DS) is as close to 0% as possible.
The minimized criterion DS is given as follows [17]:

 �� = ��∑ ������

∑ ������
× 100 [%] , where (3)

− U is a total area of a floorplan for packing and
− ∑ ���

��� is a sum of areas of packed blocks (Ai is an
area of block i).

To solve this problem, the simulated annealing

algorithm is used (section 4) modified for
a considered problem and a constructional algorithm
using the following operations: sliding, scaling,
scaling with displacement, eliminating dead spaces
and rotating layout (section 5). The third algorithm
proposed in this paper combines both previous
algorithms.

3. Floorplan Representation – Sequence-pair

and Constraint Graphs
Both sequence-pair and constraint graphs are used to

describe topological relation of blocks within a packing.
A sequence-pair is an ordered pair of n-element block
index sequences, both sequences contain exactly the
same elements (indices of all blocks from the set B)
arranged in specific order. The position of two particular
elements in both sequences determines the topological
relation of them. For given blocks indices i,j ∈ {1, 2, 3, …,
n} and i ≠ j, relation of blocks i and j will be horizontal, if
in both sequences i comes first before j (4). Otherwise,
the relation is vertical (5).

(< .., i, .., j, .. >,< .., i, .., j, .. >) � i ��j (4)
(< .., j, .., i, .. >,< .., i, .., j, .. >) � i ��j (5)

The topological relations of blocks can also be

calculated by using constraint graphs, provided that one
knows the height and width of every block. The
horizontal (vertical) graph marked as Gh (Gv) has n

vertices and n edges of specified weight. Vertices
represent blocks, whereas edges represent topological
relations. The edge between the vertex i and vertex j of
weight equal to wi (width of block i) is added to the
horizontal graph when the condition (4) is fulfilled. If
the condition (5) is fulfilled, the edge between vertex i
and j of weight equal to hi (height of block i) is added to
the vertical graph. Thus one adds an edge to Gh and Gv
for every pair of blocks in both sequences. Created
constraint graphs are used to calculate a width (from the
graph Gh) and a height (from the graph Gv) of the whole
floorplan represented by these graphs. For this
calculation one can use, for instance, the algorithm
finding longest path in the graph [20].

In the Cartesian coordinate system the horizontal
relation of i and j means that on the plane, block j is
situated to the right of the block i, so xj ≥ xi + wi, where
xi is a horizontal coordinate of the lower left vertex of
the block i and wi is a width of the block i. In the same
way, for the vertical relation, block j is situated over
the block i, so yj ≥ yi + hi, where yi is a vertical
coordinate of the lower left vertex of the block i and hi
is a height of the block i. As a consequence, horizontal
relation determines packing of blocks from left to
right, and the vertical one from the bottom to the top.

4. Simulated Annealing Algorithm

The method described in [11] (or rather
methodology, to be more specific) called simulated
annealing, perfectly simulates the process, which is well-
known in metallurgy as annealing (heating up an
element and then cooling it down very slowly).
Parameters required to apply this method are initial
temperature (Tp), terminating temperature (ϵ),
temperature change (α), neighbourhood function (to
generate a new state) and goal function (calculation of
state energy).

A great advantage of simulated annealing is that in
the course of calculations, a worse solution can be
accepted that can lead to a better one finally This
method is partially based on a modified version of the
Monte Carlo method called random walk method. This
method assumes an acceptance of the obtained result
that is worse than the best one, which had been found so
far. The probability of acceptance of a worse solution is
expressed by formula exp (∆������

�), where ∆energy is
a difference between the previous and current state
energy, and t is a current temperature. Temperature
dependence induces a higher probability that worse
results shall be accepted at the first stage of method,
when the temperature is higher. The lower the
temperature is, the more often better results are
accepted. As a consequence, during the final stage when
the temperature is the lowest, the current solution can
be improved as much as possible without replacement.

In this paper an algorithm was constructed, which is
based on this method. During the annealing process,
a sequence-pair is modified very simply, by the random
exchange of two elements and the next obtained
solution is evaluated by calculating the packing area
(this is the cost function). Initial sequence-pair is
generated randomly and used both in SA and the
proposed algorithm described in the next section.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles 39

5. Constructional Algorithm
In this section, a new heuristic constructional

algorithm is presented, which uses the operations
described below to improve a solution. The algorithm
starts from the same initial solution as simulated
annealing and executes the following steps to
improve this solution:
Step 1. Save the initial solution IS as a current

solution CS (CS = IS) and as the best solution
BS (BS = IS). Set rotation to 0o (R = 0o).

Step 2. Modify CS by executing operations in the
following order: blocks sliding, blocks
scaling, scaling with displacement,
elimination of dead empty spaces; until the
area is reduced as much as possible.

Step 3. If CS is better than BS (the dead space (DS) of
CS is smaller than in BS), save CS as BS
(BS = CS).

Step 4. If rotation is 270o (R = 270o), go to Step 5.
If rotation is different than 270o, add 90o to
current rotation value (R = R + 90o), save
IS as CS (CS = IS) and rotate CS clockwise by
R value, then go to Step 2.

Step 5. End of the algorithm, BS is the final solution
given by constructional algorithm.

5.1 Blocks Sliding

To simplify the description, only the first quarter
of the Cartesian coordinate system is used, where
both coordinates (x, y) are positive, so the lower left
corner of the floorplan is in the point (0, 0). Blocks
sliding is the operation of moving blocks as close to
the origin of the coordinate system as possible –
down and left (two separate operations), only if there
is enough space to move them – blocks cannot
overlap after being moved. Sliding takes place
recursively, beginning with the blocks, which are
closest to the point of origin (from the left or from the
bottom) – Figure 1.

a) initial packing b) after sliding

 Fig. 1. Example of blocks sliding to the left

5.2 Blocks Scaling

Blocks sliding operation eliminates empty spaces,
which are on the left or below each of the blocks. Soft-
blocks allow constrained modification of height and
width. Using this property for each block with an
empty space on the right, the algorithm changes the
width or height (within the preset constraints – see
(2)) to fill in the empty space if it is possible. This
operation is called blocks scaling.

Figure 2 shows an example of blocks scaling. The
height of the first two blocks in the lower left corner

(blocks 2 and 6) was increased and the width was
decreased (the overall area did not change). As a
result, the empty space over blocks was filled by
reducing the width of 2 and 6 and this enabled
shifting other blocks from right side to the left.

a) initial packing b) packing after scaling

Fig. 2. Example of blocks scaling

a) initial packing

b) horizontal scaling

c) blocks displacement

and scaling
d) final packing

Fig. 3. Example of scaling with displacement

5.2 Scaling with Displacement

The two operations described above (sliding and
scaling) can be used independently, but in some cases,
using sliding and scaling independently does not give
the desired results, e.g. the packing in Figure 3a is
specific – the empty space is only around block 5.
Therefore, sliding causes no changes and scaling would
only turn the square block 5 into a rectangle – Figure 3b.
In this case the desired result was not achieved – the
area of the floorplan was not reduced.

Scaling with displacement is an ‘intelligent’
scaling performed as follows: the block with an empty
space above is moved in up and scaled in order to
increase height at the expense of width. The same
action is performed also for each block which is
below the moved one (Figure 3c). Then the algorithm
starts to slide blocks – all of them are moved down as
far as possible. The whole cycle is repeated until there
are no empty spaces above the blocks (Figure 3d) or
the height or width constraint is reached.

The above description refers to the operation of
scaling with displacement for vertical orientation.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles40

The algorithm also works the same for horizontal
orientation.

a) initial packing b) packing after the elimination of

the deadlocked empty spaces

Fig. 4. Example of eliminating deadlocked empty spaces
between blocks 9, 8, 0, 1 and 7, 1, 2, 4

a) initial packing b) packing without rotation

Fig. 5. Example of optimization without rotation

5.4 Elimination of Deadlocked Empty Spaces

In some cases there are deadlocked empty spaces
between four adjacent blocks, e.g. empty space
between blocks 9, 8, 1 and 0 or 7, 1, 2 and 4 in Figure
4. Such a situation cannot be solved using the
previous operations, because none of the blocks can
be displaced or scaled. Any action would cause an
overlap, which is not acceptable.

Optimization starts from spreading the blocks
apart. For the example in Figure 4, the following
operations will be performed: block 9 is expanded to
the width of block 8 to fill in the empty space. At the
same time, all blocks on the right of block 9 are
shifted to the right by the resulting difference, so that
they do not overlap (block 9 is a little different in its
width from block 8 which is a consequence of other
operations performed later). Analogically, in the
second case, block 1 is expanded to the width of block
7 and block 2 is moved to the right so that it does not
overlap with the expanded block 1.

5.5 Layout Rotation

The four previous operations do not solve the
problem, when the empty space is located in the
middle of the layout or close to the origin of
coordinate system (see an example of the described
packing – Figure 5). In this case, the empty space is
moved as close to the upper right corner of floorplan
as possible by rotating the whole layout. Rotation is
made in clockwise direction, around the origin of
coordinate system by 90° or a multiple of it.

Figure 5 shows that the process of packing
optimization failed (four previous operations without
rotation were used). The empty space decreased, but

has not disappeared. For the same initial packing an
optimal solution was obtained after rotation by 180°
and using scaling and displacement operations
(Figure 3d).

a) initial packing b) rotation by 90o

c) rotation by 180o d) rotation by 270o

Fig. 6. Example of packing rotation by 90o, 180o or 270o

In the case, when the empty space is on the right or

at the top of the floorplan, the results can be worse after
rotating the layout. Therefore, the constructional
algorithm is executed starting from initial and three
rotated packings and chooses solution with the smallest
value of DS as the final solution.

6. Experimental Analysis

Experiments were based on MCNC benchmarks
available in the literature [22]. Four benchmarks were
chosen (the value in the brackets is a number of blocks):
apte (9), xerox (10), hp (11), ami33 (33). For all of these,
constraints were determined kmin = 0.5 and kmax = 2.0. For
the experiments a computer was used with the
following parameters: Windows 7, Intel(R) Core(TM) i7
CPU Q 840 @ 1.87GHz and 8 GB RAM.

Both simulated annealing algorithm (SA) (see
section 4) and constructional algorithm (CA) (see
section 5) require initial sequence-pair. This pair was
generated randomly and was the same for both
algorithms. The experiments were performed also for
the algorithm, which combines the SA and CA (marked
as SA+CA). In this algorithm, solutions obtained from
the SA algorithm became the initial solutions for the CA
algorithm.

10 different initial packings were randomly
generated. For every one of these, we executed each
algorithm separately: SA, CA and SA+CA.
A constructional algorithm was run once for a single
initial packing, because of its determinist operating. The
SA algorithm was executed 50 times for every initial
packing. The best from 50 results was chosen, which
was considered as a final solution. For each trial the
following parameters of simulated annealing were used

The algorithm also works the same for horizontal
orientation.

a) initial packing b) packing after the elimination of

the deadlocked empty spaces

Fig. 4. Example of eliminating deadlocked empty spaces
between blocks 9, 8, 0, 1 and 7, 1, 2, 4

a) initial packing b) packing without rotation

Fig. 5. Example of optimization without rotation

5.4 Elimination of Deadlocked Empty Spaces

In some cases there are deadlocked empty spaces
between four adjacent blocks, e.g. empty space
between blocks 9, 8, 1 and 0 or 7, 1, 2 and 4 in Figure
4. Such a situation cannot be solved using the
previous operations, because none of the blocks can
be displaced or scaled. Any action would cause an
overlap, which is not acceptable.

Optimization starts from spreading the blocks
apart. For the example in Figure 4, the following
operations will be performed: block 9 is expanded to
the width of block 8 to fill in the empty space. At the
same time, all blocks on the right of block 9 are
shifted to the right by the resulting difference, so that
they do not overlap (block 9 is a little different in its
width from block 8 which is a consequence of other
operations performed later). Analogically, in the
second case, block 1 is expanded to the width of block
7 and block 2 is moved to the right so that it does not
overlap with the expanded block 1.

5.5 Layout Rotation

The four previous operations do not solve the
problem, when the empty space is located in the
middle of the layout or close to the origin of
coordinate system (see an example of the described
packing – Figure 5). In this case, the empty space is
moved as close to the upper right corner of floorplan
as possible by rotating the whole layout. Rotation is
made in clockwise direction, around the origin of
coordinate system by 90° or a multiple of it.

Figure 5 shows that the process of packing
optimization failed (four previous operations without
rotation were used). The empty space decreased, but

has not disappeared. For the same initial packing an
optimal solution was obtained after rotation by 180°
and using scaling and displacement operations
(Figure 3d).

a) initial packing b) rotation by 90o

c) rotation by 180o d) rotation by 270o

Fig. 6. Example of packing rotation by 90o, 180o or 270o

In the case, when the empty space is on the right or

at the top of the floorplan, the results can be worse after
rotating the layout. Therefore, the constructional
algorithm is executed starting from initial and three
rotated packings and chooses solution with the smallest
value of DS as the final solution.

6. Experimental Analysis

Experiments were based on MCNC benchmarks
available in the literature [22]. Four benchmarks were
chosen (the value in the brackets is a number of blocks):
apte (9), xerox (10), hp (11), ami33 (33). For all of these,
constraints were determined kmin = 0.5 and kmax = 2.0. For
the experiments a computer was used with the
following parameters: Windows 7, Intel(R) Core(TM) i7
CPU Q 840 @ 1.87GHz and 8 GB RAM.

Both simulated annealing algorithm (SA) (see
section 4) and constructional algorithm (CA) (see
section 5) require initial sequence-pair. This pair was
generated randomly and was the same for both
algorithms. The experiments were performed also for
the algorithm, which combines the SA and CA (marked
as SA+CA). In this algorithm, solutions obtained from
the SA algorithm became the initial solutions for the CA
algorithm.

10 different initial packings were randomly
generated. For every one of these, we executed each
algorithm separately: SA, CA and SA+CA.
A constructional algorithm was run once for a single
initial packing, because of its determinist operating. The
SA algorithm was executed 50 times for every initial
packing. The best from 50 results was chosen, which
was considered as a final solution. For each trial the
following parameters of simulated annealing were used

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles 41

(determined during experiments): Tp = 400, ϵ = 0.001,
α = 0.999.

Experiment 1

The simulated annealing algorithm requires hard-
blocks to operate correctly. Hard-blocks were obtained
from soft-blocks by setting three constant values of
k = {0.5; 1.0; 2.0}, so the first stage of the algorithm is to
create hard-blocks according to these three values.
During the first experiment, results were obtained and
compared for three algorithms (SA, CA, SA+CA) applied
to 10 initial packings generated randomly and for three
values of k ratio.

Bolded values in Table 1 are the best dead-space
(DS) values for a particular benchmark, the same
algorithm and three chosen values of k. The simulated
annealing algorithm (SA), constructional algorithm (CA)
and a combination of the two (SA+CA) are the most
effective for blocks created for k = 1.0, that is for square
blocks (4 out of 36 values turned out to be better for
k = 0.5).

Table 1. Comparison of results obtained at different
values of k for the simulated annealing algorithm (SA),
constructional algorithm (CA) and a combination of
the two (SA+CA). The table contains minimum,
maximum and average percentage value of the DS
criterion for 10 different initial solutions. BIS (Best
Initial Solution) lines include values of the DS obtained
for the initial solution which gave the best result

Be
nc

hm
ark

 k = 0.5 k = 1.0 k = 2.0

SA
[%]

SA
+CA
[%]

CA
[%]

SA
[%]

SA
+CA
[%]

CA
[%]

SA
[%]

SA
+CA
[%]

CA
[%]

ap
te

BIS 49.83 6.93 7.80 12.22 11.93 1.32 16.15 15.72 5.29

min 24.96 6.93 7.80 4.93 1.94 1.32 16.15 11.34 5.29

avg. 44.02 19.97 20.90 13.07 9.82 5.46 39.95 21.67 30.56

max 55.45 26.98 44.38 20.07 15.18 8.18 59.88 34.38 49.83

xe
ro

x

BIS 44.73 27.87 11.40 37.75 5.21 1.45 41.37 28.29 7.29

min 25.63 16.67 11.40 25.36 5.21 1.45 25.65 11.36 7.29

avg. 35.75 22.82 24.25 43.73 16.63 15.45 46.10 16.95 28.06

max 45.84 31.33 49.99 58.65 32.55 28.12 66.77 32.56 53.35

hp

BIS 47.42 13.82 5.39 27.68 7.41 6.49 41.64 8.78 7.77

min 28.55 13.53 5.39 27.68 7.41 6.49 20.97 8.78 7.77

avg. 43.58 23.45 16.35 43.23 18.90 12.16 45.04 30.41 25.75

max 59.66 45.50 34.14 69.87 30.71 17.02 56.87 56.87 46.34

am
i3

3

BIS 131.71 30.54 11.55 92.23 40.10 10.33 136.89 38.31 19.88

min 111.93 23.09 11.55 80.26 16.28 10.33 101.13 26.20 19.88

avg. 145.69 31.25 23.42 94.33 23.62 19.18 136.68 32.75 33.45

max 188.34 45.68 41.54 116.99 40.10 32.77 189.47 38.31 55.48

The problem is to find such a soft-blocks packing
that minimizes the value of the DS criterion (3).
The perfect result would be the value DS = 0%. A similar
result was not obtained for any benchmark. The reason
for this could be that the results are highly dependent on
the results of the initial packing generating algorithm (in
this case, packing is generated randomly). If the method
of initial packing generation is changed, one would
supposedly obtain a better result. Moreover, it is not
determined that the best result produced by the SA
algorithm is the most effectively minimized by the CA
algorithm, e.g. for k = 0.5 of the benchmark xerox the
algorithm SA+CA improved the result from 44.73% to
27.87% (BIS line – see description of Table 1) and for
the sample apte from 49.83% to 6.93%. To conclude,
a worse initial solution can give a better final result (as
in case of simulated annealing).

Experiment 2

In this experiment, is compared the average
percentage value of DS and average time for the
considered algorithms and the best algorithms known
from the literature ([23], [1]). According to the results
obtained from the previous experiment, k = 1.0 was set
to produce hard-blocks from soft-blocks.

Table 2. Comparison of the following algorithms:
simulated annealing (SA), constructional algorithm to
minimize block packing (CA) and combined algorithm
(SA+CA) to the algorithm suggested in [23]
(Lagrangian) and the branch and bound algorithm [1]
(CompaSS). The column Initial Solution (IS) shows an
average value of the DS for 10 initial packings

Be
nc

hm
ark

IS
[%]

SA SA + CA CA Lagrangian CompaSS

DS
[%]

t
[s]

DS
[%]

t*
[ms]

DS
[%]

t
[ms]

DS
[%]

t
[s]

DS
[%]

t
[ms]

ap
te

99.19 13.07 19.22 9.82 19 5.46 25 0.54 53.0 0.75 50

xe
ro

x

49.42 43.73 23.68 16.63 146 15.45 20 0.40 71.6 0.00 35

hp
 119.20 43.23 32.13 18.90 20 12.16 32 1.40 107.3 0.00 42

am
i3

3

141.53 94.33 232.93 23.62 261 19.18 118 4.30 774.6 0.00 883

* Time of operation refers only to the constructional algorithm

According to data included in Table 2, it is seen that

the constructional algorithm (CA) significantly improves
(minimizes) both initial packing (DS decreased 18 times
compared to the initial packing – sample file apte) and
packing provided by the simulated annealing algorithm
(DS decreased by 2.5 times – sample file xerox). The
constructional algorithm is faster than the CompaSS
algorithm on the same computer system, and much
faster than simulated annealing based on Lagrange
relaxation (results calculated on computer with
processor Pentium III 600-MHz). It was observed that
the execution time of the CA algorithm is up to 7.5 times
less in comparison to, for example, the CompaSS
algorithm. Unfortunately, effective values of the DS for
solutions given by the CA algorithm are worse than
those produced by algorithms from the literature. In
conclusion, the considered constructional algorithm,

(determined during experiments): Tp = 400, ϵ = 0.001,
α = 0.999.

Experiment 1

The simulated annealing algorithm requires hard-
blocks to operate correctly. Hard-blocks were obtained
from soft-blocks by setting three constant values of
k = {0.5; 1.0; 2.0}, so the first stage of the algorithm is to
create hard-blocks according to these three values.
During the first experiment, results were obtained and
compared for three algorithms (SA, CA, SA+CA) applied
to 10 initial packings generated randomly and for three
values of k ratio.

Bolded values in Table 1 are the best dead-space
(DS) values for a particular benchmark, the same
algorithm and three chosen values of k. The simulated
annealing algorithm (SA), constructional algorithm (CA)
and a combination of the two (SA+CA) are the most
effective for blocks created for k = 1.0, that is for square
blocks (4 out of 36 values turned out to be better for
k = 0.5).

Table 1. Comparison of results obtained at different
values of k for the simulated annealing algorithm (SA),
constructional algorithm (CA) and a combination of
the two (SA+CA). The table contains minimum,
maximum and average percentage value of the DS
criterion for 10 different initial solutions. BIS (Best
Initial Solution) lines include values of the DS obtained
for the initial solution which gave the best result

Be
nc

hm
ark

 k = 0.5 k = 1.0 k = 2.0

SA
[%]

SA
+CA
[%]

CA
[%]

SA
[%]

SA
+CA
[%]

CA
[%]

SA
[%]

SA
+CA
[%]

CA
[%]

ap
te

BIS 49.83 6.93 7.80 12.22 11.93 1.32 16.15 15.72 5.29

min 24.96 6.93 7.80 4.93 1.94 1.32 16.15 11.34 5.29

avg. 44.02 19.97 20.90 13.07 9.82 5.46 39.95 21.67 30.56

max 55.45 26.98 44.38 20.07 15.18 8.18 59.88 34.38 49.83

xe
ro

x

BIS 44.73 27.87 11.40 37.75 5.21 1.45 41.37 28.29 7.29

min 25.63 16.67 11.40 25.36 5.21 1.45 25.65 11.36 7.29

avg. 35.75 22.82 24.25 43.73 16.63 15.45 46.10 16.95 28.06

max 45.84 31.33 49.99 58.65 32.55 28.12 66.77 32.56 53.35

hp

BIS 47.42 13.82 5.39 27.68 7.41 6.49 41.64 8.78 7.77

min 28.55 13.53 5.39 27.68 7.41 6.49 20.97 8.78 7.77

avg. 43.58 23.45 16.35 43.23 18.90 12.16 45.04 30.41 25.75

max 59.66 45.50 34.14 69.87 30.71 17.02 56.87 56.87 46.34

am
i3

3

BIS 131.71 30.54 11.55 92.23 40.10 10.33 136.89 38.31 19.88

min 111.93 23.09 11.55 80.26 16.28 10.33 101.13 26.20 19.88

avg. 145.69 31.25 23.42 94.33 23.62 19.18 136.68 32.75 33.45

max 188.34 45.68 41.54 116.99 40.10 32.77 189.47 38.31 55.48

The problem is to find such a soft-blocks packing
that minimizes the value of the DS criterion (3).
The perfect result would be the value DS = 0%. A similar
result was not obtained for any benchmark. The reason
for this could be that the results are highly dependent on
the results of the initial packing generating algorithm (in
this case, packing is generated randomly). If the method
of initial packing generation is changed, one would
supposedly obtain a better result. Moreover, it is not
determined that the best result produced by the SA
algorithm is the most effectively minimized by the CA
algorithm, e.g. for k = 0.5 of the benchmark xerox the
algorithm SA+CA improved the result from 44.73% to
27.87% (BIS line – see description of Table 1) and for
the sample apte from 49.83% to 6.93%. To conclude,
a worse initial solution can give a better final result (as
in case of simulated annealing).

Experiment 2

In this experiment, is compared the average
percentage value of DS and average time for the
considered algorithms and the best algorithms known
from the literature ([23], [1]). According to the results
obtained from the previous experiment, k = 1.0 was set
to produce hard-blocks from soft-blocks.

Table 2. Comparison of the following algorithms:
simulated annealing (SA), constructional algorithm to
minimize block packing (CA) and combined algorithm
(SA+CA) to the algorithm suggested in [23]
(Lagrangian) and the branch and bound algorithm [1]
(CompaSS). The column Initial Solution (IS) shows an
average value of the DS for 10 initial packings

Be
nc

hm
ark

IS
[%]

SA SA + CA CA Lagrangian CompaSS

DS
[%]

t
[s]

DS
[%]

t*
[ms]

DS
[%]

t
[ms]

DS
[%]

t
[s]

DS
[%]

t
[ms]

ap
te

99.19 13.07 19.22 9.82 19 5.46 25 0.54 53.0 0.75 50

xe
ro

x

49.42 43.73 23.68 16.63 146 15.45 20 0.40 71.6 0.00 35

hp
 119.20 43.23 32.13 18.90 20 12.16 32 1.40 107.3 0.00 42

am
i3

3

141.53 94.33 232.93 23.62 261 19.18 118 4.30 774.6 0.00 883

* Time of operation refers only to the constructional algorithm

According to data included in Table 2, it is seen that

the constructional algorithm (CA) significantly improves
(minimizes) both initial packing (DS decreased 18 times
compared to the initial packing – sample file apte) and
packing provided by the simulated annealing algorithm
(DS decreased by 2.5 times – sample file xerox). The
constructional algorithm is faster than the CompaSS
algorithm on the same computer system, and much
faster than simulated annealing based on Lagrange
relaxation (results calculated on computer with
processor Pentium III 600-MHz). It was observed that
the execution time of the CA algorithm is up to 7.5 times
less in comparison to, for example, the CompaSS
algorithm. Unfortunately, effective values of the DS for
solutions given by the CA algorithm are worse than
those produced by algorithms from the literature. In
conclusion, the considered constructional algorithm,

(determined during experiments): Tp = 400, ϵ = 0.001,
α = 0.999.

Experiment 1

The simulated annealing algorithm requires hard-
blocks to operate correctly. Hard-blocks were obtained
from soft-blocks by setting three constant values of
k = {0.5; 1.0; 2.0}, so the first stage of the algorithm is to
create hard-blocks according to these three values.
During the first experiment, results were obtained and
compared for three algorithms (SA, CA, SA+CA) applied
to 10 initial packings generated randomly and for three
values of k ratio.

Bolded values in Table 1 are the best dead-space
(DS) values for a particular benchmark, the same
algorithm and three chosen values of k. The simulated
annealing algorithm (SA), constructional algorithm (CA)
and a combination of the two (SA+CA) are the most
effective for blocks created for k = 1.0, that is for square
blocks (4 out of 36 values turned out to be better for
k = 0.5).

Table 1. Comparison of results obtained at different
values of k for the simulated annealing algorithm (SA),
constructional algorithm (CA) and a combination of
the two (SA+CA). The table contains minimum,
maximum and average percentage value of the DS
criterion for 10 different initial solutions. BIS (Best
Initial Solution) lines include values of the DS obtained
for the initial solution which gave the best result

Be
nc

hm
ark

 k = 0.5 k = 1.0 k = 2.0

SA
[%]

SA
+CA
[%]

CA
[%]

SA
[%]

SA
+CA
[%]

CA
[%]

SA
[%]

SA
+CA
[%]

CA
[%]

ap
te

BIS 49.83 6.93 7.80 12.22 11.93 1.32 16.15 15.72 5.29

min 24.96 6.93 7.80 4.93 1.94 1.32 16.15 11.34 5.29

avg. 44.02 19.97 20.90 13.07 9.82 5.46 39.95 21.67 30.56

max 55.45 26.98 44.38 20.07 15.18 8.18 59.88 34.38 49.83

xe
ro

x

BIS 44.73 27.87 11.40 37.75 5.21 1.45 41.37 28.29 7.29

min 25.63 16.67 11.40 25.36 5.21 1.45 25.65 11.36 7.29

avg. 35.75 22.82 24.25 43.73 16.63 15.45 46.10 16.95 28.06

max 45.84 31.33 49.99 58.65 32.55 28.12 66.77 32.56 53.35

hp

BIS 47.42 13.82 5.39 27.68 7.41 6.49 41.64 8.78 7.77

min 28.55 13.53 5.39 27.68 7.41 6.49 20.97 8.78 7.77

avg. 43.58 23.45 16.35 43.23 18.90 12.16 45.04 30.41 25.75

max 59.66 45.50 34.14 69.87 30.71 17.02 56.87 56.87 46.34

am
i3

3

BIS 131.71 30.54 11.55 92.23 40.10 10.33 136.89 38.31 19.88

min 111.93 23.09 11.55 80.26 16.28 10.33 101.13 26.20 19.88

avg. 145.69 31.25 23.42 94.33 23.62 19.18 136.68 32.75 33.45

max 188.34 45.68 41.54 116.99 40.10 32.77 189.47 38.31 55.48

The problem is to find such a soft-blocks packing
that minimizes the value of the DS criterion (3).
The perfect result would be the value DS = 0%. A similar
result was not obtained for any benchmark. The reason
for this could be that the results are highly dependent on
the results of the initial packing generating algorithm (in
this case, packing is generated randomly). If the method
of initial packing generation is changed, one would
supposedly obtain a better result. Moreover, it is not
determined that the best result produced by the SA
algorithm is the most effectively minimized by the CA
algorithm, e.g. for k = 0.5 of the benchmark xerox the
algorithm SA+CA improved the result from 44.73% to
27.87% (BIS line – see description of Table 1) and for
the sample apte from 49.83% to 6.93%. To conclude,
a worse initial solution can give a better final result (as
in case of simulated annealing).

Experiment 2

In this experiment, is compared the average
percentage value of DS and average time for the
considered algorithms and the best algorithms known
from the literature ([23], [1]). According to the results
obtained from the previous experiment, k = 1.0 was set
to produce hard-blocks from soft-blocks.

Table 2. Comparison of the following algorithms:
simulated annealing (SA), constructional algorithm to
minimize block packing (CA) and combined algorithm
(SA+CA) to the algorithm suggested in [23]
(Lagrangian) and the branch and bound algorithm [1]
(CompaSS). The column Initial Solution (IS) shows an
average value of the DS for 10 initial packings

Be
nc

hm
ark

IS
[%]

SA SA + CA CA Lagrangian CompaSS

DS
[%]

t
[s]

DS
[%]

t*
[ms]

DS
[%]

t
[ms]

DS
[%]

t
[s]

DS
[%]

t
[ms]

ap
te

99.19 13.07 19.22 9.82 19 5.46 25 0.54 53.0 0.75 50

xe
ro

x

49.42 43.73 23.68 16.63 146 15.45 20 0.40 71.6 0.00 35

hp
 119.20 43.23 32.13 18.90 20 12.16 32 1.40 107.3 0.00 42

am
i3

3

141.53 94.33 232.93 23.62 261 19.18 118 4.30 774.6 0.00 883

* Time of operation refers only to the constructional algorithm

According to data included in Table 2, it is seen that

the constructional algorithm (CA) significantly improves
(minimizes) both initial packing (DS decreased 18 times
compared to the initial packing – sample file apte) and
packing provided by the simulated annealing algorithm
(DS decreased by 2.5 times – sample file xerox). The
constructional algorithm is faster than the CompaSS
algorithm on the same computer system, and much
faster than simulated annealing based on Lagrange
relaxation (results calculated on computer with
processor Pentium III 600-MHz). It was observed that
the execution time of the CA algorithm is up to 7.5 times
less in comparison to, for example, the CompaSS
algorithm. Unfortunately, effective values of the DS for
solutions given by the CA algorithm are worse than
those produced by algorithms from the literature. In
conclusion, the considered constructional algorithm,

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles42

despite the fact that it gives solutions with worse DS, is
faster than the other algorithms. This is the reason why
it may be applicable to chips, which consist of a large
number of elements where time is a considerable factor.
It may also be used as an algorithm to improve packing
results produced by an algorithm, which minimizes the
length of interconnections [2].

7. Summary

The constructional algorithm CA described in this
paper, significantly decreases the value of the DS
criterion, and consequently, reduces the overall area of
the floorplan for all tested benchmarks. It should be
emphasized that the best results are obtained for those
layouts that consist of square blocks in their initial
packing (k = 1.0). A great advantage of the algorithm is a
short execution time and ability to start from any initial
packing represented in Cartesian coordinate system.
The proposed algorithm may be used to improve results
obtained from other algorithms.

AUTHORS
Marcin Iwaniec*, Adam Janiak – Institute of IT,
Automated Control Engineering and Robotics, Wrocław
University of Technology, Z. Janiszewskiego 11/17,
50-372 Wrocław, Poland, marcin.iwaniec@pwr.wroc.pl,
adam.janiak@pwr.wroc.pl

*Corresponding author

REFERENCES

[1] Chan H., Markov I., “Practical slicing and non-

slicing block-packing without simulated
Annealing”, In: Proc. Great Lakes Symposium on
VLSI (GLSVLSI), 2004, pp. 282–287.

[2] Chen T.C., Chang Y.W., Lin S.C., “IMF: Interconnect-
driven multilevel floorplanning for large-scale
building-module designs. In: Proc. ICCAD'05,
ACM/IEEE, 2005, pp. 159–164.

[3] Chen T.C., Chang Y.W. Modern floorplanning based
on B*-tree and fast simulated Annealing”, IEEE
Trans. on CAD, vol. 25, no. 4, 2006, pp. 637–650.

[4] Chen S., Yoshimura T., “Fixed-outline floorplan-
ning: block-position enumeration and a ew
method for calculating area costs”, IEEE Trans.
Computer – Aided Des. Integrated Circuits Syst.,
vol. 27, no. 5, 2008, pp. 858–871.

[5] Chen J., Zhu W., Ali M.M., “A hybrid simulated
annealing algorithm for nonslicing VLSI
floorplanning”, IEEETrans. Syst., Man, and
Cybernetics, Part C: Appl. Rev., vol. 41, no. 4, 2011,
pp. 544–553.

[6] Chiang C.W., “Ant colony optimization for VLSI
floorplanning with clustering constraint”, J. Chin.
Inst. Ind. Eng., vol. 26, no. 6, 2009, pp. 440–448.

[7] Hayes J.P., Murray B.T., Testing ICs: getting to the
core of the problem, IEEE Computer Magazine, no.
11, 1996, pp. 32–38.

[8] Itoga H., Kodama C., Fujiyoshi K., “A graph based
soft module handling in floorplan”, IEICE Trans.
Fundam. Electron. Commun. Comput. Sci.,
E88-A(12), 200, 5, pp. 3390–3397.

[9] Janiak A., Kozik A., Lichtenstein M., “New
perspectives in VLSI design automation:
deterministic packing by Sequence Pair”, Annals of
Operations Research, Springer Netherlands, 179,
2010, pp. 35–56

[10] Kang M., Dai W.-M., “General floorplanning with l-
shaped, t-shaped and soft blocks based on
bounded slicing grid structure”. In: Design
Automation Conference 1997. Proceedings of the
ASP-DAC ’97. Asia and South Pacific, 1997,
pp. 265–270.

[11] Kirkpatrick S., Gelatt C., Vecchi M., “Optimization
by Simulated Annealing”, Science, no. 220(4598),
1983.

[12] Liu J., Zhong W.C., Jiao L.C., Li X., “Moving block
sequence and organizational evolutionary
algorithm for general floorplanning with
arbitrarily shaped rectilinear blocks”, IEEE Trans.
Evol. Comput., vol. 12, no. 5, 2008, pp. 630–646.

[13] Ma Y., Hong X., Dong S., Cai Y., Cheng C.-K., Gu J.,
Floorplanning with abutment constraints based on
corner block list, Integration, the VLSI Journal,
31(1), 2001, pp. 65–77.

[14] Murata H., Fujiyoshi K., Nakatake S., Kajitani Y.,
“VLSI module placement based on rectangle-
packing by the sequence pair”, IEEE Transaction
on Computer Aided Design of Integrated Circuits
and Systems, vol. 15, no. 12, 1996.

[15] Otten R.H.J.M., van Ginneken L.P.P.P., “Floorplan
design using simulated annealing”. In: Proc. Intl.
Conf. on CAD, 1984, pp. 96–98.

[16] Rebaudengo M., Reorda M.S., “GALLO: genetic
algorithm for floorplan area optimization”, IEEE
Trans. Comput. – Aided Des. Integrated Circuits
Syst., vol. 15, no. 8, 1996, pp. 943–951.

[17] Valenzuela C.L., Wang P.Y., “VLSI Placement and
Area Optimization Using a Genetic Algorithm to
Breed Normalized Postfix Expressions”, IEEE
Transactions on Evolutionary Computation, vol. 6,
no. 4, 2002, pp. 390–401.

[18] Wang H.Y., Hu K., Liu J., Jiao L.C., „Multiagent
evolutionary algorithm for floorplanning using
moving block sequence”, IEEE Congr. Evol.
Comput., 2007, pp. 4372–4377.

[19] Wong D.F., Liu C.L., “A new algorithm for floorplan
design”. In: Proc. Design Autom. Conf., 1986,
pp. 101–107.

[20] Xiaoping T., Ruiqi T., Wong D.F., “Fast evaluation of
sequence pair in block placement by longest
common subsequence computation”, IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 12,
2001, pp. 1406–1413.

[21] Xiong E.S.J., Wong Y.-C., He L., “Constraint driven
i/o planning and placement for chip-package co-
design”. In: Proc. Asia and South Pacific Design
Autom. Conf., 2006, pp. 207–212.

[22] Yang S., Logic synthesis and optimization
benchmarks, Microelectronics Center of North
Carolina, Research Triangle Park, N.C., Tech., 1991.

[23] Young F., Chu C., Luk W., Wong Y., “Handling soft
modules in general nonslicingfloorplan using
lagrangian relaxation”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 20, no. 5, 2001, pp. 687–692.

