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Abstract:
This work presents chaotic motion direction control of 
a robot and especially of a humanoid robot, in order to 
achieve complete coverage of the entire work terrain 
with unpredictable way. The method, which is used, 
is based on a chaotic true random bits generator. The 
coexistence of two different synchronization phenomena 
between mutually coupled identical nonlinear circuits, 
the well-known complete chaotic synchronization and 
the recently new proposed inverse π-lag synchroniza-
tion, is the main feature of the proposed chaotic gen-
erator. Computer simulations confirm that the proposed 
method can obtain very satisfactory results in regard to 
the fast scan of the entire robot’s work terrain. 
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1.	 Introduction
Autonomous mobile robots have acquired a keen 

interest of the scientific community, especially in the 
last two decades, because of their applications in vari-
ous fields of activities, such as industrial and military 
missions. Therefore, many interesting applications of 
mobile robots, such as floor-cleaning devices, indus-
trial transportation and fire fighting devices [1–3], 
have been developed. Especially, the use of autono-
mous mobile robots for military applications, such as 
the surveillance of terrains, the terrain exploration for 
searching (e.g. for explosives or dangerous materials) 
or patrolling (e.g. for intrusion in military facilities) 
[4–6], has become a very interesting task. For such 
applications many mobile robots are commercially 
available, which in many cases focus on some fea-
tures such as, the perception and identification of the 
target, the positioning of the robot in the terrain and 
the updating of the terrain’s map. However, the most 
important from all the above features is the path plan-
ning, because it determines the success of the robot’s 
missions especially in many military tasks.

 Additionally, the research subject of the interac-
tion between mobile robots and chaos theory has 
been studied intensively. The basic feature of these 
research attempts in a chaotic robot field is a motion 
controller, which is based on microcontrollers or 
CPUs that ensure chaotic motion to the robot. Signals, 
which are produced by chaotic systems, are used to 
guide autonomous robots. Until now, some of the most 
well-known chaotic systems, such as Chua circuit [6], 

Arnold system [7], Standard or Taylor-Chirikov map 
[8] and Lorenz system [9], have been used. 

The problem of patrolling a terrain with a mobile 
robot is an issue that has to do with finding a plan 
for production not only of unpredictable trajecto-
ries but also a way to scan fast the entire predicted 
region. These are the main reasons for using nonlin-
ear dynamic systems, because the chaotic behavior 
of such systems ensures the unpredictability of the 
robot’s trajectories. The second aim, the fast scan-
ning of the terrain, is the subject of study among the 
researchers for selecting the most suitable dynam-
ic system.

This work, presents a new strategy, which gener-
ates an unpredictable trajectory, by using a chaotic 
true random bits generator. Also, a humanoid robot 
is selected because such a kind of robots has a spe-
cific way of movement and it used nowadays in many 
activities. The proposed motion planner of a human-
oid robot’s motion produces a sequence of steps in 
the four basic directions (forward, right, left and back-
ward) or in eight directions (forward, diagonal for-
ward-right, diagonal forward-left, right, left, diagonal 
backward-right, diagonal backward-left, backward). 

This paper is organized as follows. In Section 2 
basic features of chaotic systems and the synchroni-
zation phenomena, which are the base of this work, 
are presented. Section 3 describes the robot’s motion 
generator block by block. In Section 4 the statistical 
tests of the proposed true random bits generator, is 
discussed. Section 5 presents the simulation results 
of the humanoid robot’s motion and their analysis. 
Finally, Section 6 includes the conclusions remarks of 
this work. 

2.	 	Chaotic Systems and Synchronization 
Phenomena 

A dynamical system, in order to be considered as 
chaotic, must fulfill the following conditions [10]:
•	 it must be very sensitive on initial conditions,
•	 its chaotic orbit must be dense and 
•	 it must be topologically mixing.

The most important of the three above condi-
tions is the system’s sensitivity on initial conditions 
or on system’s parameters. This means that a small 
variation on system’s initial conditions or parameters 
can lead to a totally different dynamic behavior, so to 
a totally different trajectory. That’s why chaotic sys-
tems are very good candidates for using in robot’s 
motion planners because theirs sensitivity can con-
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tribute to robot’s unpredictable trajectory, which is 
a necessary condition in many robotic activities as it 
is mentioned before. 

In the last two decades the study of the interaction 
between coupled chaotic systems was a landmark in 
the evolution of the chaotic synchronization’s theory 
[11]. The topic of synchronization between coupled 
nonlinear chaotic systems plays an important role in 
several research areas, such as biological networks, 
secure communication and cryptography [12–15].

The most well-known type of synchronization is 
the complete or full synchronization, in which the 
interaction between two identical coupled chaotic 
systems leads to a perfect coincidence of their chaotic 
trajectories, i.e.

	 x1(t) = x2(t), as t → ∞	 (1)

where x1 and x2 are the signals of the coupled chaotic 
systems.

From 2010 a new synchronization phenomenon, 
the inverse π-lag synchronization, between two 
mutually coupled identical nonlinear systems, has 
been observed [16]. More precisely, this type of syn-
chronization, which is called inverse π-lag synchro-
nization, is observed when the coupled system is in 
a phase locked (periodic) state, depending on the cou-
pling factor, and it can be characterized by eliminating 
the sum of two relevant periodic signals (x1 and x2) 
with a time lag τ, which is equal to T/2, where T is the 
period of the signals x1 and x2.

	 x1(t) = – x2(t + τ), τ = Τ/2	 (2)

Nevertheless, depending on the coupling fac-
tor and the chosen set of system’s initial conditions, 
the inverse π-lag synchronization coexists with 
a complete synchronization [16]. The proposed 
TRBG, which is used for the motion of the humanoid 
robot, is based on the coexistence of these two types 
of synchronization, which are used as representing 
the states “0” and “1” in the seed generation, as it will 
be described in details in the next section.

3.	 Robot’s Motion Chaotic Generator
The basic element of the proposed motion planner 

is a chaotic true random bits generator, which consists 
of three blocks. The first block includes the system of 
two coupled identical nonlinear circuits. The autono-
mous circuit (Fig. 1), which is used, is the well-known 
circuit of Chua oscillator, in which the nonlinearity is 
described by a piecewise-linear function. By the term 
“autonomous”, a nonlinear circuit without any exter-
nal voltage or current source is considered, as it is 
shown in Fig. 1. Although in this paper the nonlinear 
element NR of the circuit, which is used, implements 
a cubic function. This type of circuits is capable of pro-
ducing double-scroll chaotic attractors (Fig. 2). In this 
type of behavior the chaotic systems have two attrac-
tors, between which the process state will oscillate. 
So, a double-scroll oscillator needs to have at least 
three degrees of freedom in order to be chaotic. 

The state equations describing the circuit of Chua 
oscillator are the follows:
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where, x1 = υC1, x2 = υC2, z1 = iL and g(x1) is the cubic 
function of the form:

	 = − + 3
1 1 1 3 1g(x ) x xk k 	 (4)

where, k1, k3 > 0. The absence of the term of the sec-
ond order provides the odd symmetry to the υ-i char-
acteristic.

The practical circuit for realizing the cubic polyno-
mial (4) is shown in Fig. 3. This realization proposed 
for the first time by Zhong [17]. The two terminal non-
linear resistor NR consists of one Op-Amp (LF411), 
two analog multipliers (AD633JN) and five resistors. 
Each multiplier implements the function:

	  − −= +1 2 1 2(x x )(y y )w z
10V

	 (5)

where, the factor 10 V is an inherent scaling voltage 
in the multiplier. The connections of the Op-Amp and 
the resistors R1, R2 and R3 form an equivalent negative 
resistor Re, when R1 = R2 and the Op-Amp operates in 
its linear region, in order to obtain the desired coef-
ficients k1 and k3. The driving point υ-i characteristic 
of NR is as below:

	
		

	 	 (6)
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The values of circuit parameters are: R0 = 30 Ω, R 

Fig. 1. The schematic of the Chua oscillator
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= 1960 Ω, R1 = R2 = 2 kΩ, R3 = 1.671 kΩ, R4 = 3.01 kΩ, 
R5 = 7.887 kΩ C1 = 7.4 nF, C2 = 95.8 nF, L = 19.2 mH 
and the voltages of the positive and negative electri-
cal sources are ±15 V. For these values the circuit of 
Chua oscillator presents the desired chaotic behav-
ior according to author’s previous work [18]. So, the 
normalized parameters take the following values: k1 = 
0.6384 mS, k3 = 0.0252 mS/V3. 

Fig. 2. The double-scroll chaotic attractor

Fig. 3. The circuit for realizing the cubic υ-i nonlinear 
characteristic

The system of two bidirectionally or mutually cou-
pled circuits of Chua oscillators is shown in Fig. 4. The 
coupling of the identical nonlinear circuits is achieved 
via a linear resistor RC connected between the nodes 
A of each circuit. For small values of the resistor RC 
(e.g. RC = 250 Ω) the coexistence of the previous men-
tioned synchronization phenomena is observed.

Furthermore, the necessary perturbation p for 
changing the system’s initial conditions and conse-
quently the synchronization state of the coupled sys-
tem is an external source that produces a pulse train 

of amplitude 1 V and has a duty cycle of 4%. So, the 
pulse duration is 2ms, while the period of the pulse 
train is 50 ms (Fig. 5a).

Consequently, the first block of the proposed True 
Random Bits Generator (TRBG) produces the syn-
chronization signal [x2(t) – x1(t)] of the coupled sys-
tem which varies between two states (Fig. 5b). In the 
first one, the signals x1(t) and x2(t) are identical and 
the difference [x2(t) – x1(t)] is equal to zero because 
the system is in a complete synchronization mode. In 
the second state the signal x2(t) is inverse of the signal 
x1(t) with π phase difference. So, the difference [x2(t) 
– x1(t)] oscillates around the value of 2.5 V. 

In the second block, the two different levels of the 
output signal [x2(t) – x1(t)] are quantized to “0” and 
“1” according to the following equation:

	

2 1

i

2 1
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− <σ = 
− > 	
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Therefore, if the system is in a complete synchro-
nization state a bit “0” is produced, while if the system 
is in an inverse π-lag synchronization state a bit “1” 
is produced (Fig. 5c). The sampling period equals the 
period of the pulse train (T = 50 ms) and the sampling 
occurs at the middle of each pulse. 

(a)

(b)

(c)

Fig. 5. Time-series of (a) pulses p(t), (b) difference signal 
[x2(t) – x1(t)] and (c) the produced bits sequence, with the 

Fig. 4. The system of two bidirectionally or mutually cou-
pled nonlinear circuits via a linear resistor
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proposed technique

Finally, the third block extracts unbiased bits, with 
the well-known de-skewing technique [19]. This tech-
nique eliminates the correlation in the output of the 
generator of random bits by converting the bit pair 
“01” into an output “0”, “10” into an output “1”, while 
the pairs “11” and “00” are discarded. 

4.	 Statistical Tests of the Chaotic Generator
In this section the “randomness” of the produced 

bits sequence, by the proposed chaotic TRBG, is con-
firmed. So, the dynamical system (8) of the coupled 
circuits of Fig. 4 was solved numerically by using the 
fourth order Runge-Kutta algorithm and the signal 
[x2(t) – x1(t)] is used for producing the chaotic bits 
sequence with the procedure described in Section 3. 
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For this reason one of the most important statisti-
cal test suites is used. This is the FIPS (Federal Infor-
mation Processing Standards) [20] of the National 
Institute of Standards and Technology (NIST), which 
comprises of four statistical tests: Monobit test, Pok-
er test, Runs test, and Long Run test. As it is known, 
according to FIPS statistical tests, the examined TRBG 
will produce a bitstream, bi = b0, b1, b2, …, bn−1, of 
length n (at least 20000 bits), which must satisfy the 
four above mentioned statistical tests.

Using the fact in information theory that noise has 
maximum entropy, initial conditions of the first (x01 = 
0.60, y01 = 0.10, z01 = 0.05) and the second circuit (x02 
= 0.70, y02 = 0.20, z02 = −0.10) are chosen so that the 
measured entropy of the TRBG is maximal. The mea-
sure-theoretic entropy [21] of the proposed chaotic 
TRBG with respect to system’s parameters and initial 
conditions is calculated to be Hn = 0.69172 for n = 3 
and Hn = 0.69189 for n = 4, where n is the length of the 
n-word sequences.

So, by using the procedure described previously, 
bits sequence of length 20000 bits has been obtained 
from the output of the proposed chaotic TRBG calcu-
lated via the numerical integration of Eq.(8). Then this 
bits sequence is subjected to the four tests of FIPS-

140-2 suite. As a result, it has been numerically veri-
fied that the bits sequence has passed the test suite of 
FIPS-140-2 (Table 1).

Table 1. Results of FIPS-140-2 test, for the chaotic TRBG

Monobit 
Test

Poker 
Test

Runs Test
Long Run 
Test

B1=2565
B2=1253

n1=10018 2.3245 B3=605 No
(50.09%) B4=319

B5=144
B6=149

Passed Passed Passed Passed

5.	 Simulation Results of the Robot’s Motion 
A humanoid robot, like the commercial model of 

Kondo KHR-2HV (Fig.6) is adopted because it is an 
interesting compromise of simplicity between con-
trol and implementation. In this work two different 
humanoid’s motion approaches have been used so 
as to take advantage the ability of the specific type 
of robot. In the first case, the chaotic motion planner 
converts the bits pairs: 00, 01, 10 and 11, which are 
produced by the chaotic generator, into steps in the 
four basic directions: forward, right, left and back-
ward. With the same way, in the second case, the bits 
triads: 000, 001, 010, 011, 100, 101, 110 and 111, are 
converted into steps in the following eight directions: 
forward, diagonal forward-right, diagonal forward-
left, right, left, diagonal backward-right, diagonal 
backward-left and backward.

Fig. 6. The humanoid robot Kondo KHR-2HV

Also, in this work, for a better understanding of the 
behavior of the robot’s chaotic motion generator, we 
assume that the robot works in flat area, with bound-
aries, without obstacles and without any sensor. So, in 
the case that the proposed humanoid robot reaches 
boundaries of the terrain waits the next direction in 
order to move.

In all similar works, the first step is the study of 
the robot’s motion by using computer simulation. For 
this reason the terrain coverage is analyzed, by using 
the well-known coverage rate (C). A square terrain 
with dimensions: M = 25 x 25 = 625, in normalized 
unit cells, is chosen. The coverage rate (C) is given by 
the following equation:

	 =

= ⋅∑
M

i 1

1C I(i)
M

	 (9)
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where, I(i) is the coverage situation for each cell [22]. 
This is defined by the following equation:

	
		

			 
	 	

(10)

where, i = 1, 2, ..., M. 

So, in the following test the motion generator pro-
duces a sequence of 10000 steps in the four basic 
directions (forward, right, left and backward) start-
ing from three different initial positions on the ter-
rain: (x0, y0) = {(5, 20), (12, 12), (20, 5)}. The results 
for 2000 and 10000 robot’s steps for (x0, y0) = (5, 20), 
are shown in Fig. 7. Especially, in Fig. 7b the cover-
age of the whole terrain, can be observed. In Fig. 8, 
the coverage rate versus the number of steps, for the 
robot with the proposed chaotic motion generator, 
starting from the three, above mentioned, initial posi-
tions, is shown. In the three simulations, the complete 
terrain’s coverage was calculated. Furthermore, the 
robot has covered, practically, all the terrain (91%) 
after only the 4000th step. 

(a)

(b)
Fig. 7. Terrain covering using the robot with the proposed 
chaotic generator in the first case for initial position (x0, 
y0) = (5, 20), for (a) 2000 steps and (b) 10000 steps

For the validation of the robot’s kinematic motion 
by using the capability of the robot to move in eight 
directions, an arbitrarily initial position is chosen:  
(x0, y0) = (8, 10). In Fig. 9, the coverage rate versus the 
number of steps, in comparison to the previous case 

(motion in four directions) is shown. In conclusion, in 
the case of moving in eight directions the robot shows 
a more quick coverage of the terrain’s space.

Especially, for the first 2000 steps the robot has 
shown 20% faster terrain‘s coverage in the second 
approach in regard to the first one. More precisely 
from the 2000th step the robot has covered the 85.6% 
of the total terrain. Furthermore, in the remaining 
3000 steps, until 5000th step, the robot covers only 
10.7% of the terrain. So, finally the total terrain’s cov-
erage percentage in the second approach was calcu-
lated to be equal to 96.3%. Therefore, the robot, with 
the capability of moving in eight directions, has better 
and faster coverage rate in regard to the case of mov-
ing in four directions.

Fig. 8. The coverage rate versus the number of steps, 
when the robot moves in four directions, starting from 
three different initial positions on the terrain: (x0, y0) = {(5 
20), (12, 12), (20, 5)}

Fig. 9. The comparison of the two different kinematic 
control approaches (moving in four or eight directions)

6. Conclusion
In this work, a chaotic path planning generator 

for autonomous humanoid robots was presented. In 
contrary with other similar works, where the con-
trol unit defines the position goal in each step, here 
only the motion of the humanoid robot is controlled 
by using the coexistence of synchronization phe-
nomena between coupled chaotic circuits. Statistical 
tests of the proposed chaotic generator guarantees 
the “randomness” of the produced bits sequence and 
consequently the “randomness” of the planning path. 
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Furthermore, validation tests based on numerical 
simulations of the robot’s motion direction control, 
confirm that the proposed method can obtain very 
satisfactory results in regard to unpredictability and 
fast scanning of the robot’s workplace. Finally, the 
use of the specific chaotic TRBG in this work provides 
significant advantage concerning other similar works 
because of the improved statistical results, which 
were presented in details. 
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