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Abstract:
In this paper, a method for calibraƟng the sensory sys-
tem of awalking robot is proposed. The robot is equipped
with two exterocepƟve sensors: a 2D laser scanner and a
stereo camera. When using the CAD model of the robot,
the posiƟons of both sensors defined in the robot's body
reference frame can only be determined with limited pre-
cision. Our goal is to create a method which allows the
robot to find the posiƟon of the mounted sensors with-
out the need for human input. The presented results show
that the method is not only fast but also more precise
than calibraƟon using the CAD model.

Keywords: extrinsic calibraƟon, laser scanner, stereo
camera, walking robot

1. IntroducƟon
Autonomous robots should perform desired as-

signments without human support. The capability to
acquire information about the environment is crucial
if the robot is to plan its motion and interact with ob-
jects. Autonomous robots should be also capable to
calibrate and re-calibrate its sensory system as hu-
mans and animals do. This task is not trivial, since the
mechanical mounting of the sensors is imprecise and
it can slightly change during normal operation. More-
over, the exact position of sensors' reference frames is
not always precisely deϐined by manufacturers.

Our six-legged Messor robot (Fig. 1) is equipped
with two sensors for terrain measurement. The data
obtained from these sensors is used to create two ele-
vation maps of the environment. The robot is located
in the center of these maps, and the maps are shifted
while the robot is walking. The elevation representa-
tion of the surroundings is then used to plan the mo-
tion of the robot.

Fig. 1. Messor robot equipped with stereo camera and
laser range finder during calibraƟon experiment

The ϐirst sensor used for mapping is the 2D Laser

Range Finder (LRF) Hokuyo URG-04LX. It is mounted
at the front of the robot and tilted down to acquire
the proϐile of the terrain. As the robot walks, a grid-
based elevationmap is gradually created [1]. Themap-
ping algorithm (described in details in [10]) takes
into account the properties of the URG sensor and the
discrete nature of the motion of walking robots. The
range of the measurements is about 1.2 m because of
the geometrical conϐiguration of the system, and it de-
termines the size of the elevation map as 2× 2m. The
size of the grid cell is 1.5 × 1.5 cm, which is precise
enough to appropriately select footholds and to plan
movement of the robot (feet and platform paths). On
the other hand, the size of the map is not sufϐicient to
plan movement in a longer horizon.

To obtain information about distant terrain and
obstacles, the robot is equipped with the Videre De-
sign STOC stereo camera. This camera provides infor-
mation about the depth of the observed scene and al-
lows to create a strategic elevation map. The strategic
map is also shifted as the robot walks, to ensure cen-
tral location of the robot in the map. The size of the
map is set to 10 × 10 m, and the size of the grid cell
is 0.1× 0.1m. The low precision of this map allows to
only roughly plan the path of the robot.

To obtain a high quality elevation map, the sen-
sory system should be precisely calibrated. The goal
of the calibration is to ϐind the position of coordinate
frames of the sensors (i.e. the stereo camera and laser
scanner presented in Fig. 2). The coordinate system
located in the center of local maps OM moves with
the robot and the coordinate system OR is attached
to the robot's platform (the axes xM and yM are the
sameasxR and yR, but zM is always0). The coordinate
system attached to the stereo camera and the Hokuyo
LRF areOC andOS , respectively. The sought homoge-
neous transformation to camera frame RC and transi-
tion to LRF frame RS can be found by using protrac-
tor and ruler or mechanical (CAD) model of the robot.
Such measurements are time consuming, should be
done carefully and involve human labor. Our goal is to
create amethodof ϐinding the relationbetween the co-
ordinate frames of the sensors that does not involve a
human operator.

1.1. Related Work

Sensory system calibration methods for mobile
robots were proposed many times in the past. Most
of the solutions were proposed for wheeled robots. In
our researchwewant to adaptwell knownmethods to
calibrate the sensory system of a walking robot. Walk-
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Fig. 2. KinemaƟc configuraƟon of the robot's sensory sys-
tem

ing robots have greater locomotion capabilities than
wheeled robots, and these capabilities can be used
to simplify the calibration method. We use the most
common structure in an urban area - ϐlat surface - to
calibrate the sensory system. No known geometrical
markers or checkerboards are required for the cali-
bration procedure.

To calibrate two scanners of the six-legged robot
Ambler, the calibration targets attached to a single leg
are observed [9]. The known position of the markers,
computed using the kinematics of the robot, is used
to ϐind the transformation to the common coordinate
system. In this method the robot should observe its
own legs, which is not possible for our Messor robot
because of themeasurement range of the sensors. The
precision of the Hokuyo sensor is very low in ranges
lower than 20 cm, and theminimal distancewhich can
be measured using STOC camera is about 40 cm.

Another method used to calibrate a camera and a
laser range ϐinder was proposed by Wasielewski and
Strauss [16]. A known 3D calibration pattern was ob-
served by two sensors. The resulting measurements
of the same object are used to identify transforma-
tion between these two sensors. Similarly, an artiϐi-
cial marker like ϐlat checkerboard can be used to cal-
ibrate LRF-camera system [18]. Best results are ob-
tained when a triangular checkerboard is used and
line features from LRF and a camera are compared
to calibrate the sensory system of mobile robot [11].
Both of these methods calculate the transformation
between the coordinate systems of the sensors, but do
not provide the position of the sensors in an external
reference frame attached to the body of the robot.

A minimal closed-form to camera and laser range
ϐinder calibration can be found [15, 17]. It is possible
to determine a minimal number of poses to properly
calibrate the system. However, we acquire many mea-
surements to minimize the role of the measurement
errors on the calibration results.

In the proposed method, we take advantage of the
properties of the walking robot. The robot can ro-
tate all sensors round each axis of the global coordi-
nate system. Thus, a known geometrical marker is not
required during calibration. Similar behavior can be
used on humanoid robot with pan-tilt head [3]. Ob-

serving a single point feature, the Justin robot cali-
brates camera extrinsic parameters, elasticities and
joint offsets simultaneously.

Calibration process can be also deϐined as an iden-
tiϐication/estimation problem. Then Kalman ϐiltering
can be used to ϐind not only sensor-to-sensor trans-
formations but also scene structure and parameters of
the Inertial Measurement Unit (IMU) [8]. Here the ca-
libration between camera and IMU is obtained with-
out using a known calibration target. The extrinsic ca-
libration can be also done using Levenberg-Marquardt
algorithm [4] or by building nonlinear observer [14].

2. CalibraƟon Method
2.1. CalibraƟon Experiment

In our approach we use a ϐlat ϐloor, the most com-
mon and natural object in urban area, to calibrate the
sensory system of the robot. As for now, we have not
implemented an algorithm that allows the robot to au-
tonomously detect a suitable patch of ϐlat terrain, so
the robot is positioned manually. In the future, such
detection could be performed using stereo vision data,
either directly from the depth image [13] or from the
point clouds using a RANSAC method [5]. During the
experiment, the ϐlat surface in front of the robot is ob-
served as the position of the robot ismodiϐied. 3D data
measured in different robot positions by the both LRF
and stereo camera are stored.
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Fig. 3. MoƟon of the robot during idenƟficaƟon experi-
ment

We tried various combinations of identiϐication
motions. Finally, the best results are obtained when
the robot performs two simple motions. In the ϐirst
stage of the calibration experiment (Fig. 3) the robot
rotates its body around yR-axis (angle β). In the sec-
ond stage the robot rotates around xR-axis (angle α).
First, the robot looks down (11th sample in Fig. 3), and
at the end of the experiment the robot looks up (34th
sample in Fig. 3). At each state the robot stores the cur-
rent position of its body and the data measured by the
sensors being calibrated.

The state of the robot during calibration exper-
iment is presented in Fig. 3. The inclination of the
robot's platform (α, β, γ angles) is measured using
an AHRS sensor. The Messor robot is equipped with
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MTi Xsense AHRS unit, which guarantees static accu-
racy below 0.5◦. The position of the robot above the
ground (z) is computed using the kinematic model of
the robot. During experiment only α and β angles are
modiϐied. The other values which represent the state
of the robot (xR, yR, zR, γ) are constant.
2.2. Data Filtering

During the identiϐication experiment the laser
scanner returns the position of points that are located
on the ground. Position of each point is determined in
OS coordinate system. Similarly, the stereo camera re-
turns a 3D point cloud. The position of each point is
determined in OC coordinate system. The data from
both sensors are noisy and can be ϐiltered to exclude
incorrect measurements.

The properties of both sensors used on theMessor
robot are different so we use two different heuristics
to ϐilter the data. We can only guarantee that the ter-
rain directly in front of the robot is ϐlat, so we exclude
points that are distant from the current robot position.
For the stereo camera, we exclude pointswhich satisfy
the condition xC > 1 m and yC > 1 m. Single mea-
surement using stereo camera returns few hundred of
thousand 3D points, and they are very often noisy and
erroneous. We use a RANSAC method [5] to exclude
erroneous measurements. We try to ϐit a ϐlat surface
andwhen the solution is foundwe exclude all outliers.
The LRF is tilted down so in some conϐigurations of the
platform the robot measures its own legs. To prevent
using incorrect data we exclude points which are too
close to the robot. There is also a risk that the points
measured by the scanner don't lie on the ground. Fi-
nally, we accept only points from the LRF which fulϐill
the following requirements:
|xS | < 0.2m, |xS | < 0.5m, yS > 0.2m, r > 0.4, (1)
where r is the distance to the point from the origin of
the coordinate system.
2.3. Parameters IdenƟficaƟon

To ϐind the unknown homogeneous transforma-
tions RC and RSwe compute the position of eachmea-
sured point (Mpi

S and Mpi
C for the scanner and cam-

era, respectively) in theOM coordinate system :
Mpi

S = RM · RS · pi
S , (2)

Mpi
C = RM · RC · pi

C . (3)
In the above equations, RM is the homogeneous trans-
formation from the map coordinate systemOM to the
robot coordinate system OR, whereas pi

S and pi
C are

the positions ofmeasured points in the LRF and stereo
camera coordinate systems, respectively.

Because the terrain is ϐlat the z coordinate of each
i-th point Mpi

s and Mpi
C should be zero. This state-

ment is true only when the sensory system is well cal-
ibrated. We use this statement to deϐine the ϐitness
function for optimization (calibration) process:

ε =

N∑
i=0

z2Mi

N
, (4)

where N is the number of measurements and zMi is
the z-position of the i-th measured point determined
in theOM coordinate system.

The calibration process is performed separately
for LRF and stereo camera. The calibration is deϐined
here as an optimization process:

arg min
RC,RS

N∑
i=0

z2Mi, (5)

We veriϐied two methods to ϐind the transformations
RC and RS: Levenberg-Marquardt algorithm (LMA)
and Particle Swarm Optimization.

Particle swarm optimization is a population-based
stochastic optimization technique inspired by the be-
havior of a bird ϐlock or a ϐish school during food
searches [6]. At the beginning of the algorithm a pop-
ulation of random particles is created in the search
space. Its size is deϐined by the user and is ϐixed during
the optimization process. In the main loop of the algo-
rithm the particles explore the search space by mov-
ing to new positions. Modiϐication of a particle posi-
tion during one epoch depends on two positions: the
ϐirst one pbest

glob is the current position of the most ϐitted
particle in thewhole swarm,while the secondonepbest

i

deϐines the best position of the i-th particle during its
lifetime. The position change∆pi of the i-th particle is
given as:
∆pi := ∆pi+c1 ·rand·(pbest

i −pcur
i )+c2 ·rand·(pbest

glob−pcur
i ),
(6)

where pcur
i is the current position of the i-th particle.

The function rand returns a randomnumber from 0 to
1. The constants c1 and c2 are set to 2 because, accord-
ing to the results shown by Eberhart and Kennedy [6]
who investigated the PSO properties, such a value al-
lows the algorithm to converge quickly to a global op-
timum. The new position change of a particle depends
on the previous position change. This is an analogy to
inertia, and it decreases the possibility of getting stuck
at a local minima. Additionally, to prevent oscillations
near the optimum, the maximal position change of a
particle is limited to 25% of themaximal range for the
considered parameter. The new position pi of the i-th
particle is computed as:

pi := pi +∆pi. (7)

The Levenberg-Marquardt algorithm (LMA) [12] is
a nonlinear optimization algorithm that interpolates
between the Gauss-Newton algorithm and a modiϐied
gradient descentmethod. In this iterative algorithm, in
each step the new position vector wi+1 in the search
space is calculated as:

wi+1 = wi − (H− λdiagH)−1d. (8)

In the above equation,wi+1 is the new position vector,
wi is the current position vector, λ is a weighting fac-
tor, d is the gradient vector andH is an approximation
of the Hessianmatrix, based on the sum of outer prod-
ucts of the gradients. Themethod seamlessly switches
between the Gauss-Newton and the gradient descent
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algorithm by changing the λ value. If the error has
been reduced in the evaluated step, λ is decreased and
the algorithm is more like the Gauss-Newton method.
If, on the other hand, the error increased, λ is also in-
creased and the LMA gets more similar to the gradi-
ent descent method. Such behavior greatly increases
the convergence rate of the algorithm. However, just
as any gradient method, LMA is prone to ϐinding local
minima.

3. Results

A

B

C

Fig. 4. Scanner calibraƟon results -- measurements in lo-
cal coordinate system (A), measurements for iniƟal RS
transiƟon (B), measurements for opƟmal RS transiƟon
(C)

Tab. 1. EsƟmaƟon results for the laser scanner

model LMA PSO
x[mm] 0.00 -7.47 -3.77
y[mm] 202.00 199.14 197.59
z[mm] 175.00 170.43 168.83
α[◦] -45.00 -44.64 -44.44
β[◦] 0.00 0.89 0.77
γ[◦] 0.00 -2.38 -2.18

ε[mm] 8.566 7.441 7.492

The calibration results for the Hokuyo scanner are
presented in Fig. 4 and in Tab. 1. In Fig. 4A one can
see themeasured points drawn in the reference frame

of the laser scanner OS . The measured points trans-
fered to the OM coordinate system using (2) and the
transition RS deϐined according to the distances mea-
sured using the CADmodel of the robot are presented
in Fig. 4B. Because themechanical parts aremadewith
limited precision the measured points don't lie at the
level zM = 0. The error ε for the system calibrated ac-
cording to the CAD model of the robot is 8.566 mm.
When we use the method proposed in this paper the
error ε decreases (Tab. 1). It can be seen in Fig. 4C
that after calibration themeasured points createmore
consistent groups at zM = 0. Similarly, the points

A

B

C

Fig. 5. Camera calibraƟon results -- measurements in lo-
cal coordinate system (A), measurements for iniƟal RS
transiƟon (B), measurements for opƟmal RS transiƟon
(C)

measured by the stereo camera, deϐined in the local
coordinate system OS are presented in Fig. 5A. The
measured points obtained using (3) before (Fig. 5B)
and after calibration (Fig. 5C) are compared. Before
the calibration, themeasuredpoints are scattered, and
the sensor returns erroneous values because the ex-
pected position of the camera (measured using the
CAD model of the robot) differs from the real posi-
tion of the camera. After calibration, the measured
points create a consistent and horizontal point cloud
(Fig. 5C). The error ε decreases from 4.145 mm for
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a system without calibration to 2.085 mm for system
calibrated using the proposed method.

Tab. 2. EsƟmaƟon results for the stereo camera

model LMA PSO
x[mm] -30.00 -29.15 -12.87
y[mm] 180.00 179.63 175.14
z[mm] 230.00 223.19 224.99
α[◦] -115.00 -114.49 -114.77
β[◦] 0.00 1.04 0.44
γ[◦] 0.00 -2.28 -0.63

ε[mm] 4.145 2.085 2.295

3.1. Mapping Experiment

The proposed calibration method was tested in a
terrain map building experiment. Two maps were si-
multaneously built from the LRF and the stereo vision
data. TheRS andRC transformationswere used to cal-
culate the position of the measured points in the map
coordinate system, according to equations (2) and (3).
As the robot moved, new measurements were added
to thepoint clouds fromboth theLRFand stereo vision
camera. The motion of the robot between measure-
ments was estimated using a Parallel Tracking and
Mapping (PTAM) method, originally described in [7],
enhanced with the information from the Inertial Mea-
surement Unit installed on the robot [2].

The results are shown in Fig. 6. When the system
was calibrated using the CAD model, the point cloud
from the LRF (shown in light gray) was poorly aligned
to the point cloud acquired with stereo vision (shown
in dark gray), which is particularly visible in the area
corresponding to the boxes (marked as 1 in Fig. 6A)
and in the border of the terrainmockup (marked as 2).
The proposed calibration method provided more pre-
cise alignment, as presented in Fig. 6B. To assess the
improvement, a coefϐicient that represents the align-
ment in a quantitative way was used. Separate eleva-
tion raster maps were build from the LRF and stereo
vision point clouds. In each cell of the maps, the eleva-
tion value was determined using the points with the
highest zM value. The resultingmaps are presented in
Fig. 7. For the overlapping area of both maps, an error
value was computed using the following equation:

err =

∑n
i=0

∑m
j=0

∣∣∣ei,jS − ei,jC

∣∣∣
No

, (9)

where i and j determine the cell in the raster elevation
maps, ei,jS and ei,jC are the elevation values in the i, j
cell of the scanner and stereo map, respectively, and
No is the number of cells in the overlapping area. The
proposed calibrationmethod reduced this average er-
ror to 0.014m, from the value of 0.041m that was cal-
culated for the system calibrated using the CADmodel.

3.2. Stability of the CalibraƟon Results

The LMA, being a deterministic algorithm, always
converges to the same result given the same start-
ing point. However, as every gradient optimization

1
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C

Fig. 6.Misaligned (A) and aligned (B) point clouds created
from stereo and laser data and an image of the scene
taken by the stereo vision camera(C)
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Fig. 7. ElevaƟon map built from scanner data (A) and
stereo data (B)

method, it is prone to getting stuck in local minima.
As the distance from the starting point to the true pa-
rameters increases, the risk of terminating at a local
minimum also increases. Because in the presented ca-
libration task the starting point for the LMA may not
always be determined accurately, some experiments
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were performed. The starting point was randomly se-
lected by adding noise to the estimated values shown
in tables 1 and 2. The added noise value was drawn
from a normal distributionwith zeromean and a stan-
dard deviation σd for distances and σa for angles. The
calibration was then performed 50 times, each time
from a different starting point. The results of three
experiments, with increasing standard deviations, are
shown in tables 3 and4. For both the laser scanner and
stereo camera calibration, the algorithm reached local
minima only with starting points located far from the
true parameters. Within reasonable error boundaries
(σd = 0.1 and σa = 10◦), the algorithm still managed
to ϐind the parameters every time.

Tab. 3. Standard deviaƟon of the esƟmated parameters
for the laser scanner

σd = 0.01m σd = 0.1m σd = 0.2m
σa = 5◦ σa = 10◦ σa = 50◦

σx[m] 0.000004 0.000004 0.018
σy[m] 0.000007 0.000005 0.16
σz[m] 0.000003 0.000002 0.41
σα[◦] 0.00036 0.00024 134.61
σβ[◦] 0.000053 0.000057 134.61
σγ[◦] 0.00035 0.00044 108.88

Tab. 4. Standard deviaƟon of the esƟmated parameters
for the stereo camera

σd = 0.01m σd = 0.1m σd = 0.2m
σa = 1◦ σa = 10◦ σa = 50◦

σx[m] 0.00001 0.000007 0.083
σy[m] 0.000005 0.000004 0.55
σz[m] 0.000004 0.000004 0.44
σα[◦] 0.0004 0.00040 38.16
σβ[◦] 0.00014 0.00013 72.33
σγ[◦] 0.00094 0.00058 34.11

4. Conclusions
In this paper, we propose a new method for cali-

brating the sensory system of the robot. The calibra-
tion methodology is valid for walking robots which
can modify the inclination of the body in relation to
a ϐlat surface. Using the assumption that the terrain in
front of the robot is ϐlat and the position of the robot
is known we determine the position of the sensors in
the robot's body reference frame.

We veriϐied two methods to calibrate the sensory
system. Both methods ϐind a set of parameters which
determine the position of the sensors and reduce the
deϐined calibration error. However, the Levenberg-
Marquardt algorithmreturns smaller calibration error
ε. Moreover, the optimization time is several minutes
whenLMA is used. Because the execution time is short,
the method can be used whenever the robot starts an
operation or there is a risk that sensors changed their
position (because of an accident or collision with an
obstacle).

The PSO reduces the calibration error but the re-
sults are slightly worse. The execution time is about

15 minutes for the laser scanner and about one hour
for estimating the parameters of the stereo camera
(the population size is 1000 and maximal number of
epochs is 10). For that reason the PSO method can be
used only off-line.

In future we are going to use the proposedmethod
to calibrate various exteroceptive 3D sensors like
Kinect and SwissRanger. We also want to implement
a method for detecting ϐlat surfaces on the ground,
so that the calibration procedure could be performed
fully autonomously.
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