
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles22

Map Construction And Localization Using Lego Mindstorms Nxt

Jasmeet Singh, Punam Bedi

Submitted: 7th August 2012; accepted: 17th May 2013

Map Construction And Localization Using Lego Mindstorms Nxt
Jasmeet Singh, Punam Bedi

Subm.7th August 2012; accepted 17thMay 2013

Abstract:
Maps are very useful for understanding unknown places
before visiting them as maps represent spatial relation-
ships between various objects in a region. Using robots
for map construction is an important field these days as
robots can reach places which may be inaccessible to
human beings. This paper presents a method to use the
data obtained from a single ultrasonic sensor mounted
on a robot, to construct a map and localize the robot
within that map. Map of the previously unknown envi-
ronment is created with the help of a mobile robot, built
using Lego Mindstorms NXT assembled in a modified
TriBot configuration. The robot is equipped with an
ultrasonic sensor and is controlled from a computer
system running a MATLAB program, which communi-
cates with the NXT over a USB or Bluetooth connection
and performs complex calculations that are not possible
for the NXT itself. After the map construction, the robot
finds its position in the map by using a particle filter.
Implementation has been done in MATLAB program-
ming environment using RWTH – Mindstorms NXT
Toolbox and has been successfully tested for map con-
struction of a room and localization within that room
with the use of a TriBot.

Keywords: Lego Mindstorms NXT, TriBot, ultrasonic
sensor, map construction, localization, particle filter,
MATLAB, mobile robot, RWTH – Mindstorms NXT
Toolbox

1. Introduction

Maps are used in a variety of applications for our
day-to-day needs. These maps can be considered as
macro-scopes which are used primarily to represent
spatial relationships between various objects in
a region, on a smaller-scale. Constructing a geomet-
rically consistent map is a tedious process that re-
quires determining spatial relationship between
various objects, which in turn requires a lot of meas-
urements. The presented work describes a method
to construct a map using a Lego Mindstorms NXT
based TriBot (referred here-on as simply NXT or
TriBot), which has been successfully tested for creat-
ing an indoor map of a room.

This paper is divided into two main sections of
Map Construction and Localization and the Kid-
napped Robot Problem. The map construction and
localization section describes how the robot is able
to take readings of its surroundings, move in the

environment, and also how the constructed global
map is displayed based on the readings obtained by
the ultrasonic sensor of the TriBot. The latter section
describes how the robot’s position is found within
the constructed map, after it has been placed at
a random position within the mapped environment,
by using the readings obtained from its sensors and
its knowledge of the map.

Previous work in localization of robots has been
carried out with the use of more than one ultrasonic
sensor at once [1–3]. This requires the robot to know
which sensor returned the reading and hence the
robot needs to distinguish between several ultrason-
ic sensors that were mounted on it. With the use of
multiple sensors, the cost of the robot increases as
well. The work carried out in this paper requires the
use of only a single ultrasonic sensor for localization,
placed at the origin of the robot reference frame
thereby eliminating additional computations for
finding the relative positions of all the ultrasonic
sensors, with respect to the reference frame, as in
[1, 3]. When using particle filters for solving the
global localization [1, 4], the map given as an input to
the particle filter algorithm, was not built by the
robot itself [1] and was constructed by the user via
other techniques. But here the TriBot itself con-
structs the global map that is later used providing
a solution to the kidnapped robot problem [4] de-
scribed in the localization s7th ection.

Mapping with ultrasonic sensors has previously
been reliant on the use of multiple sensors in ring
formation [5]. With the use of a single ultrasonic
sensor it becomes possible to successfully map the
environment surrounding the NXT, while keeping
the computational complexity to a minimum. It also
helps in specifying the number of readings that must
be received from the surroundings for each position
of NXT, without having to change the number of
ultrasonic sensors in the robot’s hardware.

For global map construction and localization, the
concept of occupancy grids has also been previously
employed in [6, 7] which, though effective, depends
on the size of the grid cells. A robot when moved to
a frontier is able to see the unexplored area of the
environment. By constantly moving to successive
frontiers the robot is able to increase its knowledge
of the surrounding environment. Frontier based
exploration have been coupled with occupancy grids
for the map construction and localization in [6] but
in the implementation of such a system multiple
laser range finders, sonar sensors and infrared sen-

Map Construction And Localization Using Lego Mindstorms Nxt
Jasmeet Singh, Punam Bedi

Subm.7th August 2012; accepted 17thMay 2013

Abstract:
Maps are very useful for understanding unknown places
before visiting them as maps represent spatial relation-
ships between various objects in a region. Using robots
for map construction is an important field these days as
robots can reach places which may be inaccessible to
human beings. This paper presents a method to use the
data obtained from a single ultrasonic sensor mounted
on a robot, to construct a map and localize the robot
within that map. Map of the previously unknown envi-
ronment is created with the help of a mobile robot, built
using Lego Mindstorms NXT assembled in a modified
TriBot configuration. The robot is equipped with an
ultrasonic sensor and is controlled from a computer
system running a MATLAB program, which communi-
cates with the NXT over a USB or Bluetooth connection
and performs complex calculations that are not possible
for the NXT itself. After the map construction, the robot
finds its position in the map by using a particle filter.
Implementation has been done in MATLAB program-
ming environment using RWTH – Mindstorms NXT
Toolbox and has been successfully tested for map con-
struction of a room and localization within that room
with the use of a TriBot.

Keywords: Lego Mindstorms NXT, TriBot, ultrasonic
sensor, map construction, localization, particle filter,
MATLAB, mobile robot, RWTH – Mindstorms NXT
Toolbox

1. Introduction

Maps are used in a variety of applications for our
day-to-day needs. These maps can be considered as
macro-scopes which are used primarily to represent
spatial relationships between various objects in
a region, on a smaller-scale. Constructing a geomet-
rically consistent map is a tedious process that re-
quires determining spatial relationship between
various objects, which in turn requires a lot of meas-
urements. The presented work describes a method
to construct a map using a Lego Mindstorms NXT
based TriBot (referred here-on as simply NXT or
TriBot), which has been successfully tested for creat-
ing an indoor map of a room.

This paper is divided into two main sections of
Map Construction and Localization and the Kid-
napped Robot Problem. The map construction and
localization section describes how the robot is able
to take readings of its surroundings, move in the

environment, and also how the constructed global
map is displayed based on the readings obtained by
the ultrasonic sensor of the TriBot. The latter section
describes how the robot’s position is found within
the constructed map, after it has been placed at
a random position within the mapped environment,
by using the readings obtained from its sensors and
its knowledge of the map.

Previous work in localization of robots has been
carried out with the use of more than one ultrasonic
sensor at once [1–3]. This requires the robot to know
which sensor returned the reading and hence the
robot needs to distinguish between several ultrason-
ic sensors that were mounted on it. With the use of
multiple sensors, the cost of the robot increases as
well. The work carried out in this paper requires the
use of only a single ultrasonic sensor for localization,
placed at the origin of the robot reference frame
thereby eliminating additional computations for
finding the relative positions of all the ultrasonic
sensors, with respect to the reference frame, as in
[1, 3]. When using particle filters for solving the
global localization [1, 4], the map given as an input to
the particle filter algorithm, was not built by the
robot itself [1] and was constructed by the user via
other techniques. But here the TriBot itself con-
structs the global map that is later used providing
a solution to the kidnapped robot problem [4] de-
scribed in the localization s7th ection.

Mapping with ultrasonic sensors has previously
been reliant on the use of multiple sensors in ring
formation [5]. With the use of a single ultrasonic
sensor it becomes possible to successfully map the
environment surrounding the NXT, while keeping
the computational complexity to a minimum. It also
helps in specifying the number of readings that must
be received from the surroundings for each position
of NXT, without having to change the number of
ultrasonic sensors in the robot’s hardware.

For global map construction and localization, the
concept of occupancy grids has also been previously
employed in [6, 7] which, though effective, depends
on the size of the grid cells. A robot when moved to
a frontier is able to see the unexplored area of the
environment. By constantly moving to successive
frontiers the robot is able to increase its knowledge
of the surrounding environment. Frontier based
exploration have been coupled with occupancy grids
for the map construction and localization in [6] but
in the implementation of such a system multiple
laser range finders, sonar sensors and infrared sen-

Map Construction And Localization Using Lego Mindstorms Nxt
Jasmeet Singh, Punam Bedi

Subm.7th August 2012; accepted 17thMay 2013

Abstract:
Maps are very useful for understanding unknown places
before visiting them as maps represent spatial relation-
ships between various objects in a region. Using robots
for map construction is an important field these days as
robots can reach places which may be inaccessible to
human beings. This paper presents a method to use the
data obtained from a single ultrasonic sensor mounted
on a robot, to construct a map and localize the robot
within that map. Map of the previously unknown envi-
ronment is created with the help of a mobile robot, built
using Lego Mindstorms NXT assembled in a modified
TriBot configuration. The robot is equipped with an
ultrasonic sensor and is controlled from a computer
system running a MATLAB program, which communi-
cates with the NXT over a USB or Bluetooth connection
and performs complex calculations that are not possible
for the NXT itself. After the map construction, the robot
finds its position in the map by using a particle filter.
Implementation has been done in MATLAB program-
ming environment using RWTH – Mindstorms NXT
Toolbox and has been successfully tested for map con-
struction of a room and localization within that room
with the use of a TriBot.

Keywords: Lego Mindstorms NXT, TriBot, ultrasonic
sensor, map construction, localization, particle filter,
MATLAB, mobile robot, RWTH – Mindstorms NXT
Toolbox

1. Introduction

Maps are used in a variety of applications for our
day-to-day needs. These maps can be considered as
macro-scopes which are used primarily to represent
spatial relationships between various objects in
a region, on a smaller-scale. Constructing a geomet-
rically consistent map is a tedious process that re-
quires determining spatial relationship between
various objects, which in turn requires a lot of meas-
urements. The presented work describes a method
to construct a map using a Lego Mindstorms NXT
based TriBot (referred here-on as simply NXT or
TriBot), which has been successfully tested for creat-
ing an indoor map of a room.

This paper is divided into two main sections of
Map Construction and Localization and the Kid-
napped Robot Problem. The map construction and
localization section describes how the robot is able
to take readings of its surroundings, move in the

environment, and also how the constructed global
map is displayed based on the readings obtained by
the ultrasonic sensor of the TriBot. The latter section
describes how the robot’s position is found within
the constructed map, after it has been placed at
a random position within the mapped environment,
by using the readings obtained from its sensors and
its knowledge of the map.

Previous work in localization of robots has been
carried out with the use of more than one ultrasonic
sensor at once [1–3]. This requires the robot to know
which sensor returned the reading and hence the
robot needs to distinguish between several ultrason-
ic sensors that were mounted on it. With the use of
multiple sensors, the cost of the robot increases as
well. The work carried out in this paper requires the
use of only a single ultrasonic sensor for localization,
placed at the origin of the robot reference frame
thereby eliminating additional computations for
finding the relative positions of all the ultrasonic
sensors, with respect to the reference frame, as in
[1, 3]. When using particle filters for solving the
global localization [1, 4], the map given as an input to
the particle filter algorithm, was not built by the
robot itself [1] and was constructed by the user via
other techniques. But here the TriBot itself con-
structs the global map that is later used providing
a solution to the kidnapped robot problem [4] de-
scribed in the localization s7th ection.

Mapping with ultrasonic sensors has previously
been reliant on the use of multiple sensors in ring
formation [5]. With the use of a single ultrasonic
sensor it becomes possible to successfully map the
environment surrounding the NXT, while keeping
the computational complexity to a minimum. It also
helps in specifying the number of readings that must
be received from the surroundings for each position
of NXT, without having to change the number of
ultrasonic sensors in the robot’s hardware.

For global map construction and localization, the
concept of occupancy grids has also been previously
employed in [6, 7] which, though effective, depends
on the size of the grid cells. A robot when moved to
a frontier is able to see the unexplored area of the
environment. By constantly moving to successive
frontiers the robot is able to increase its knowledge
of the surrounding environment. Frontier based
exploration have been coupled with occupancy grids
for the map construction and localization in [6] but
in the implementation of such a system multiple
laser range finders, sonar sensors and infrared sen-

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles 23

sors were used to make the resulting map as accu-
rate as possible. The amount of computation and
complexity increases with multiple sensors, but with
the use of a single ultrasonic sensor amount of com-
putation is low. In this work frontier-based explora-
tion strategy has been employed without using the
occupancy grids and only the readings obtained at
the current position of the robot are used for decid-
ing the next frontier for the robot.

In other works of map construction and localiza-
tion, Simultaneous Localization and Mapping (SLAM)
has been used to localize the robot’s position as it
moves within the environment, while mapping is
being performed [3, 4, 8]. In the current system, each
robot position is relative to the origin position of the
map and the robot has no knowledge of a prior map.
It is also possible to implement map construction
with a swarm of robots in the same environment [8]
to speed up the process but the implementation has
been limited to a single robot so as to ensure that
a single robot is able to perform the task of map
creation efficiently. It is also easier for the computer
to keep track of a single robot.

2. Background
2.1. Environment

The environment considered for the implementa-
tion is partially observable, with a single robot work-
ing in a continuous state space. The actual environ-
ment is an empty room created by temporary parti-
tions that is available specifically to the robot and
has no human interference, for the purposes of the
given experiments.
2.2. Assumptions Taken
— The walls of the boundary of room and the ob-

jects within the room are immovable.
— Friction between the floor of room and the

wheels of robot is just enough so that, during the
execution of a turn at a position, the stationary
wheel of the robot does not slip.

— For map construction, the TriBot’s first location is
assumed to be (0, 0) with a 0 degree orientation.

2.3. Software
MATLAB is used for the purposes of moving the

robot, taking readings of the local surrounding envi-
ronment, performing calculations for map creation
and localization, and displaying the created global
map.

The RWTH – Mindstorms NXT Toolbox [9], ver-
sion 4.04 for MATLAB, establishes a connection from
the program, running on the computer, to the TriBot.
With the use of this toolbox it possible to control all
the motors and sensors attached to the TriBot.
Hence, it is possible to move the robot by controlling
its wheeled motors, use the ultrasonic sensor to
detect distances from objects, and also rotate the
motor on which the ultrasonic sensor is mounted,
through the MATLAB program.

For controlling of the wheeled motors and de-
termining the robot’s movements, it is important to
find the number of degrees the motors must rotate
to be able to travel a certain distance. The diameter

of the wheels used is 5.5 cm and hence for
a 360 degree revolution of the wheels the robot
moves forward by 5.5*π centimeters. The degree of
revolution, for the wheeled motors, is calculated
according to the distance in centimeters that the
robot is required to move.

To use the ultrasonic sensor it is necessary to
first establish a serial connection to the NXT brick
and to its port on which the ultrasonic sensor is at-
tached. By using this port, the distance readings
recorded by the sensor are returned to the MATLAB
program via the USB or Bluetooth connection.
2.4. Sensor and Motors

The ultrasonic sensor used with the TriBot
measures the time-of-flight of a burst of high fre-
quency sound wave. The value returned by the sen-
sor is a single number representing the straight line
distance of an object from the sensor. These values
are in centimeters, and are read by the MATLAB
program. The ultrasonic sensor is able to detect dis-
tances ranging from 4 centimeters to 2.3 meters with
an average precision of 3 centimeters and returns
better readings when the object to be detected has
a hard surface. If a wave hits the surface at a wide
angle from the surface normal [5] it may not return
to the sensor, in which case a value of 255 is received
from the sensor, indicating an error. The wave may
also bounce off a separate surface and create a ghost
image.

The interactive servo motors of the TriBot are
equipped with an integrated encoder which records
a count value of 360 for a single circular revolution
i.e., when the motor rotates by 360 degrees, a count
of 360 is recoded. This encoder has an accuracy of
1 degree. The motor is able to return this count to
the program via the serial connection. These motors
have a default maximum speed of 1000 encoder
counts per second which means the robot can travel
in a straight line at approximately 48 centimeters
per second. For the purpose of experimentation, the
wheeled motors have a fixed speed of 800 encoder
counts per second (approximately 38.4 centime-
ters/second) and maintain a constant torque during
motion. The program can also set the tacho limit of
the motor, which specifies the integer number of
encoder counts (or degrees) that a motor executes
before coming to an abrupt stop when this limit is
reached. In order for the NXT to move one centime-
ter in the forward direction, both the motors must
move in the same direction by a tacho limit of ap-
proximately 21 encoder counts. The two wheels are
11 centimeters apart and so to turn the robot by
1 degree, while moving one wheel and keeping the
other wheel stationery, the motor must move by
a tacho limit of 4. The motor on which the ultrasonic
sensor is mounted rotates at a speed of approximate-
ly 400 counts per second. So, a 360 degree rotation
of the ultrasonic sensor and detection of distances
after every 6 degrees takes 30 seconds, on average.
2.5. Robot Used

The robot used for the purposes of experimenta-
tion is based on the Lego Mindstorms NXT TriBot,

sors were used to make the resulting map as accu-
rate as possible. The amount of computation and
complexity increases with multiple sensors, but with
the use of a single ultrasonic sensor amount of com-
putation is low. In this work frontier-based explora-
tion strategy has been employed without using the
occupancy grids and only the readings obtained at
the current position of the robot are used for decid-
ing the next frontier for the robot.

In other works of map construction and localiza-
tion, Simultaneous Localization and Mapping (SLAM)
has been used to localize the robot’s position as it
moves within the environment, while mapping is
being performed [3, 4, 8]. In the current system, each
robot position is relative to the origin position of the
map and the robot has no knowledge of a prior map.
It is also possible to implement map construction
with a swarm of robots in the same environment [8]
to speed up the process but the implementation has
been limited to a single robot so as to ensure that
a single robot is able to perform the task of map
creation efficiently. It is also easier for the computer
to keep track of a single robot.

2. Background
2.1. Environment

The environment considered for the implementa-
tion is partially observable, with a single robot work-
ing in a continuous state space. The actual environ-
ment is an empty room created by temporary parti-
tions that is available specifically to the robot and
has no human interference, for the purposes of the
given experiments.
2.2. Assumptions Taken
— The walls of the boundary of room and the ob-

jects within the room are immovable.
— Friction between the floor of room and the

wheels of robot is just enough so that, during the
execution of a turn at a position, the stationary
wheel of the robot does not slip.

— For map construction, the TriBot’s first location is
assumed to be (0, 0) with a 0 degree orientation.

2.3. Software
MATLAB is used for the purposes of moving the

robot, taking readings of the local surrounding envi-
ronment, performing calculations for map creation
and localization, and displaying the created global
map.

The RWTH – Mindstorms NXT Toolbox [9], ver-
sion 4.04 for MATLAB, establishes a connection from
the program, running on the computer, to the TriBot.
With the use of this toolbox it possible to control all
the motors and sensors attached to the TriBot.
Hence, it is possible to move the robot by controlling
its wheeled motors, use the ultrasonic sensor to
detect distances from objects, and also rotate the
motor on which the ultrasonic sensor is mounted,
through the MATLAB program.

For controlling of the wheeled motors and de-
termining the robot’s movements, it is important to
find the number of degrees the motors must rotate
to be able to travel a certain distance. The diameter

of the wheels used is 5.5 cm and hence for
a 360 degree revolution of the wheels the robot
moves forward by 5.5*π centimeters. The degree of
revolution, for the wheeled motors, is calculated
according to the distance in centimeters that the
robot is required to move.

To use the ultrasonic sensor it is necessary to
first establish a serial connection to the NXT brick
and to its port on which the ultrasonic sensor is at-
tached. By using this port, the distance readings
recorded by the sensor are returned to the MATLAB
program via the USB or Bluetooth connection.
2.4. Sensor and Motors

The ultrasonic sensor used with the TriBot
measures the time-of-flight of a burst of high fre-
quency sound wave. The value returned by the sen-
sor is a single number representing the straight line
distance of an object from the sensor. These values
are in centimeters, and are read by the MATLAB
program. The ultrasonic sensor is able to detect dis-
tances ranging from 4 centimeters to 2.3 meters with
an average precision of 3 centimeters and returns
better readings when the object to be detected has
a hard surface. If a wave hits the surface at a wide
angle from the surface normal [5] it may not return
to the sensor, in which case a value of 255 is received
from the sensor, indicating an error. The wave may
also bounce off a separate surface and create a ghost
image.

The interactive servo motors of the TriBot are
equipped with an integrated encoder which records
a count value of 360 for a single circular revolution
i.e., when the motor rotates by 360 degrees, a count
of 360 is recoded. This encoder has an accuracy of
1 degree. The motor is able to return this count to
the program via the serial connection. These motors
have a default maximum speed of 1000 encoder
counts per second which means the robot can travel
in a straight line at approximately 48 centimeters
per second. For the purpose of experimentation, the
wheeled motors have a fixed speed of 800 encoder
counts per second (approximately 38.4 centime-
ters/second) and maintain a constant torque during
motion. The program can also set the tacho limit of
the motor, which specifies the integer number of
encoder counts (or degrees) that a motor executes
before coming to an abrupt stop when this limit is
reached. In order for the NXT to move one centime-
ter in the forward direction, both the motors must
move in the same direction by a tacho limit of ap-
proximately 21 encoder counts. The two wheels are
11 centimeters apart and so to turn the robot by
1 degree, while moving one wheel and keeping the
other wheel stationery, the motor must move by
a tacho limit of 4. The motor on which the ultrasonic
sensor is mounted rotates at a speed of approximate-
ly 400 counts per second. So, a 360 degree rotation
of the ultrasonic sensor and detection of distances
after every 6 degrees takes 30 seconds, on average.
2.5. Robot Used

The robot used for the purposes of experimenta-
tion is based on the Lego Mindstorms NXT TriBot,

sors were used to make the resulting map as accu-
rate as possible. The amount of computation and
complexity increases with multiple sensors, but with
the use of a single ultrasonic sensor amount of com-
putation is low. In this work frontier-based explora-
tion strategy has been employed without using the
occupancy grids and only the readings obtained at
the current position of the robot are used for decid-
ing the next frontier for the robot.

In other works of map construction and localiza-
tion, Simultaneous Localization and Mapping (SLAM)
has been used to localize the robot’s position as it
moves within the environment, while mapping is
being performed [3, 4, 8]. In the current system, each
robot position is relative to the origin position of the
map and the robot has no knowledge of a prior map.
It is also possible to implement map construction
with a swarm of robots in the same environment [8]
to speed up the process but the implementation has
been limited to a single robot so as to ensure that
a single robot is able to perform the task of map
creation efficiently. It is also easier for the computer
to keep track of a single robot.

2. Background
2.1. Environment

The environment considered for the implementa-
tion is partially observable, with a single robot work-
ing in a continuous state space. The actual environ-
ment is an empty room created by temporary parti-
tions that is available specifically to the robot and
has no human interference, for the purposes of the
given experiments.
2.2. Assumptions Taken
— The walls of the boundary of room and the ob-

jects within the room are immovable.
— Friction between the floor of room and the

wheels of robot is just enough so that, during the
execution of a turn at a position, the stationary
wheel of the robot does not slip.

— For map construction, the TriBot’s first location is
assumed to be (0, 0) with a 0 degree orientation.

2.3. Software
MATLAB is used for the purposes of moving the

robot, taking readings of the local surrounding envi-
ronment, performing calculations for map creation
and localization, and displaying the created global
map.

The RWTH – Mindstorms NXT Toolbox [9], ver-
sion 4.04 for MATLAB, establishes a connection from
the program, running on the computer, to the TriBot.
With the use of this toolbox it possible to control all
the motors and sensors attached to the TriBot.
Hence, it is possible to move the robot by controlling
its wheeled motors, use the ultrasonic sensor to
detect distances from objects, and also rotate the
motor on which the ultrasonic sensor is mounted,
through the MATLAB program.

For controlling of the wheeled motors and de-
termining the robot’s movements, it is important to
find the number of degrees the motors must rotate
to be able to travel a certain distance. The diameter

of the wheels used is 5.5 cm and hence for
a 360 degree revolution of the wheels the robot
moves forward by 5.5*π centimeters. The degree of
revolution, for the wheeled motors, is calculated
according to the distance in centimeters that the
robot is required to move.

To use the ultrasonic sensor it is necessary to
first establish a serial connection to the NXT brick
and to its port on which the ultrasonic sensor is at-
tached. By using this port, the distance readings
recorded by the sensor are returned to the MATLAB
program via the USB or Bluetooth connection.
2.4. Sensor and Motors

The ultrasonic sensor used with the TriBot
measures the time-of-flight of a burst of high fre-
quency sound wave. The value returned by the sen-
sor is a single number representing the straight line
distance of an object from the sensor. These values
are in centimeters, and are read by the MATLAB
program. The ultrasonic sensor is able to detect dis-
tances ranging from 4 centimeters to 2.3 meters with
an average precision of 3 centimeters and returns
better readings when the object to be detected has
a hard surface. If a wave hits the surface at a wide
angle from the surface normal [5] it may not return
to the sensor, in which case a value of 255 is received
from the sensor, indicating an error. The wave may
also bounce off a separate surface and create a ghost
image.

The interactive servo motors of the TriBot are
equipped with an integrated encoder which records
a count value of 360 for a single circular revolution
i.e., when the motor rotates by 360 degrees, a count
of 360 is recoded. This encoder has an accuracy of
1 degree. The motor is able to return this count to
the program via the serial connection. These motors
have a default maximum speed of 1000 encoder
counts per second which means the robot can travel
in a straight line at approximately 48 centimeters
per second. For the purpose of experimentation, the
wheeled motors have a fixed speed of 800 encoder
counts per second (approximately 38.4 centime-
ters/second) and maintain a constant torque during
motion. The program can also set the tacho limit of
the motor, which specifies the integer number of
encoder counts (or degrees) that a motor executes
before coming to an abrupt stop when this limit is
reached. In order for the NXT to move one centime-
ter in the forward direction, both the motors must
move in the same direction by a tacho limit of ap-
proximately 21 encoder counts. The two wheels are
11 centimeters apart and so to turn the robot by
1 degree, while moving one wheel and keeping the
other wheel stationery, the motor must move by
a tacho limit of 4. The motor on which the ultrasonic
sensor is mounted rotates at a speed of approximate-
ly 400 counts per second. So, a 360 degree rotation
of the ultrasonic sensor and detection of distances
after every 6 degrees takes 30 seconds, on average.
2.5. Robot Used

The robot used for the purposes of experimenta-
tion is based on the Lego Mindstorms NXT TriBot,

sors were used to make the resulting map as accu-
rate as possible. The amount of computation and
complexity increases with multiple sensors, but with
the use of a single ultrasonic sensor amount of com-
putation is low. In this work frontier-based explora-
tion strategy has been employed without using the
occupancy grids and only the readings obtained at
the current position of the robot are used for decid-
ing the next frontier for the robot.

In other works of map construction and localiza-
tion, Simultaneous Localization and Mapping (SLAM)
has been used to localize the robot’s position as it
moves within the environment, while mapping is
being performed [3, 4, 8]. In the current system, each
robot position is relative to the origin position of the
map and the robot has no knowledge of a prior map.
It is also possible to implement map construction
with a swarm of robots in the same environment [8]
to speed up the process but the implementation has
been limited to a single robot so as to ensure that
a single robot is able to perform the task of map
creation efficiently. It is also easier for the computer
to keep track of a single robot.

2. Background
2.1. Environment

The environment considered for the implementa-
tion is partially observable, with a single robot work-
ing in a continuous state space. The actual environ-
ment is an empty room created by temporary parti-
tions that is available specifically to the robot and
has no human interference, for the purposes of the
given experiments.
2.2. Assumptions Taken
— The walls of the boundary of room and the ob-

jects within the room are immovable.
— Friction between the floor of room and the

wheels of robot is just enough so that, during the
execution of a turn at a position, the stationary
wheel of the robot does not slip.

— For map construction, the TriBot’s first location is
assumed to be (0, 0) with a 0 degree orientation.

2.3. Software
MATLAB is used for the purposes of moving the

robot, taking readings of the local surrounding envi-
ronment, performing calculations for map creation
and localization, and displaying the created global
map.

The RWTH – Mindstorms NXT Toolbox [9], ver-
sion 4.04 for MATLAB, establishes a connection from
the program, running on the computer, to the TriBot.
With the use of this toolbox it possible to control all
the motors and sensors attached to the TriBot.
Hence, it is possible to move the robot by controlling
its wheeled motors, use the ultrasonic sensor to
detect distances from objects, and also rotate the
motor on which the ultrasonic sensor is mounted,
through the MATLAB program.

For controlling of the wheeled motors and de-
termining the robot’s movements, it is important to
find the number of degrees the motors must rotate
to be able to travel a certain distance. The diameter

of the wheels used is 5.5 cm and hence for
a 360 degree revolution of the wheels the robot
moves forward by 5.5*π centimeters. The degree of
revolution, for the wheeled motors, is calculated
according to the distance in centimeters that the
robot is required to move.

To use the ultrasonic sensor it is necessary to
first establish a serial connection to the NXT brick
and to its port on which the ultrasonic sensor is at-
tached. By using this port, the distance readings
recorded by the sensor are returned to the MATLAB
program via the USB or Bluetooth connection.
2.4. Sensor and Motors

The ultrasonic sensor used with the TriBot
measures the time-of-flight of a burst of high fre-
quency sound wave. The value returned by the sen-
sor is a single number representing the straight line
distance of an object from the sensor. These values
are in centimeters, and are read by the MATLAB
program. The ultrasonic sensor is able to detect dis-
tances ranging from 4 centimeters to 2.3 meters with
an average precision of 3 centimeters and returns
better readings when the object to be detected has
a hard surface. If a wave hits the surface at a wide
angle from the surface normal [5] it may not return
to the sensor, in which case a value of 255 is received
from the sensor, indicating an error. The wave may
also bounce off a separate surface and create a ghost
image.

The interactive servo motors of the TriBot are
equipped with an integrated encoder which records
a count value of 360 for a single circular revolution
i.e., when the motor rotates by 360 degrees, a count
of 360 is recoded. This encoder has an accuracy of
1 degree. The motor is able to return this count to
the program via the serial connection. These motors
have a default maximum speed of 1000 encoder
counts per second which means the robot can travel
in a straight line at approximately 48 centimeters
per second. For the purpose of experimentation, the
wheeled motors have a fixed speed of 800 encoder
counts per second (approximately 38.4 centime-
ters/second) and maintain a constant torque during
motion. The program can also set the tacho limit of
the motor, which specifies the integer number of
encoder counts (or degrees) that a motor executes
before coming to an abrupt stop when this limit is
reached. In order for the NXT to move one centime-
ter in the forward direction, both the motors must
move in the same direction by a tacho limit of ap-
proximately 21 encoder counts. The two wheels are
11 centimeters apart and so to turn the robot by
1 degree, while moving one wheel and keeping the
other wheel stationery, the motor must move by
a tacho limit of 4. The motor on which the ultrasonic
sensor is mounted rotates at a speed of approximate-
ly 400 counts per second. So, a 360 degree rotation
of the ultrasonic sensor and detection of distances
after every 6 degrees takes 30 seconds, on average.
2.5. Robot Used

The robot used for the purposes of experimenta-
tion is based on the Lego Mindstorms NXT TriBot,

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles24

with a few modifications. The TriBot is equipped
with one ultrasonic sensor, mounted on an interac-
tive motor. It is possible to create a ring of 60 sensor
readings in one complete circular turn by rotating
the sensor anticlockwise by 360 degrees and taking
readings after every 6 degree interval. The ultrasonic
sensor has been placed at the origin of the robot
reference frame [2].

Fig. 1. Top view of the Lego Mindstorms NXT TriBot
based robot with an interactive servo motor and the
ultrasonic sensor attached on top

Fig. 2. Front view of the Lego Mindstorms NXT TriBot
based robot with the ultrasonic sensor pointing for-
ward

The central component of the TriBot is the NXT

brick which is essential for establishing a connection
with the computer and controlling the sensors, and
motors. Figure 1 shows the TriBot used for experi-
mentation purposes.

Figure 2 shows the front view of the TriBot used.
The wheeled motors, on either side of the robot, are
synchronized so that if one wheel moves forward the
other also moves forward by the same degree and at
the same speed. Hence both the wheels move in
unison and it is not necessary to control the power
and tacho limit for each motor separately. This is
important when the robot moves forward or back-
ward to ensure that it follows a straight line and
does not drive in a curve. It is also possible to control
a single wheeled motor separately when the robot
executes a turn.

Figure 3 shows the schematic diagram of the
TriBot. The ultrasonic sensor is represented by
a yellow triangle, and the orange circle in the center
of the robot represents the motor on which the sen-
sor is mounted. The intersecting perpendicular lines
within the robot represent the robot reference
frame. Origin of the robot reference frame is at the
point where these lines intersect. The two wheels on
either side of the robot and a swiveling wheel are
also shown in the figure using round edged rectan-
gles.

Fig. 3. Schematic representation of the Lego
Mindstorms NXT TriBot based robot depicting the
robot reference frame

3. Map Construction and Localization

Map construction process involves recording and
displaying the robot’s surrounding environment. It is
implemented as a continuous cycle of two steps
namely, sensing and motion, as shown in Figure 4.

Fig. 4. Map construction process used by the TriBot in
implementation

with a few modifications. The TriBot is equipped
with one ultrasonic sensor, mounted on an interac-
tive motor. It is possible to create a ring of 60 sensor
readings in one complete circular turn by rotating
the sensor anticlockwise by 360 degrees and taking
readings after every 6 degree interval. The ultrasonic
sensor has been placed at the origin of the robot
reference frame [2].

Fig. 1. Top view of the Lego Mindstorms NXT TriBot
based robot with an interactive servo motor and the
ultrasonic sensor attached on top

Fig. 2. Front view of the Lego Mindstorms NXT TriBot
based robot with the ultrasonic sensor pointing for-
ward

The central component of the TriBot is the NXT

brick which is essential for establishing a connection
with the computer and controlling the sensors, and
motors. Figure 1 shows the TriBot used for experi-
mentation purposes.

Figure 2 shows the front view of the TriBot used.
The wheeled motors, on either side of the robot, are
synchronized so that if one wheel moves forward the
other also moves forward by the same degree and at
the same speed. Hence both the wheels move in
unison and it is not necessary to control the power
and tacho limit for each motor separately. This is
important when the robot moves forward or back-
ward to ensure that it follows a straight line and
does not drive in a curve. It is also possible to control
a single wheeled motor separately when the robot
executes a turn.

Figure 3 shows the schematic diagram of the
TriBot. The ultrasonic sensor is represented by
a yellow triangle, and the orange circle in the center
of the robot represents the motor on which the sen-
sor is mounted. The intersecting perpendicular lines
within the robot represent the robot reference
frame. Origin of the robot reference frame is at the
point where these lines intersect. The two wheels on
either side of the robot and a swiveling wheel are
also shown in the figure using round edged rectan-
gles.

Fig. 3. Schematic representation of the Lego
Mindstorms NXT TriBot based robot depicting the
robot reference frame

3. Map Construction and Localization

Map construction process involves recording and
displaying the robot’s surrounding environment. It is
implemented as a continuous cycle of two steps
namely, sensing and motion, as shown in Figure 4.

Fig. 4. Map construction process used by the TriBot in
implementation

with a few modifications. The TriBot is equipped
with one ultrasonic sensor, mounted on an interac-
tive motor. It is possible to create a ring of 60 sensor
readings in one complete circular turn by rotating
the sensor anticlockwise by 360 degrees and taking
readings after every 6 degree interval. The ultrasonic
sensor has been placed at the origin of the robot
reference frame [2].

Fig. 1. Top view of the Lego Mindstorms NXT TriBot
based robot with an interactive servo motor and the
ultrasonic sensor attached on top

Fig. 2. Front view of the Lego Mindstorms NXT TriBot
based robot with the ultrasonic sensor pointing for-
ward

The central component of the TriBot is the NXT

brick which is essential for establishing a connection
with the computer and controlling the sensors, and
motors. Figure 1 shows the TriBot used for experi-
mentation purposes.

Figure 2 shows the front view of the TriBot used.
The wheeled motors, on either side of the robot, are
synchronized so that if one wheel moves forward the
other also moves forward by the same degree and at
the same speed. Hence both the wheels move in
unison and it is not necessary to control the power
and tacho limit for each motor separately. This is
important when the robot moves forward or back-
ward to ensure that it follows a straight line and
does not drive in a curve. It is also possible to control
a single wheeled motor separately when the robot
executes a turn.

Figure 3 shows the schematic diagram of the
TriBot. The ultrasonic sensor is represented by
a yellow triangle, and the orange circle in the center
of the robot represents the motor on which the sen-
sor is mounted. The intersecting perpendicular lines
within the robot represent the robot reference
frame. Origin of the robot reference frame is at the
point where these lines intersect. The two wheels on
either side of the robot and a swiveling wheel are
also shown in the figure using round edged rectan-
gles.

Fig. 3. Schematic representation of the Lego
Mindstorms NXT TriBot based robot depicting the
robot reference frame

3. Map Construction and Localization

Map construction process involves recording and
displaying the robot’s surrounding environment. It is
implemented as a continuous cycle of two steps
namely, sensing and motion, as shown in Figure 4.

Fig. 4. Map construction process used by the TriBot in
implementation

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles 25

The robot is able to navigate around in an area and
record the features of that space. It initially starts at
the origin position around which the global map is
constructed. In this system, the origin of the robot
reference frame is initially assumed to coincide with
the origin of the map and the Cartesian coordinates of
the robot in the map are (0, 0) with an orientation of 0
degree with respect to the X-axis. A position of the
robot in the map is the single set of values, of its X and
Y coordinates and its orientation, with respect to the
origin of the map. These positions are recorded as
distinct rows in a matrix in the MATLAB program;
where origin of the map is saved as the first position
of the robot. The ultrasonic sensor mounted on the
robot is initially assumed to be pointing in the 0 de-
gree direction with respect to the X-axis of the map.
3.1. Sensing

In this step the robot senses its current local sur-
roundings by using the ultrasonic sensor. The TriBot
takes a set of 120 ultrasonic readings of the area
around its current position by rotating the motor by a
6 degree interval in the counter-clockwise direction,
for a total of 720 degrees, instead of a revolution of
360 degrees, which decreases the probability that the
recorded readings are representative of a ghost im-
age. The values thus obtained are relative to the origin
of the robot reference frame and denote the robot’s
immediate neighborhood.

Angles, at which these readings are recorded, are
also saved along with the distance values which depict
the recorded straight line distance between the robot
and an object at that angle. The motor is rotated till
the sensor points at an angle of 714 (or 354) degrees
with respect to the positive X-axis. These 120 read-
ings, saved in a two-column matrix, represent the
local map of the robot at that position and the col-
umns in the matrix represent the radius and angle of
the Polar coordinates of the objects from the current
position of the robot.

After obtaining a set of readings, for each distance
reading of 255 the value is deleted and the corre-
sponding angle of that reading is also deleted, so that
these readings are not considered for map construc-
tion. The sensor is then rotated back to the 0 degree
position, as it was before the readings were taken. To
display the map, Polar coordinates of the objects tak-
en with respect to the robot reference frame are con-
verted into Cartesian coordinates. The map is initially
empty and the set of readings taken at the origin of
the global map, are then added to the map.

For all the next sets of readings representing the
TriBot’s local map, at some known position relative to
the origin of the map, the calculated Cartesian coordi-
nates of the readings are shifted by the X and Y values
of the TriBot’s current position before being added to
the existing map. The robot’s current position, with
respect to the global origin, is also plotted onto the
map. This process continues till the robot keeps ex-
ploring the room, and the then existing map is treated
as the final map of the room.

The robot stops at each new position and records
the local map readings of that position, a process
which takes 60 seconds to obtain 120 readings. The

error in the readings obtained is dependent on the
ultrasonic sensor and so an average error of 3 centi-
meters is possible in the readings, which is a fairly
acceptable value for this kind of sensor.
3.2. Motion

After sensing the environment surrounding the
robot, the distance in centimeters and the direction
of the next frontier from the robot’s current position
is computed and the robot then proceeds to move
toward this new frontier location.

The robot moves to a new frontier location so
that it is possible to detect the objects in the previ-
ously unexplored area of the room. To ensure that
the TriBot is able to explore the complete room effi-
ciently, the 120 distance readings obtained for the
current position of the robot are sorted and one of
the four farthest values of the recorded distances is
randomly selected. Random selection is chosen, as it
is possible that the distances recorded are erroneous
readings due to a ghost image.

The TriBot turns according to the angle of the di-
rection of the farthest point selected with respect to
the robot reference frame and it is then moved half
the distance to that point. The distance is halved to
counteract the possibility that the point selected
represents a ghost image. Every new position of the
robot depends only on the relative displacement
from the previous position which in turn depends on
the readings taken on that position. The robot’s rela-
tive displacement from the previous position to the
new position is stored in a matrix. The relative orien-
tation from previous position is the angle which the
robot turned, found during the new frontier location
calculation. The X and Y coordinates representing
the new position achieved by displacement from
previous position are found by converting the dis-
tance moved and the angle rotated with respect to
the previous position into Cartesian values. The cur-
rent position of the robot relative to the origin of the
map is calculated by taking the arithmetic sum of all
previous relative displacements and adding it to the
displacement from last known position to the cur-
rent position. Hence the robot’s position is localized
by calculating the sum of all the displacements.

The sensing and motion steps are repeated con-
tinuously, many times, to construct the final map by
the robot through exploration of the environment
and to find the position of the robot after every rela-
tive displacement. The readings taken at each posi-
tion contribute to the calculation of the next frontier
for the robot and the robot has no knowledge of the
readings taken previously. The robot also has orien-
tation information relative to the X-axis of the global
map, though it may have approximately 0.25 degrees
of error from the previous position of the robot.

All the Cartesian coordinates of the objects ob-
served and the robot positions are stored in separate
matrices which are later stored as files, so that it
becomes possible to recreate the map after the robot
has finished collecting the readings from the envi-
ronment. A single reading, consisting of X and Y co-
ordinates values of the room takes roughly 16 bytes
of file space. So, for 120 readings taken at 100 posi-

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles26

tions, for a total of 12000 records, the file size will be
approximately 188 kBytes.
4. Kidnapped Robot Problem

The algorithm implemented and discussed here is
used by the TriBot to find its approximate location in an
existing map by taking the readings of its surroundings.
During the map construction process, the robot finds its
position through the relative displacements from the
origin of the map. In a situation where the robot only
knows the coordinates of the objects of the map and
does not know its position relative to the origin, the
robot’s position is localized within the environment by
taking measurements from its immediate surroundings
and by moving it within the area for which the global
map is available. Figure 5 depicts these two steps.

Fig. 5. Localization process used by the TriBot

The position of the particles which represent the
guesses of the robot’s possible position within the
map, are taken as the initial belief for the particles.
The particles then update their belief of the robot’s
position by using the measurements taken by the
robot’s ultrasonic sensor which leads to survival of
only a few of the particles with probable initial be-
liefs. This selection of the particles with probable
beliefs is repeated continuously, by moving the robot
and the particles by some distance and taking subse-
quent measurements, till all the particles are clus-
tered around a single position within the map which
can safely predict the robot’s approximate location.
4.1. Particle Filters

Particle filters are used in this work as they are
easier to program for continuous value problems, as
compared to Kalman Filters [10, 11]. Particle filters
also work better than Histogram Filters [11] in high-
er-dimensional spaces. Table 1 compares the Histo-
gram, Kalman, and Particle filters on the basis of two
characteristics.
Table 1. Comparisons between Histogram, Kalman and
Particle Filters

Filter Name State-Space Belief

Histogram Discrete Multi-Modal
Kalman Continuous Uni-Modal
Particle Continuous Multi-Modal

4.2. Localization using Particle Filters
After satisfactory map construction of the room, the

robot is kidnapped i.e., removed from the environment
and then placed randomly somewhere inside the area
represented by the global map. The current position of
the robot within the map is unknown and is deter-
mined by finding distances to nearby objects with the
use of the ultrasonic sensor, and calculating a good
posterior distribution of where the robot is based on
those readings.

Each particle represents the possible position
and orientation of the robot in the map. Set of hun-
dreds of such (N) particles together comprise an
approximate representation of the posterior distri-
bution of the robot [11]. In the beginning, all the N
particles are uniformly scattered, and the filter al-
lows them to survive in proportion to how consistent
these particles are with the sensor readings, such
that the particles which are more consistent with the
sensor measurements are considered fitter and are
more likely to survive. Measurements of the robot’s
surroundings are recorded and applied to all the
particles individually. As a result, closer the particle
is to the correct position, more likely the possibility
that the measurements belong to that particle, and
higher the likelihood of its survival. The particles
which are highly consistent with the measurements
form clusters around a single position in the map
which approximately represents the position of ro-
bot as it localizes itself within the map.

Each particle has its own importance weight and
survives at random, though the probability of its sur-
vival is proportional to its importance weight. Larger
the weight of the particle, more likely it is that it repre-
sents the robot’s position and more likely that it sur-
vives. After resampling i.e., randomly drawing N new
particles from the old ones in proportion with their
importance weights, with replacement, the smaller
weighted particles representing less probable robot
positions are likely to be discarded.
4.3. Noise

Three types of noise values [11] are considered dur-
ing the localization of the robot, as follows:
— Forward noise – The error value, in centimeters,

that must be taken into account when the robot
moves in the forward direction.

— Turn noise – The error value, in degrees, which
must be taken into consideration when the robot
executes a right or left turn on its current position.

— Sense noise – The error value, in centimeters, that
must be taken into account due to the ultrasonic
sensor’s inability to measure exact distances.

4.4. Particles
To create the particles a class is created in

MATLAB, where an object of that class represents
a single particle. Each particle created using this
class has six attributes, namely – X-coordinate value,
Y-coordinate value, Orientation, Forward noise, Turn
noise, Sense noise. The position and orientation of
a particle are randomly initialized on creation of the
particle. The forward, turn and sense noise values for
each particle are initially set to 0.5, by default.

tions, for a total of 12000 records, the file size will be
approximately 188 kBytes.
4. Kidnapped Robot Problem

The algorithm implemented and discussed here is
used by the TriBot to find its approximate location in an
existing map by taking the readings of its surroundings.
During the map construction process, the robot finds its
position through the relative displacements from the
origin of the map. In a situation where the robot only
knows the coordinates of the objects of the map and
does not know its position relative to the origin, the
robot’s position is localized within the environment by
taking measurements from its immediate surroundings
and by moving it within the area for which the global
map is available. Figure 5 depicts these two steps.

Fig. 5. Localization process used by the TriBot

The position of the particles which represent the
guesses of the robot’s possible position within the
map, are taken as the initial belief for the particles.
The particles then update their belief of the robot’s
position by using the measurements taken by the
robot’s ultrasonic sensor which leads to survival of
only a few of the particles with probable initial be-
liefs. This selection of the particles with probable
beliefs is repeated continuously, by moving the robot
and the particles by some distance and taking subse-
quent measurements, till all the particles are clus-
tered around a single position within the map which
can safely predict the robot’s approximate location.
4.1. Particle Filters

Particle filters are used in this work as they are
easier to program for continuous value problems, as
compared to Kalman Filters [10, 11]. Particle filters
also work better than Histogram Filters [11] in high-
er-dimensional spaces. Table 1 compares the Histo-
gram, Kalman, and Particle filters on the basis of two
characteristics.
Table 1. Comparisons between Histogram, Kalman and
Particle Filters

Filter Name State-Space Belief

Histogram Discrete Multi-Modal
Kalman Continuous Uni-Modal
Particle Continuous Multi-Modal

4.2. Localization using Particle Filters
After satisfactory map construction of the room, the

robot is kidnapped i.e., removed from the environment
and then placed randomly somewhere inside the area
represented by the global map. The current position of
the robot within the map is unknown and is deter-
mined by finding distances to nearby objects with the
use of the ultrasonic sensor, and calculating a good
posterior distribution of where the robot is based on
those readings.

Each particle represents the possible position
and orientation of the robot in the map. Set of hun-
dreds of such (N) particles together comprise an
approximate representation of the posterior distri-
bution of the robot [11]. In the beginning, all the N
particles are uniformly scattered, and the filter al-
lows them to survive in proportion to how consistent
these particles are with the sensor readings, such
that the particles which are more consistent with the
sensor measurements are considered fitter and are
more likely to survive. Measurements of the robot’s
surroundings are recorded and applied to all the
particles individually. As a result, closer the particle
is to the correct position, more likely the possibility
that the measurements belong to that particle, and
higher the likelihood of its survival. The particles
which are highly consistent with the measurements
form clusters around a single position in the map
which approximately represents the position of ro-
bot as it localizes itself within the map.

Each particle has its own importance weight and
survives at random, though the probability of its sur-
vival is proportional to its importance weight. Larger
the weight of the particle, more likely it is that it repre-
sents the robot’s position and more likely that it sur-
vives. After resampling i.e., randomly drawing N new
particles from the old ones in proportion with their
importance weights, with replacement, the smaller
weighted particles representing less probable robot
positions are likely to be discarded.
4.3. Noise

Three types of noise values [11] are considered dur-
ing the localization of the robot, as follows:
— Forward noise – The error value, in centimeters,

that must be taken into account when the robot
moves in the forward direction.

— Turn noise – The error value, in degrees, which
must be taken into consideration when the robot
executes a right or left turn on its current position.

— Sense noise – The error value, in centimeters, that
must be taken into account due to the ultrasonic
sensor’s inability to measure exact distances.

4.4. Particles
To create the particles a class is created in

MATLAB, where an object of that class represents
a single particle. Each particle created using this
class has six attributes, namely – X-coordinate value,
Y-coordinate value, Orientation, Forward noise, Turn
noise, Sense noise. The position and orientation of
a particle are randomly initialized on creation of the
particle. The forward, turn and sense noise values for
each particle are initially set to 0.5, by default.

tions, for a total of 12000 records, the file size will be
approximately 188 kBytes.
4. Kidnapped Robot Problem

The algorithm implemented and discussed here is
used by the TriBot to find its approximate location in an
existing map by taking the readings of its surroundings.
During the map construction process, the robot finds its
position through the relative displacements from the
origin of the map. In a situation where the robot only
knows the coordinates of the objects of the map and
does not know its position relative to the origin, the
robot’s position is localized within the environment by
taking measurements from its immediate surroundings
and by moving it within the area for which the global
map is available. Figure 5 depicts these two steps.

Fig. 5. Localization process used by the TriBot

The position of the particles which represent the
guesses of the robot’s possible position within the
map, are taken as the initial belief for the particles.
The particles then update their belief of the robot’s
position by using the measurements taken by the
robot’s ultrasonic sensor which leads to survival of
only a few of the particles with probable initial be-
liefs. This selection of the particles with probable
beliefs is repeated continuously, by moving the robot
and the particles by some distance and taking subse-
quent measurements, till all the particles are clus-
tered around a single position within the map which
can safely predict the robot’s approximate location.
4.1. Particle Filters

Particle filters are used in this work as they are
easier to program for continuous value problems, as
compared to Kalman Filters [10, 11]. Particle filters
also work better than Histogram Filters [11] in high-
er-dimensional spaces. Table 1 compares the Histo-
gram, Kalman, and Particle filters on the basis of two
characteristics.
Table 1. Comparisons between Histogram, Kalman and
Particle Filters

Filter Name State-Space Belief

Histogram Discrete Multi-Modal
Kalman Continuous Uni-Modal
Particle Continuous Multi-Modal

4.2. Localization using Particle Filters
After satisfactory map construction of the room, the

robot is kidnapped i.e., removed from the environment
and then placed randomly somewhere inside the area
represented by the global map. The current position of
the robot within the map is unknown and is deter-
mined by finding distances to nearby objects with the
use of the ultrasonic sensor, and calculating a good
posterior distribution of where the robot is based on
those readings.

Each particle represents the possible position
and orientation of the robot in the map. Set of hun-
dreds of such (N) particles together comprise an
approximate representation of the posterior distri-
bution of the robot [11]. In the beginning, all the N
particles are uniformly scattered, and the filter al-
lows them to survive in proportion to how consistent
these particles are with the sensor readings, such
that the particles which are more consistent with the
sensor measurements are considered fitter and are
more likely to survive. Measurements of the robot’s
surroundings are recorded and applied to all the
particles individually. As a result, closer the particle
is to the correct position, more likely the possibility
that the measurements belong to that particle, and
higher the likelihood of its survival. The particles
which are highly consistent with the measurements
form clusters around a single position in the map
which approximately represents the position of ro-
bot as it localizes itself within the map.

Each particle has its own importance weight and
survives at random, though the probability of its sur-
vival is proportional to its importance weight. Larger
the weight of the particle, more likely it is that it repre-
sents the robot’s position and more likely that it sur-
vives. After resampling i.e., randomly drawing N new
particles from the old ones in proportion with their
importance weights, with replacement, the smaller
weighted particles representing less probable robot
positions are likely to be discarded.
4.3. Noise

Three types of noise values [11] are considered dur-
ing the localization of the robot, as follows:
— Forward noise – The error value, in centimeters,

that must be taken into account when the robot
moves in the forward direction.

— Turn noise – The error value, in degrees, which
must be taken into consideration when the robot
executes a right or left turn on its current position.

— Sense noise – The error value, in centimeters, that
must be taken into account due to the ultrasonic
sensor’s inability to measure exact distances.

4.4. Particles
To create the particles a class is created in

MATLAB, where an object of that class represents
a single particle. Each particle created using this
class has six attributes, namely – X-coordinate value,
Y-coordinate value, Orientation, Forward noise, Turn
noise, Sense noise. The position and orientation of
a particle are randomly initialized on creation of the
particle. The forward, turn and sense noise values for
each particle are initially set to 0.5, by default.

tions, for a total of 12000 records, the file size will be
approximately 188 kBytes.
4. Kidnapped Robot Problem

The algorithm implemented and discussed here is
used by the TriBot to find its approximate location in an
existing map by taking the readings of its surroundings.
During the map construction process, the robot finds its
position through the relative displacements from the
origin of the map. In a situation where the robot only
knows the coordinates of the objects of the map and
does not know its position relative to the origin, the
robot’s position is localized within the environment by
taking measurements from its immediate surroundings
and by moving it within the area for which the global
map is available. Figure 5 depicts these two steps.

Fig. 5. Localization process used by the TriBot

The position of the particles which represent the
guesses of the robot’s possible position within the
map, are taken as the initial belief for the particles.
The particles then update their belief of the robot’s
position by using the measurements taken by the
robot’s ultrasonic sensor which leads to survival of
only a few of the particles with probable initial be-
liefs. This selection of the particles with probable
beliefs is repeated continuously, by moving the robot
and the particles by some distance and taking subse-
quent measurements, till all the particles are clus-
tered around a single position within the map which
can safely predict the robot’s approximate location.
4.1. Particle Filters

Particle filters are used in this work as they are
easier to program for continuous value problems, as
compared to Kalman Filters [10, 11]. Particle filters
also work better than Histogram Filters [11] in high-
er-dimensional spaces. Table 1 compares the Histo-
gram, Kalman, and Particle filters on the basis of two
characteristics.
Table 1. Comparisons between Histogram, Kalman and
Particle Filters

Filter Name State-Space Belief

Histogram Discrete Multi-Modal
Kalman Continuous Uni-Modal
Particle Continuous Multi-Modal

4.2. Localization using Particle Filters
After satisfactory map construction of the room, the

robot is kidnapped i.e., removed from the environment
and then placed randomly somewhere inside the area
represented by the global map. The current position of
the robot within the map is unknown and is deter-
mined by finding distances to nearby objects with the
use of the ultrasonic sensor, and calculating a good
posterior distribution of where the robot is based on
those readings.

Each particle represents the possible position
and orientation of the robot in the map. Set of hun-
dreds of such (N) particles together comprise an
approximate representation of the posterior distri-
bution of the robot [11]. In the beginning, all the N
particles are uniformly scattered, and the filter al-
lows them to survive in proportion to how consistent
these particles are with the sensor readings, such
that the particles which are more consistent with the
sensor measurements are considered fitter and are
more likely to survive. Measurements of the robot’s
surroundings are recorded and applied to all the
particles individually. As a result, closer the particle
is to the correct position, more likely the possibility
that the measurements belong to that particle, and
higher the likelihood of its survival. The particles
which are highly consistent with the measurements
form clusters around a single position in the map
which approximately represents the position of ro-
bot as it localizes itself within the map.

Each particle has its own importance weight and
survives at random, though the probability of its sur-
vival is proportional to its importance weight. Larger
the weight of the particle, more likely it is that it repre-
sents the robot’s position and more likely that it sur-
vives. After resampling i.e., randomly drawing N new
particles from the old ones in proportion with their
importance weights, with replacement, the smaller
weighted particles representing less probable robot
positions are likely to be discarded.
4.3. Noise

Three types of noise values [11] are considered dur-
ing the localization of the robot, as follows:
— Forward noise – The error value, in centimeters,

that must be taken into account when the robot
moves in the forward direction.

— Turn noise – The error value, in degrees, which
must be taken into consideration when the robot
executes a right or left turn on its current position.

— Sense noise – The error value, in centimeters, that
must be taken into account due to the ultrasonic
sensor’s inability to measure exact distances.

4.4. Particles
To create the particles a class is created in

MATLAB, where an object of that class represents
a single particle. Each particle created using this
class has six attributes, namely – X-coordinate value,
Y-coordinate value, Orientation, Forward noise, Turn
noise, Sense noise. The position and orientation of
a particle are randomly initialized on creation of the
particle. The forward, turn and sense noise values for
each particle are initially set to 0.5, by default.

tions, for a total of 12000 records, the file size will be
approximately 188 kBytes.
4. Kidnapped Robot Problem

The algorithm implemented and discussed here is
used by the TriBot to find its approximate location in an
existing map by taking the readings of its surroundings.
During the map construction process, the robot finds its
position through the relative displacements from the
origin of the map. In a situation where the robot only
knows the coordinates of the objects of the map and
does not know its position relative to the origin, the
robot’s position is localized within the environment by
taking measurements from its immediate surroundings
and by moving it within the area for which the global
map is available. Figure 5 depicts these two steps.

Fig. 5. Localization process used by the TriBot

The position of the particles which represent the
guesses of the robot’s possible position within the
map, are taken as the initial belief for the particles.
The particles then update their belief of the robot’s
position by using the measurements taken by the
robot’s ultrasonic sensor which leads to survival of
only a few of the particles with probable initial be-
liefs. This selection of the particles with probable
beliefs is repeated continuously, by moving the robot
and the particles by some distance and taking subse-
quent measurements, till all the particles are clus-
tered around a single position within the map which
can safely predict the robot’s approximate location.
4.1. Particle Filters

Particle filters are used in this work as they are
easier to program for continuous value problems, as
compared to Kalman Filters [10, 11]. Particle filters
also work better than Histogram Filters [11] in high-
er-dimensional spaces. Table 1 compares the Histo-
gram, Kalman, and Particle filters on the basis of two
characteristics.
Table 1. Comparisons between Histogram, Kalman and
Particle Filters

Filter Name State-Space Belief

Histogram Discrete Multi-Modal
Kalman Continuous Uni-Modal
Particle Continuous Multi-Modal

4.2. Localization using Particle Filters
After satisfactory map construction of the room, the

robot is kidnapped i.e., removed from the environment
and then placed randomly somewhere inside the area
represented by the global map. The current position of
the robot within the map is unknown and is deter-
mined by finding distances to nearby objects with the
use of the ultrasonic sensor, and calculating a good
posterior distribution of where the robot is based on
those readings.

Each particle represents the possible position
and orientation of the robot in the map. Set of hun-
dreds of such (N) particles together comprise an
approximate representation of the posterior distri-
bution of the robot [11]. In the beginning, all the N
particles are uniformly scattered, and the filter al-
lows them to survive in proportion to how consistent
these particles are with the sensor readings, such
that the particles which are more consistent with the
sensor measurements are considered fitter and are
more likely to survive. Measurements of the robot’s
surroundings are recorded and applied to all the
particles individually. As a result, closer the particle
is to the correct position, more likely the possibility
that the measurements belong to that particle, and
higher the likelihood of its survival. The particles
which are highly consistent with the measurements
form clusters around a single position in the map
which approximately represents the position of ro-
bot as it localizes itself within the map.

Each particle has its own importance weight and
survives at random, though the probability of its sur-
vival is proportional to its importance weight. Larger
the weight of the particle, more likely it is that it repre-
sents the robot’s position and more likely that it sur-
vives. After resampling i.e., randomly drawing N new
particles from the old ones in proportion with their
importance weights, with replacement, the smaller
weighted particles representing less probable robot
positions are likely to be discarded.
4.3. Noise

Three types of noise values [11] are considered dur-
ing the localization of the robot, as follows:
— Forward noise – The error value, in centimeters,

that must be taken into account when the robot
moves in the forward direction.

— Turn noise – The error value, in degrees, which
must be taken into consideration when the robot
executes a right or left turn on its current position.

— Sense noise – The error value, in centimeters, that
must be taken into account due to the ultrasonic
sensor’s inability to measure exact distances.

4.4. Particles
To create the particles a class is created in

MATLAB, where an object of that class represents
a single particle. Each particle created using this
class has six attributes, namely – X-coordinate value,
Y-coordinate value, Orientation, Forward noise, Turn
noise, Sense noise. The position and orientation of
a particle are randomly initialized on creation of the
particle. The forward, turn and sense noise values for
each particle are initially set to 0.5, by default.

tions, for a total of 12000 records, the file size will be
approximately 188 kBytes.
4. Kidnapped Robot Problem

The algorithm implemented and discussed here is
used by the TriBot to find its approximate location in an
existing map by taking the readings of its surroundings.
During the map construction process, the robot finds its
position through the relative displacements from the
origin of the map. In a situation where the robot only
knows the coordinates of the objects of the map and
does not know its position relative to the origin, the
robot’s position is localized within the environment by
taking measurements from its immediate surroundings
and by moving it within the area for which the global
map is available. Figure 5 depicts these two steps.

Fig. 5. Localization process used by the TriBot

The position of the particles which represent the
guesses of the robot’s possible position within the
map, are taken as the initial belief for the particles.
The particles then update their belief of the robot’s
position by using the measurements taken by the
robot’s ultrasonic sensor which leads to survival of
only a few of the particles with probable initial be-
liefs. This selection of the particles with probable
beliefs is repeated continuously, by moving the robot
and the particles by some distance and taking subse-
quent measurements, till all the particles are clus-
tered around a single position within the map which
can safely predict the robot’s approximate location.
4.1. Particle Filters

Particle filters are used in this work as they are
easier to program for continuous value problems, as
compared to Kalman Filters [10, 11]. Particle filters
also work better than Histogram Filters [11] in high-
er-dimensional spaces. Table 1 compares the Histo-
gram, Kalman, and Particle filters on the basis of two
characteristics.
Table 1. Comparisons between Histogram, Kalman and
Particle Filters

Filter Name State-Space Belief

Histogram Discrete Multi-Modal
Kalman Continuous Uni-Modal
Particle Continuous Multi-Modal

4.2. Localization using Particle Filters
After satisfactory map construction of the room, the

robot is kidnapped i.e., removed from the environment
and then placed randomly somewhere inside the area
represented by the global map. The current position of
the robot within the map is unknown and is deter-
mined by finding distances to nearby objects with the
use of the ultrasonic sensor, and calculating a good
posterior distribution of where the robot is based on
those readings.

Each particle represents the possible position
and orientation of the robot in the map. Set of hun-
dreds of such (N) particles together comprise an
approximate representation of the posterior distri-
bution of the robot [11]. In the beginning, all the N
particles are uniformly scattered, and the filter al-
lows them to survive in proportion to how consistent
these particles are with the sensor readings, such
that the particles which are more consistent with the
sensor measurements are considered fitter and are
more likely to survive. Measurements of the robot’s
surroundings are recorded and applied to all the
particles individually. As a result, closer the particle
is to the correct position, more likely the possibility
that the measurements belong to that particle, and
higher the likelihood of its survival. The particles
which are highly consistent with the measurements
form clusters around a single position in the map
which approximately represents the position of ro-
bot as it localizes itself within the map.

Each particle has its own importance weight and
survives at random, though the probability of its sur-
vival is proportional to its importance weight. Larger
the weight of the particle, more likely it is that it repre-
sents the robot’s position and more likely that it sur-
vives. After resampling i.e., randomly drawing N new
particles from the old ones in proportion with their
importance weights, with replacement, the smaller
weighted particles representing less probable robot
positions are likely to be discarded.
4.3. Noise

Three types of noise values [11] are considered dur-
ing the localization of the robot, as follows:
— Forward noise – The error value, in centimeters,

that must be taken into account when the robot
moves in the forward direction.

— Turn noise – The error value, in degrees, which
must be taken into consideration when the robot
executes a right or left turn on its current position.

— Sense noise – The error value, in centimeters, that
must be taken into account due to the ultrasonic
sensor’s inability to measure exact distances.

4.4. Particles
To create the particles a class is created in

MATLAB, where an object of that class represents
a single particle. Each particle created using this
class has six attributes, namely – X-coordinate value,
Y-coordinate value, Orientation, Forward noise, Turn
noise, Sense noise. The position and orientation of
a particle are randomly initialized on creation of the
particle. The forward, turn and sense noise values for
each particle are initially set to 0.5, by default.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles 27

4.5. Particle Filter Algorithm

Firstly, 250 particles are created using the class
implemented in MATLAB and their noise attribute
values are set according to the measured values of
the precision for TriBot’s wheeled motors and ultra-
sonic sensor. The values of forward, turn, and sense
noise of the TriBot are calculated using the accuracy
of the ultrasonic sensor and the motors and are set
to 0.05 centimeters, 0.25 degrees and 3 centimeters
respectively for the current implementation.

At the current unknown position of the robot
a reading is taken by the ultrasonic sensor at a certain
angle, between 0 and 45 degrees, with respect to the
robot reference frame. Seven more such readings are
taken at an interval of 45 degree each, which gives a
set of total eight measurements for the robot’s current
position. For each particle, these angles are used to
find the distances between the particle’s position and
the objects in the map at these angles, with respect to
the particle’s orientation. The probability that a parti-
cle represents the approximate location of the robot is
computed by using the equation:

� = � �
(���)�

���

√����∝

(1)

Where µ is the distance of the particle from an ob-

ject, x is the observed distance measurement at that
angle with respect to the robot reference frame, σ is the
sense noise and α is the set of all angles at which the
eight readings were recorded. This probability, p, is
eventually treated as the importance weight for that
particle.

The particle filter implemented in the current sys-
tem, is shown in Algorithm 1. RoomX and RoomY are
arrays having the values of X and Y coordinates of the
room boundary and objects, recorded during map con-
struction. Line 2 creates a set of particles P by creating
objects of the class and initializes the respective attrib-
ute values for each particle. P is a collection of one-
dimensional arrays, viz. Px, Py, Porientation, Psense, Pturn
and Pforward, of size N each, where each array repre-
sents an attribute. Array Px records the X-coordinate
value for all the N particles in sequence, Py stores the Y-
coordinate value for all the particles and so on. W is an
array of size N that sequentially stores the importance
weights of all the particles in P. Line 3 sets the noise
values of all the particles.

The constant, t is used to define the number of
times that the algorithm must be run and a value of 10
is fixed in the implementation. The initially empty ar-
ray, select, is used to save the index of the coordinates
of room that satisfy the measurement reading, Z, when
applied to a particle. Integer value of the variable angle
can be initialized manually between 0 and π/4 radians
and a value of π/6 radians has been chosen in the im-
plementation.

In line 7, the robot takes a distance reading of its
surrounding at the angle specified. The function polar
takes the arrays of Cartesian coordinates of the room
and converts them to Polar coordinates, with respect to

the origin of the global map; where R represents the
array of distances and Ɵ represents the array of angles
of those points, in radians. The size function returns the
number of rows in an array. The values distX, distY
represent the distance between the X and Y coordinates
of the particles from the coordinates of the object of the
room observed at a certain angle by the robot. These
values are used to find the distance of the particle from
the coordinates in map, which is then used in line 29
and 30 to find the importance weight of the particle.
Line 33 applies the resampling algorithm which ran-
domly draws N new particles from the old ones, with
replacement, according to their importance weights. In
line 37 implements the movement of the TriBot and all
the particles, by turning them by 20 degrees anti-
clockwise and moving them forward by a distance of
6 centimeters. A random Gaussian distribution value
with zero mean, and the standard deviation set as the
forward or turn noise is added when the particles are
moved forward, or rotated.

Algorithm 1: Particle Filter Algorithm for Localization.
Input :

� �����, ����� � ����������� �� ����
 � � ������ �� ���������

1 begin
2 Create N uniformly distributed particles P, and ini-

tialize attributes Px, Py, Porientation, Psense, Pturn, and
Pforward.

3 Set Noise values of Psense, Pturn, Pforward.
4 for t ← 1 to 10 do
5 angle ← π/6 ;
6 for i ← 1 to 8 do
7 Z ← Distance reading with TriBot(angle) ;
8 select ← [] ;
9 (R, Ɵ) ← polar (RoomX, RoomY);
10 for j ← 1 to N do
11 W(j) ← 1.0 ;
12 for k ← 1 to N do
13 dcos ← R(k) * cos(Ɵ(k)) – Px(j) ;
14 dsin ← R(k) * sin(Ɵ(k)) – Py(j) ;
15 d ← √����� + ����� ;
16 if dcos ≅ 0 do
17 r ← ����� (���� �⁄) ;
18 else
19 r ← ����� (���� �⁄) ;
20 end if (line 16)
21 if �� � ���� = �(������������(�) + �����) � ����

do
22 Add k to select array.
23 end if (line 21)
24 end for (line 12)
25 for i ← 1 to size(select) do
26 distX ← ��(�) � ������������(�)� ;

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles28

27 distY ← ��(�) � ������������(�)� ;

28 dist ← √������ + ������ ;

29 � ← �
(������)�

(� ∗(������(�))�)

��� ∗(������(�))�
 ;

30 W(j) ← W(j) * p ;
31 end for (line 25)
32 end for (line 10)
33 P2 ← Resampling Wheel Algorithm (W, N).
34 P ← P2 ;
35 angle ← angle + π/4 ;
36 end for (line 6)
37 Move the robot and particles.
38 end for (line 4)
39 end

For resampling the particles on the basis of their

importance weights, a particle that has higher im-
portance weight, must be sampled or picked more
number of times than a particle that has low im-
portance weight. This is achieved through the
resampling wheel algorithm [11] described in Algo-
rithm 2. First, an initial integer guess of a particle num-
ber is taken from the uniform interval (1, N) at random
and labeled as index. A value beta, initialized as zero, is
added to a real value drawn uniformly from the interval
(0, 2*maxw) to give a new value of beta; where maxw is
the maximum importance weight in W. If weight of the
index particle is smaller than the current value of beta,
then the weight of the particle is subtracted from beta
and index is incremented by one. Otherwise, if the beta
value is lower than weight of index particle, then that
particle is chosen to survive.

In the given algorithm, Ʋ1 represents a function that
returns a uniformly integer drawn value and Ʋ2 re-
turns a uniform real value from the intervals specified.
The max function returns the maximum value among
all the elements of an array. P2 is, initially, an empty set
of arrays and stores the attribute values of the particles
selected for survival after resampling.

Algorithm 2. Resampling Wheel Algorithm.
Input :

� � ∶ ����� �� ���������� ������ �� ���������
� ∶ ������ �� ���������

Output : � �� ∶ ��������� ����� ����������

1 begin
2 index ← Ʋ1(1, N) ;
3 beta ← 0 ;
4 P2 ← [] ;
5 maxw ← max(W);
6 for i ← 1 to N do
7 beta ← beta + Ʋ2(0, 2*maxw) ;
8 while W[index] < beta do
9 beta ← beta – W(index) ;
10 index ← index + 1 ;

11 end while
12 Add the index particle to P2.
13 end for
14 end

If the beta value is small, there is a high possibil-

ity of a particle with large importance weight being
picked more than once during resampling. After
resampling, N new particles are obtained, each
having a new position and orientation values that
have been derived from old particles with high im-
portance weights.

At the end of the process an approximate location
of the robot is found by analyzing the X and Y coor-
dinate of the locations where most of the particles
are clustered in the global map.
5. Experimental Results

Figure 6 shows the area under consideration for
the purposes of experimentation. The cross mark
shows the robot’s starting position for map construc-
tion. The light-gray colored portion in the figure is
beyond the environment under observation.

Fig. 6. Room used for Map Construction and Localiza-
tion by the TriBot

5.1. Map Construction

Figure 7 shows the two dimensional maps created
after taking readings on the first two positions. All the
objects recorded by the TriBot are displayed as a point
cloud of black dots as the ultrasonic sensor returns a
single value of the straight line distance of an object
from the ultrasonic sensor. In the figure the positions of
the robot where the readings were taken are displayed
by magenta colored dots. Figure 7a shows the local
map created at the origin position by the TriBot during
map construction. Figure 7b shows the existing map
after adding the readings taken at the second position,
to the map created in Figure 7a.

27 distY ← ��(�) � ������������(�)� ;

28 dist ← √������ + ������ ;

29 � ← �
(������)�

(� ∗(������(�))�)

��� ∗(������(�))�
 ;

30 W(j) ← W(j) * p ;
31 end for (line 25)
32 end for (line 10)
33 P2 ← Resampling Wheel Algorithm (W, N).
34 P ← P2 ;
35 angle ← angle + π/4 ;
36 end for (line 6)
37 Move the robot and particles.
38 end for (line 4)
39 end

For resampling the particles on the basis of their

importance weights, a particle that has higher im-
portance weight, must be sampled or picked more
number of times than a particle that has low im-
portance weight. This is achieved through the
resampling wheel algorithm [11] described in Algo-
rithm 2. First, an initial integer guess of a particle num-
ber is taken from the uniform interval (1, N) at random
and labeled as index. A value beta, initialized as zero, is
added to a real value drawn uniformly from the interval
(0, 2*maxw) to give a new value of beta; where maxw is
the maximum importance weight in W. If weight of the
index particle is smaller than the current value of beta,
then the weight of the particle is subtracted from beta
and index is incremented by one. Otherwise, if the beta
value is lower than weight of index particle, then that
particle is chosen to survive.

In the given algorithm, Ʋ1 represents a function that
returns a uniformly integer drawn value and Ʋ2 re-
turns a uniform real value from the intervals specified.
The max function returns the maximum value among
all the elements of an array. P2 is, initially, an empty set
of arrays and stores the attribute values of the particles
selected for survival after resampling.

Algorithm 2. Resampling Wheel Algorithm.
Input :

� � ∶ ����� �� ���������� ������ �� ���������
� ∶ ������ �� ���������

Output : � �� ∶ ��������� ����� ����������

1 begin
2 index ← Ʋ1(1, N) ;
3 beta ← 0 ;
4 P2 ← [] ;
5 maxw ← max(W);
6 for i ← 1 to N do
7 beta ← beta + Ʋ2(0, 2*maxw) ;
8 while W[index] < beta do
9 beta ← beta – W(index) ;
10 index ← index + 1 ;

11 end while
12 Add the index particle to P2.
13 end for
14 end

If the beta value is small, there is a high possibil-

ity of a particle with large importance weight being
picked more than once during resampling. After
resampling, N new particles are obtained, each
having a new position and orientation values that
have been derived from old particles with high im-
portance weights.

At the end of the process an approximate location
of the robot is found by analyzing the X and Y coor-
dinate of the locations where most of the particles
are clustered in the global map.
5. Experimental Results

Figure 6 shows the area under consideration for
the purposes of experimentation. The cross mark
shows the robot’s starting position for map construc-
tion. The light-gray colored portion in the figure is
beyond the environment under observation.

Fig. 6. Room used for Map Construction and Localiza-
tion by the TriBot

5.1. Map Construction

Figure 7 shows the two dimensional maps created
after taking readings on the first two positions. All the
objects recorded by the TriBot are displayed as a point
cloud of black dots as the ultrasonic sensor returns a
single value of the straight line distance of an object
from the ultrasonic sensor. In the figure the positions of
the robot where the readings were taken are displayed
by magenta colored dots. Figure 7a shows the local
map created at the origin position by the TriBot during
map construction. Figure 7b shows the existing map
after adding the readings taken at the second position,
to the map created in Figure 7a.

27 distY ← ��(�) � ������������(�)� ;

28 dist ← √������ + ������ ;

29 � ← �
(������)�

(� ∗(������(�))�)

��� ∗(������(�))�
 ;

30 W(j) ← W(j) * p ;
31 end for (line 25)
32 end for (line 10)
33 P2 ← Resampling Wheel Algorithm (W, N).
34 P ← P2 ;
35 angle ← angle + π/4 ;
36 end for (line 6)
37 Move the robot and particles.
38 end for (line 4)
39 end

For resampling the particles on the basis of their

importance weights, a particle that has higher im-
portance weight, must be sampled or picked more
number of times than a particle that has low im-
portance weight. This is achieved through the
resampling wheel algorithm [11] described in Algo-
rithm 2. First, an initial integer guess of a particle num-
ber is taken from the uniform interval (1, N) at random
and labeled as index. A value beta, initialized as zero, is
added to a real value drawn uniformly from the interval
(0, 2*maxw) to give a new value of beta; where maxw is
the maximum importance weight in W. If weight of the
index particle is smaller than the current value of beta,
then the weight of the particle is subtracted from beta
and index is incremented by one. Otherwise, if the beta
value is lower than weight of index particle, then that
particle is chosen to survive.

In the given algorithm, Ʋ1 represents a function that
returns a uniformly integer drawn value and Ʋ2 re-
turns a uniform real value from the intervals specified.
The max function returns the maximum value among
all the elements of an array. P2 is, initially, an empty set
of arrays and stores the attribute values of the particles
selected for survival after resampling.

Algorithm 2. Resampling Wheel Algorithm.
Input :

� � ∶ ����� �� ���������� ������ �� ���������
� ∶ ������ �� ���������

Output : � �� ∶ ��������� ����� ����������

1 begin
2 index ← Ʋ1(1, N) ;
3 beta ← 0 ;
4 P2 ← [] ;
5 maxw ← max(W);
6 for i ← 1 to N do
7 beta ← beta + Ʋ2(0, 2*maxw) ;
8 while W[index] < beta do
9 beta ← beta – W(index) ;
10 index ← index + 1 ;

11 end while
12 Add the index particle to P2.
13 end for
14 end

If the beta value is small, there is a high possibil-

ity of a particle with large importance weight being
picked more than once during resampling. After
resampling, N new particles are obtained, each
having a new position and orientation values that
have been derived from old particles with high im-
portance weights.

At the end of the process an approximate location
of the robot is found by analyzing the X and Y coor-
dinate of the locations where most of the particles
are clustered in the global map.
5. Experimental Results

Figure 6 shows the area under consideration for
the purposes of experimentation. The cross mark
shows the robot’s starting position for map construc-
tion. The light-gray colored portion in the figure is
beyond the environment under observation.

Fig. 6. Room used for Map Construction and Localiza-
tion by the TriBot

5.1. Map Construction

Figure 7 shows the two dimensional maps created
after taking readings on the first two positions. All the
objects recorded by the TriBot are displayed as a point
cloud of black dots as the ultrasonic sensor returns a
single value of the straight line distance of an object
from the ultrasonic sensor. In the figure the positions of
the robot where the readings were taken are displayed
by magenta colored dots. Figure 7a shows the local
map created at the origin position by the TriBot during
map construction. Figure 7b shows the existing map
after adding the readings taken at the second position,
to the map created in Figure 7a.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles 29

Figure 8 shows the map created after one scanning
of the room. In the map constructed, the complete
room is scanned only once and for better results of map
construction and localization, it is possible to let the
TriBot scan the room continuously till a highly detailed
map is constructed. Noisy readings, representing ghost
images, can be seen in the map which lie either in the
region beyond the room boundaries or within the emp-
ty area of the original room shown in Figure 6.

(a)

(b)

Fig. 7. (a) Map obtained after taking readings at the
origin position. (b) Map obtained after taking readings at
second position and adding them to the existing map

Fig. 8. Map constructed by the TriBot after one scanning
of the room where the boundaries of the room can be
easily identified

Figure 9 shows the map constructed in Figure 8, super-
imposed onto the room shown in Figure 6.

Fig. 9. Image of the room under consideration and the
map created by the TriBot superimposed onto it.

5.2. Kidnapped Robot Problem

Figure 10 shows the particles initially distributed,
almost uniformly. The green triangles represent the
particles created initially. The blue asterisks represent
the boundary of the room created during map construction.

Fig. 10. Particles created for localization of the robot
and to solve the kidnapped robot problem

Fig. 11. Particles finally localized to the robot’s approxi-
mate position within the map

Figure 8 shows the map created after one scanning
of the room. In the map constructed, the complete
room is scanned only once and for better results of map
construction and localization, it is possible to let the
TriBot scan the room continuously till a highly detailed
map is constructed. Noisy readings, representing ghost
images, can be seen in the map which lie either in the
region beyond the room boundaries or within the emp-
ty area of the original room shown in Figure 6.

(a)

(b)

Fig. 7. (a) Map obtained after taking readings at the
origin position. (b) Map obtained after taking readings at
second position and adding them to the existing map

Fig. 8. Map constructed by the TriBot after one scanning
of the room where the boundaries of the room can be
easily identified

Figure 9 shows the map constructed in Figure 8, super-
imposed onto the room shown in Figure 6.

Fig. 9. Image of the room under consideration and the
map created by the TriBot superimposed onto it.

5.2. Kidnapped Robot Problem

Figure 10 shows the particles initially distributed,
almost uniformly. The green triangles represent the
particles created initially. The blue asterisks represent
the boundary of the room created during map construction.

Fig. 10. Particles created for localization of the robot
and to solve the kidnapped robot problem

Fig. 11. Particles finally localized to the robot’s approxi-
mate position within the map Figure 8 shows the map created

after one scanning of the room. In
the map constructed, the complete
room is scanned only once and for
better results of map construction
and localization, it is possible to let the TriBot scan the
room continuously till a highly detailed map is construct-
ed. Noisy readings, representing ghost images, can be seen
in the map which lie either in the region beyond the room

boundaries or within the empty
area of the original room shown
in Figure 6.

Figure 9 shows the map con-
structed in Figure 8, superim-
posed onto the room shown in
Figure 6.

5.2. Kidnapped Robot Problem

Figure 10 shows the parti-
cles initially distributed, almost
uniformly. The green triangles
represent the particles created
initially. The blue asterisks rep-
resent the boundary of the room
created during map construction.

Figure 11 shows how the
green colored particles have
clustered on the right hand
side of the map and predict the
approximate position of the
TriBot.

In later iterations of the
algorithm, the particles move
within the map as the robot
moves in the actual environ-
ment. Figure 12 shows how the

particles after executing a left turn and moving forwards,
and further upwards, in the map as the robot moves.

Fig. 8. Map constructed by the
TriBot after one scanning of the
room where the boundaries of the
room can be easily identified

Figure 8 shows the map created after one scanning
of the room. In the map constructed, the complete
room is scanned only once and for better results of map
construction and localization, it is possible to let the
TriBot scan the room continuously till a highly detailed
map is constructed. Noisy readings, representing ghost
images, can be seen in the map which lie either in the
region beyond the room boundaries or within the emp-
ty area of the original room shown in Figure 6.

(a)

(b)

Fig. 7. (a) Map obtained after taking readings at the
origin position. (b) Map obtained after taking readings at
second position and adding them to the existing map

Fig. 8. Map constructed by the TriBot after one scanning
of the room where the boundaries of the room can be
easily identified

Figure 9 shows the map constructed in Figure 8, super-
imposed onto the room shown in Figure 6.

Fig. 9. Image of the room under consideration and the
map created by the TriBot superimposed onto it.

5.2. Kidnapped Robot Problem

Figure 10 shows the particles initially distributed,
almost uniformly. The green triangles represent the
particles created initially. The blue asterisks represent
the boundary of the room created during map construction.

Fig. 10. Particles created for localization of the robot
and to solve the kidnapped robot problem

Fig. 11. Particles finally localized to the robot’s approxi-
mate position within the map

Fig. 10. Particles created for localization of the robot
and to solve the kidnapped robot problem

Fig. 11. Particles finally localized to the robot’s approxi-
mate position within the map

Fig. 7. (a) Map obtained after taking readings at the origin position. (b) Map obtained after taking readings at second position
and adding them to the existing map

Fig. 9. Image of the room under consider-
ation and the map created by the TriBot
superimposed onto it

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N° 3 2013

Articles30

6. Conclusion

Efforts have been made in this paper to create
a map of an environment using Lego Mindstorms NXT
TriBot. This work may find applications in creating
maps of unknown environments that are inaccessible
for humans, by deploying robots into them or in ap-
plications of home security systems to detect anoma-
lies when the map changes in the absence of human
interference. The MATLAB programming environment
with RWTH – Mindstorms NXT Toolbox has been used
for the purpose of implementation and testing of the
system with the TriBot. The implemented system has
been successfully tested with an indoor map creation
of a room and for subsequently solving the kidnapped
robot problem with particle filter localization of the
TriBot within that room. The robot in this work uses
a single ultrasonic sensor, making it highly cost ef-
fective.

A better representation of the map can be created
by making the environment multi-agent with the use
of several similar Lego Mindstorms NXT TriBots that
are controlled via MATLAB and by overlapping the
individual maps created by them all. It is also pos-
sible to reduce the number of particles used in the
implementation, and achieve almost similar results
as the ones shown in this paper.

AUTHORS
Jasmeet Singh*, Punam Bedi – Department of Com-
puter Science, Faculty of Mathematical Sciences, New
Academic Block, University of Delhi, Delhi- 110007,
India, jasmeetsingh89@ymail.com, pbedi@cs.du.ac.in

*Corresponding author

References
[1] Burguera A., González Y.’ Oliver G., “Mobile Ro-

bot Localization Using Particle Filters and Sonar
Sensors”, Advances in Sonar Technology, In-Tech:
Vienna, Austria, 2009, Chapter 10, pp. 213–232.

[2] Adiprawita W., Ahmad A. S., Sembiring J., Trilak-
sono, B. R., “New Resampling Algorithm for Par-
ticle Filter Localization for Mobile Robot with
3 Ultrasonic Sonar Sensors”, In: Proceedings of
International Conference on Electrical Engineering
and Informatics, Bandung, Indonesia, July 17–19,
2011, pp. 1431–1436.

[3] Burguera A., González Y., Oliver G., “Sonar Sensor
Models and Their Application to Mobile Robot
Localization”, Sensors, vol. 9, 2009, pp. 10217–
10243.

[4] Thrun S., “Particle Filters in Robotics”, In: Proceed-
ings of the 18th Annual Conference on Uncertainty
in Artificial Intelligence (UAI), Edmonton, Alberta,
Canada, August 1–4, 2002, pp. 511–518.

[5] Howell J., Donald B.R., “Practical Mobile Robot
Self-Localization”, In Proceedings of IEEE Inter-
national Conference on Robotics and Automation
(ICRA), San Francisco, CA, USA, April 24–28, 2000,
vol. 4, pp. 3485–3492.

[6] Yamauchi B., Schultz A., Adams W., “Mobile Robot
Exploration and Map-Building with Continuous
Localization”, In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation
(ICRA), Leuven, Belgium, May 16–20, 1998, vol. 4,
pp. 3715–3720.

[7] Varveropoulos V., “Robot Localization and Map
Construction Using Sonar Data”, The Rossum Proj-
ect: 2000. Available online: http://www.rossum.
sourceforge.net/papers/Localization (accessed
on 17 January 2012).

[8] Howard A., “Multi-robot Simultaneous Localiza-
tion and Mapping using Particle Filters”, Int. J.
Robot. Res., vol. 25, 2006, pp. 1243–1256.

[9] RWTH - Mindstorms NXT Toolbox, RWTH Aachen
 University, 2010. Available online: http://www.
mindstorms.rwth-aachen.de/trac/ wiki (accessed
on 18 August 2011).

[10] Fox D., Burgardy W., Dellaerta F., Thrun S.,
“Monte Carlo Localization: Efficient Position
Estimation for Mobile Robots”, In: Proceedings
of the Sixteenth National Conference on Artificial
Intelligence, Orlando, FL, USA, July 18–22, 1999,
pp. 343–349.

[11] Artificial Intelligence (CS373) Programming
a Robotic Car, Udacity, 2012. Available online:
http://www.udacity.com/overview/Course/
cs373 (accessed on 26 February 2012).

Figure 11 shows how the green colored particles
have clustered on the right hand side of the map and
predict the approximate position of the TriBot.

In later iterations of the algorithm, the particles
move within the map as the robot moves in the actual
environment. Figure 12 shows how the particles after
executing a left turn and moving forwards, and further
upwards, in the map as the robot moves.

(a)

(b)

Fig. 12. Particles moving with the robot’s actual move-
ment. (a) The cloud of green particles is near the right
hand side boundary (b) The particles move upwards and
left, further away from the boundary

6. Conclusion

Efforts have been made in this paper to create
a map of an environment using Lego Mindstorms NXT
TriBot. This work may find applications in creating
maps of unknown environments that are inaccessible
for humans, by deploying robots into them or in appli-
cations of home security systems to detect anomalies
when the map changes in the absence of human inter-
ference. The MATLAB programming environment with
RWTH- Mindstorms NXT Toolbox has been used for the
purpose of implementation and testing of the system
with the TriBot. The implemented system has been
successfully tested with an indoor map creation of a
room and for subsequently solving the kidnapped ro-
bot problem with particle filter localization of the
TriBot within that room. The robot in this work uses a
single ultrasonic sensor, making it highly cost effective.

A better representation of the map can be created
by making the environment multi-agent with the use of
several similar Lego Mindstorms NXT TriBots that are
controlled via MATLAB and by overlapping the individ-

ual maps created by them all. It is also possible to re-
duce the number of particles used in the implementa-
tion, and achieve almost similar results as the ones
shown in this paper.

AUTHORS
Jasmeet Singh*, Punam Bedi – Department of
Computer Science, Faculty of Mathematical Sciences,
New Academic Block, University of Delhi, Delhi-
110007, India, jasmeetsingh89@ymail.com,
pbedi@cs.du.ac.in

*Corresponding author

References
[1] Burguera, A.; González, Y.; Oliver, G., “Mobile Ro-

bot Localization Using Particle Filters and Sonar
Sensors”, Advances in Sonar Technology, In-Tech:
Vienna, Austria, 2009, Chapter 10, pp. 213–232.

[2] Adiprawita, W; Ahmad, A. S.; Sembiring, J.;
Trilaksono, B. R., “New Resampling Algorithm for
Particle Filter Localization for Mobile Robot with 3
Ultrasonic Sonar Sensors”, In Proceedings of Inter-
national Conference on Electrical Engineering and
Informatics, Bandung, Indonesia, July 17-19, 2011,
pp. 1431–1436.

[3] Burguera, A.; González, Y.; Oliver, G., “Sonar Sensor
Models and Their Application to Mobile Robot Lo-
calization”, Sensors, vol. 9, 2009, pp. 10217–
10243.

[4] S. Thrun, “Particle Filters in Robotics”, In Proceed-
ings of the 18th Annual Conference on Uncertainty
in Artificial Intelligence (UAI), Edmonton, Alberta,
Canada, August 1–4, 2002, pp. 511–518.

[5] Howell, J.; Donald, B. R., “Practical Mobile Robot
Self-Localization”, In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation
(ICRA), San Francisco, CA, USA, April 24–28, 2000,
vol. 4, pp. 3485–3492.

[6] Yamauchi, B.; Schultz, A.; Adams, W., “Mobile Ro-
bot Exploration and Map-Building with Continu-
ous Localization”, In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation
(ICRA), Leuven, Belgium, May 16-20, 1998, vol. 4,
pp. 3715–3720.

[7] V. Varveropoulos, “Robot Localization and Map
Construction Using Sonar Data”, The Rossum Pro-
ject: 2000. Available online:
http://www.rossum.sourceforge.net/papers/
Localization (accessed on 17 January 2012).

[8] A. Howard, “Multi-robot Simultaneous Localiza-
tion and Mapping using Particle Filters”, Int. J. Ro-
bot. Res., vol. 25, 2006, pp. 1243–1256.

[9] RWTH - Mindstorms NXT Toolbox, RWTH
Aachen University, 2010. Available online:
http://www.mindstorms.rwth-aachen.de/trac/
wiki (accessed on 18 August 2011).

Figure 11 shows how the green colored particles
have clustered on the right hand side of the map and
predict the approximate position of the TriBot.

In later iterations of the algorithm, the particles
move within the map as the robot moves in the actual
environment. Figure 12 shows how the particles after
executing a left turn and moving forwards, and further
upwards, in the map as the robot moves.

(a)

(b)

Fig. 12. Particles moving with the robot’s actual move-
ment. (a) The cloud of green particles is near the right
hand side boundary (b) The particles move upwards and
left, further away from the boundary

6. Conclusion

Efforts have been made in this paper to create
a map of an environment using Lego Mindstorms NXT
TriBot. This work may find applications in creating
maps of unknown environments that are inaccessible
for humans, by deploying robots into them or in appli-
cations of home security systems to detect anomalies
when the map changes in the absence of human inter-
ference. The MATLAB programming environment with
RWTH- Mindstorms NXT Toolbox has been used for the
purpose of implementation and testing of the system
with the TriBot. The implemented system has been
successfully tested with an indoor map creation of a
room and for subsequently solving the kidnapped ro-
bot problem with particle filter localization of the
TriBot within that room. The robot in this work uses a
single ultrasonic sensor, making it highly cost effective.

A better representation of the map can be created
by making the environment multi-agent with the use of
several similar Lego Mindstorms NXT TriBots that are
controlled via MATLAB and by overlapping the individ-

ual maps created by them all. It is also possible to re-
duce the number of particles used in the implementa-
tion, and achieve almost similar results as the ones
shown in this paper.

AUTHORS
Jasmeet Singh*, Punam Bedi – Department of
Computer Science, Faculty of Mathematical Sciences,
New Academic Block, University of Delhi, Delhi-
110007, India, jasmeetsingh89@ymail.com,
pbedi@cs.du.ac.in

*Corresponding author

References
[1] Burguera, A.; González, Y.; Oliver, G., “Mobile Ro-

bot Localization Using Particle Filters and Sonar
Sensors”, Advances in Sonar Technology, In-Tech:
Vienna, Austria, 2009, Chapter 10, pp. 213–232.

[2] Adiprawita, W; Ahmad, A. S.; Sembiring, J.;
Trilaksono, B. R., “New Resampling Algorithm for
Particle Filter Localization for Mobile Robot with 3
Ultrasonic Sonar Sensors”, In Proceedings of Inter-
national Conference on Electrical Engineering and
Informatics, Bandung, Indonesia, July 17-19, 2011,
pp. 1431–1436.

[3] Burguera, A.; González, Y.; Oliver, G., “Sonar Sensor
Models and Their Application to Mobile Robot Lo-
calization”, Sensors, vol. 9, 2009, pp. 10217–
10243.

[4] S. Thrun, “Particle Filters in Robotics”, In Proceed-
ings of the 18th Annual Conference on Uncertainty
in Artificial Intelligence (UAI), Edmonton, Alberta,
Canada, August 1–4, 2002, pp. 511–518.

[5] Howell, J.; Donald, B. R., “Practical Mobile Robot
Self-Localization”, In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation
(ICRA), San Francisco, CA, USA, April 24–28, 2000,
vol. 4, pp. 3485–3492.

[6] Yamauchi, B.; Schultz, A.; Adams, W., “Mobile Ro-
bot Exploration and Map-Building with Continu-
ous Localization”, In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation
(ICRA), Leuven, Belgium, May 16-20, 1998, vol. 4,
pp. 3715–3720.

[7] V. Varveropoulos, “Robot Localization and Map
Construction Using Sonar Data”, The Rossum Pro-
ject: 2000. Available online:
http://www.rossum.sourceforge.net/papers/
Localization (accessed on 17 January 2012).

[8] A. Howard, “Multi-robot Simultaneous Localiza-
tion and Mapping using Particle Filters”, Int. J. Ro-
bot. Res., vol. 25, 2006, pp. 1243–1256.

[9] RWTH - Mindstorms NXT Toolbox, RWTH
Aachen University, 2010. Available online:
http://www.mindstorms.rwth-aachen.de/trac/
wiki (accessed on 18 August 2011).

Fig. 12. Particles moving with the robot’s actual move-
ment. (a) The cloud of green particles is near the right
hand side boundary (b) The particles move upwards
and left, further away from the boundary

