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Abstract:

A common method used to obtain 3D range data with
a 2D laser range finder is to rotate the sensor. To com-
bine the 2D range data obtained at different rotation
angles into a common 3D coordinate frame, the axis of
rotation relative to the mirror center of the laser range
finder should be known. This axis of rotation is a line in 3D
space with four degrees of freedom. This paper describes
a method for recovering the parameters of this rotational
axis, as well as the extrinsic calibration between the ro-
tational axis and a camera. It simply requires scanning
several planar checkerboard patterns that are also im-
aged by a static camera. In particular, we use only corre-
spondences between lines in the laser scans and planes in
the camera images, which can be established easily even
for non-visible lasers. Furthermore, we show that such
line-on-plane correspondences can be modelled as point-
plane constraints, a problem studied in the field of robot
kinematics. We use a numerical solution developed for
such point-plane constraint problems to obtain an initial
estimate, which is then refined by a nonlinear minimiza-
tion that minimizes the ,,line-of-sight" errors in the laser
scans and the reprojection errors in the camera image.
To validate our proposed method, we give experimental
results using a LMS-100 mounted on a pan-tilt device in
a nodding configuration.

Keywords: laser range finder, extrinsic calibration, point-
plane constraints, minimal conditions, maximum likeli-
hood estimate

1. Introduction

Laser range finders (LRF) are used extensively
in mobile robots for many tasks, including localiza-
tion, mapping, and obstacle avoidance. 2D LRFs, such
as the SICK LMS-200 and the Hokuyo UTM-30LX,
have proved to be popular due to their low costs, al-
though the range measurement data are confined to
a single plane. 3D LRFs such as the Velodyne HDL-
64 are commercially available, but they are not as
widely employed due to their high costs. Affordable 3D
range sensors such as time-of-flight / phase-shift cam-
eras (e.g. Swiss Ranger SR4000) and structured-light
cameras (e.g. Microsoft Kinect) have recently became
available, but they have limited range and are usually
confined to indoor use.

An economical method for obtaining 3D range data
from a 2D LREF is to rotate the LREF, by using a stepper
motor or a pan-tilt device. To combine the LRF range
data obtained at different angles into a single coordi-
nate frame, the axis of rotation relative to the mirror
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center inside the laser ranger finder is required. As
shown in Fig. 2, this rotational axis is a line in 3D space
with 4 degrees of freedom.

In this paper, we propose a method to recover the
parameters of this axis by scanning several large pla-
nar checkerboard patterns with the LRF and imaging
the checkerboards with a static camera. In particu-
lar, we use only correspondences between lines in the
laser scans and planes in the camera images, which
can be established easily even for non-visible lasers.

Essentially, the proposed calibration procedure
consists of three main steps. First, static camera-LRF
calibration is performed at two different rotational
angles. Although there already exists numerous solu-
tions to this problem in the literature, we propose in-
stead to model the calibration problem using kinemat-
ics point-plane constraints. This allows us to use the
minimum number of calibration planes, reducing the
amount of time for data acquisition and processing.

In the second step, we obtain an initial estimate for
the rotational axis by performing a screw decomposi-
tion of the relative LRF motion estimated in the first
step.

In the final step, starting with an initial estimate
of the parameters of the rotational axis, a nonlinear
minimization is performed to recover its precise val-
ues. For the cost function, instead of the perpendicu-
lar point-to-plane distance that is commonly used, we
propose to minimize the “line-of-sight" errors, which
directly models the noise in the LRF range measure-
ments.

2. Related Work

Several methods have been proposed to calibrate
a static 2D LRF with a static camera [1--4]. The most
commonly-used solution is the one given by Zhang [1],
which uses correspondences between lines in a laser
scan and planes in a camera image, as we do in this pa-
per. In [3] and [4], correspondences between a point
in the laser scan and a line in a camera image are used.
For calibration between a static 3D LRF and a static
camera, Unnikrishnan [5] gives a solution similar to
Zhang's that uses correspondences between planes
in a laser scan and planes in a camera image. As we
will explain in §5, all of these methods can be cast as
point-plane constraints problems. All of these work
aim to find the transformation between the coordinate
frames of a LRF and a camera.

On the other hand, our current work is focused
on locating the axis of rotation of an articulated 2D
LRF. The solution used by one of the earliest system
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is to have the supporting bracket precisely machined
so that the axis of rotation is aligned with the mirror
center of the LRF [6, 7]. If this is not the case, me-
chanical drawings and hand measurement are used to
manually locate the offset distance [8]. For the rotat-
ing 2D LRF described in [9], a more elaborate method
described by Weingarten [10] is used, which involves
scanning a cuboid room measured by hand. In all of
these methods, the axis of rotation is assumed to be
perfectly aligned with one of the primary axis of the
LRF and only the offset distance is determined. In this
paper, by modelling the axis of rotation with 4 degrees
of freedom, we allow for rotational misalignment to
occur.

In [11], Pradeep et al. describes a general calibra-
tion method for sensors on an articulated kinematic
chain. This has been implemented as a package for
the Robot Operating System (ROS) for the PR-2 robot.
Their work is similar to ours, but it relies on estab-
lishing correspondences between point features in the
laser scans and the camera image. To do so, they use
the reflectance values of the laser scan points to locate
the checkerboard corners in the laser scans. However,
reflectance values can be greatly affected by scan-
ning geometry and ambient lighting, making checker-
board detection difficult. Furthermore, the checker-
board corners are likely to lie in between laser scan
points, and attempting to account for such localiza-
tion errors in the laser scans will make the minimiza-
tion relatively complicated. Instead, by using only the
range values in the laser scans, the noise in the cali-
bration data can be easily modelled by minimizing the
“line-of-sight" errors, as described in §7.

3. Geometric Model
3.1. Notation

We use non-bold characters x to represent scalars,
bold lower case letters x to represent vectors, a hat
symbol X to represent unit vectors, a tilde symbol X to
represent homogeneous coordinates, and bold upper
case letters A to represent matrices.

A coordinate frame belonging to a body A is de-
noted by #J, and its constituent axes by X, Y, and
#A2. The coordinates of a point x with respect to the
coordinate frame A is denoted by “'x. § H denotes the
homogeneous transformation matrix from *J to 27,
such that *x = § H?x.

3.2. Coordinate Frames

We attach a coordinate frame “  to the mirror cen-
ter of the LRF (Fig. 1). The LRF rotates around a rota-
tional axis (green line in Fig. 1) that is parallel to w and
passes through a point u with respect to the origin of
£F. We denote the rotation angle of the LRF around
the rotational axis by 6, and index it by i. The LRF co-
ordinate frame after a rotation to 6; is denoted by “ 7.

The laser beam of the LRF sweeps out the *X-*Y
plane. We denote the angle of the laser beam from the
£X-axis by ¢ and indexed it by j. When the LRF is at
rotation angle ¢;, a range measurement p;; at beam

Fig. 1. Coordinate frames and transforms used in calibra-
tion

azimuth angle ¢;; corresponds to a point with coordi-
nates “ix;; = [p;; cos ¢;;, pi; sin ¢;;,0] " with respect
to L.

We attach a coordinate frame ¢F to the camera
center, which does not move during calibration. We in-
dex the checkerboards used in the calibration by &, and
denote them as By, attaching a coordinate frame By
at each of their origin. The plane of the checkerboards
are denoted as 7, with normal n;, and distance d;,
with respect to the camera coordinate frame.

3.3. Rotational Transformation of Coordinate Frames

To combine the LRF range data obtained at differ-
ent rotational angles 6;, all of the points x;; should be
converted to a common coordinate frame. A simple
choice is to use the first LRF coordinate frame “°F, Af-
ter a rotation of A9 = 6; — 0y, the transformation of
the LRF coordinate frame is:

R;(A0) (I3 — Ry (Af))u

L _
EOH - 0 1 (1)

Alternatively, we can attach a coordinate frame Ry
on the rotational axis. If the ® X-axis is aligned with the
rotational axis, two degrees of freedom remain for the
transformation from “°J to *J - a translation along
the rotational axis, and a rotation about the rotational
axis. In order to fix ®F unambiguously, we place its
origin to lie in the “Y-*Z plane, and its orientation is
chosen as the one having the minimal rotation from
£07, as shown in Fig. 2.

Thus, given the direction & = [w,,w,,w.]" and a
point u = [uy, u,,u;]" on the rotational axis with re-
spect to ©° 7, the transformation from ®J to “°J is:

Ra(y) "

£
' H = 0

_R. T gy*
Ra(;b) u:| (2)

where,
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Fig. 2. Coordinate frames of the rotational device and the
LRF. The axis of rotation of a rotating LRF relative to its
mirror center has 4 degree of freedoms: 2 for the offset
distance u* = [0, u}, u3] " in the Y — Z plane of the LRF,
and 2 for the unit vector w in the direction of the rota-
tional axis

0
Uy . -
u=u— o= Uy - ftwy (3)
We w. — Uy
z Wy M2
I 0
A ixw 1
a=—— = —Ww, (4)
ix ol ozt | w,
Y =cos '(i-@) = cos(wy) (5)
and
Wy —wy —w,
2 1w, 1—w,
Ra(y) = |“v w”+wzw§+WW§ _wywzﬁizz
1—w, 2 — Wy
W TWyWegapr Wo Wy
(6)

After arotation of A9 = 0; — 60y, the transformation
from RF to “:F is thus:

(7)

3.4. Representation of the Rotational Axis

In Eq. (1), the rotational axis is represented by a
pointu and a direction w, giving a total of 5 DOF. How-
ever, since u is a vector from the origin of “J to any
point on the rotational axis, another pointu’ = u+A\w
for any A € R can also be used. In Eq. (2) and (7), u
is replaced by u* = [0, u}, u}] T, a point constrained to
£Y-£2 plane, leaving it with only 2 DOF.

Another way to represent the rotational axis is to
make use of the vector product v = @ x u, known as
the moment of the line, which is invariant under the
choice of u, since v = @ x (u + A&) = @ xu = v. The
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pair of vectors (w, v) are known as the Pliicker coor-
dinates of the line [12]. The two vectors must satisfy
the constraint w - v = 0, and are defined up to scale,
so (Aw, Av) for any A # 0 defines the same line; thus,
there are 4 DOF within the six parameters of @ and v.

Given the Pliicker coordinates (w, v) of a line, we
can go back to the point and direction representation
by finding a point u on the line, which can be obtained
simply as [12]:

u— VXw
lw]]?

(8)

4. Overview of Calibration Procedure
4.1. Data Acquisition

Fig. 3. Calibration setup: 3 or more planar calibration pat-
terns are scanned by the rotating LRF and imaged by a
static camera

In our proposed calibration procedure, the data ac-
quisition consists of placing n, > 3 planar checker-
board patterns By, in front of the rotating LRF to be
calibrated, as shown in Fig. 3. A single image of all the
checkerboards is captured to determine their poses
785"' H relative to the camera coordinate frame. The LRF
isrotated ton; > 2 different angles 6;, at each of which
ascan 8; = {x;; } of the checkerboards are made. The
setof points in each scan §; belonging to checkerboard
By, is denoted by Si,k = {Xij | X;; € 'Bk}

Instead of using n; different checkerboards and
scanning them all at once, one single checkerboard
can be scanned ny, times at different poses, giving an
equivalent set of scan points {8,  }.

4.2. Data Processing

The objective of the calibration is to estimate the
parameters of the rotational axis, (w, v). In order to do
so, we propose a calibration procedure with the three
steps outlined in Algorithm 1 and illustrated in Fig. 4.

Step 1 is equivalent to performing a calibration be-
tween a camera and a static 2D-LRF. This can be ac-
complished using any of the existing methods men-
tioned in §2. However, as we will explain in §5, static
camera-LRF calibration can be modelled as a kinemat-
ics point-plane constraints problem. Doing so allows
us to use the minimum number of calibration boards,
reducing the amount time for data acquisition and
processing.
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Algorithm 1 Calibration Procedure

1) Initial static camera-LRF calibration
Using scan 8, determine the pose éOH of the LRF
at the initial rotation angle 6, with respect to the
camera.

2) Initial estimate of the rotational axis (w, v)

a) Estimate the final LRF pose é” H
Using scan §,,,, determine the pose of the LRF
at the final rotation angle 6,,,.

b) Extract (@, v) from fo H using the screw de-
composition

3) Nonlinear refinement ofé‘)H and (@, v).

Given é“H and (w,v), the expected scan data

{8;,} can be calculated. The task then is to find the

optimal é°H+ and (dﬁ', v‘*‘) which minimizes the

differences between {8; .} and {8,

Step 2 is used to obtain an initial estimate for
the parameters of the rotational axis (w, v). First, the
static calibration of step 1 is repeated, but with the
LRF at the final rotational angle 0,,,. The rotational axis
can then be extracted using the screw decomposition,
as we will explain in §6. An initial estimate for (w,v)
can also be obtained through other means, such as us-
ing manual measurement or mechanical drawings. In
such cases, step 2 can be skipped.

In step 3, starting with initial value for é"H and
(w, v), we use nonlinear optimization to find the opti-
mal estimates ;° H " and (&%, v*) which minimizes
the errors between the actual scan data {S; . } and the
expected scan values {ka}, which we will describe in
detail in §7.

5. Step 1: Static Camera-LRF Calibration using
Point-Plane Constraints

5.1. Kinematics Point-Plane Constraints

In the point-plane constraints problem, n points x;
on arigid body B are constrained to lie on n planes 7;
whose parameters are known with respect to a ground
coordinate frame 9 (Fig. 5). The goal is to recover all
possible poses & H of the body B with respect to 9 7.

This is a problem studied in kinematics. In [13],
Selig shows, using algebraic geometry, that with a min-
imum of 6 point-plane constraints, up to 8 solutions
can be obtained. In [14, 15], Wampler shows equiva-
lent results, along with numerical methods for obtain-
ing the solutions.

5.2. Modelling Static Camera-LRF Calibration

Treating the LRF as the body B and the camera co-
ordinate frame as the ground coordinate frame 97, it is
straightforward to see that the static camera-LRF cali-
bration problem can be modelled as a point-plane con-
straints problem. The LRF is able to measure points Xx;;
with respect to its own coordinate frame *J. These
points are known to lie on a checkerboard plane 7
imaged by the camera. Thus, the plane parameters

(a) Step 1: Initial static calibration

(b) Step 2: Initial estimate of the rotational axis (w, V)

(c) Step 3: Refinement of éo H and (&, V)

Fig. 4. Calibration Procedure

(fy, di,) are known with respect to the camera coordi-
nate frame ©J. Each checkerboard pattern scanned by
the LRF and imaged by the camera gives one line-on-
plane constraint, which is equivalent to two indepen-
dent point-on-plane constraints, as any other point
on the same line will give a redundant point-on-plane
constraint. With 3 checkerboards, we obtain the min-
imum number of n = 6 to solve the point-plane con-
straints problem.

5.3. Numerical Solution

For a pointx;; in the body coordinate frame ® 7, it
lies on a plane 7, with normal n, at a distance dj, from
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Fig. 5. The kinematics point-plane constraints problem
the origin in 97 if:

n, (Rx;;+t)+d,=0 9)

Here, R € SO(3) and t € R3 are the rotation and
translation of the transformation g H from 95 to * 7.

Using a quaternion ¢ = [qu, ¢z, qy,qs] ' to repre-
sent a rotation as R = ﬁlqR(q), (9) can be rewritten
as:

Fir(q,t) =) (R(q) x;j) +a'qd, +q'qn/t=0
=q M;q+q'qn,t
(10)

Here, the quaternion q is a homogeneous vector in P2,
and not necessarily a unit vector as is commonly em-
ployed. This was done to avoid the need to impose
a quadratic constraint. As a result, the scalar prod-
uct q " q appears in the denominator to normalize the
quaternion. M ;;;, is a 4 X 4 symmetric matrix contain-
ing the elements of x;;, N, and dy.

Given n point-plane constraints, a system of n
equations in the form of Eq. (10) is obtained, which is
quadratic in q and linear in t. The linear terms q ' q t
can be eliminated through Gaussian elimination, leav-
ing n — 3 equations in q. For the minimum case of
n = 6, we obtain a system of 3 quadratic polynomi-
als in the 3 free variables of q, which gives up to 8 so-
lutions. This can be solved using Grobner bases [16].
In [14, 15], Wampler gives a eigenvalue-based numeri-
cal solution, which he calls “numerical Grébner bases"'.

For n > 6, we can find a unique solution by solv-
ing subsets of the n constraints and find the common
solution among them. However, if there is noise in the
data, there will be no solution that can simultaneously
satisfy all the constraint equations. Instead, Wampler
gives linear solutions for the separate cases of n = 7,
8 > n > 12,and n > 12. In the following, we give a
brief review of the solution for 8 > n > 12. The reader
isreferred to Wampler's papers [14, 15] for further de-
tails.

Eg. (10) can be rewritten in a linear form in terms
of the 2" degree monomials of q:
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Fijr(a,t) = Cijr@ +q ' q i)t (11)
Here, C;j1 is a1 x 10 vector with rearranged entries
of Mji, and q is a 10 x 1 vector with the 2nd de-
gree monomials of q in lexicographical ordering: q =
(9w, Quwles Qwlys Gwlzs 42’ Gy 42lz G Qyd=r 4271 -
With n points on n planes, we can stack the con-
straints of Eq. (11) to get a system of equations:

F(q,t)=Cq+q'q Nt (12)

Here, C is an x 10 matrix, and IN is a n X 3 matrix
containing the normal vectors f, . To solve this sys-
tem, we need to have rank(IN) = 3, meaning that the
normal vectors of the planes should span 3-space.

Pre-multiplying Eq. (12) with N+, a (n — 3) x n
matrix spanning the left null space of IN, we reduce
the system to a set of n — 3 homogeneous quadratic
polynomials in q:

F(q) = N*Cq (13)
This can be minimized using SVD, with the solution g
being the right singular vector corresponding to the
smallest singular value. The rotation R(q) is extracted
from g and substituted back in (12) to recover the
translation t.

5.4. Minimal Conditions

In the camera-LRF calibration method given by
Zhang [1], a linear solution is given to obtain an ini-
tial estimate for the camera to LRF transformation
& H.Each line-on-plane correspondence gives two in-
dependent equations in nine unknown parameters, so
a minimum of 5 LRF scan and image pairs are needed.

In Wasielewski's calibration method [3] using LRF
point on image line correspondences, each set of cor-
respondence gives one constraint equation in nine un-
known parameters, so a minimum of 9 LRF scan and
image pairs are needed. In Li's method [4] which uses
a calibration target giving two image lines, a minimum
of 5 LRF scan and image pairs are needed.

As mentioned above, a line-on-plane correspon-
dence can be modelled as two point-plane constraints.
As we describe in [17], a point-on-image-line corre-
spondence can also be modelled as a point-plane con-
straint, where the plane passes through the camera
center and the image line. Table 1 shows a summary
of the minimum number of LRF-scan and image pairs
required by the different methods, as well as the min-
imum conditions when modelled using point-plane
constraints.

Although usually, it is preferable to use more laser
scans and image pairs to provide redundant data to
reduce the effects of noise, leading to more accurate
calibration results. However, we use the fact that we
already have a lot of redundant data from the scans
{8;} at different rotational angles 6,. Thus, we are mo-
tivated to find the minimal solution for the initial static
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i
Tab. 1. Minimum LRF-scan and image pairs
Method Correspondences Scan-Image Pairs _ 277‘2’ ) Lnit (17)
Original  Point-Plane p A0 Lo
Zhang [1] line-on-plane 5 3 (4)* N A6
Wasielewski [3]  point-on-image-line 9 6 (7)* u= (I3 — RQ(AQ))T (L"'it — pd)) (18)
Li [4] point-on-image-line 5 3 (4)* 0 27

*number in brackets indicate pairs required for unique solution

camera-LRF calibration step, and instead rely on us-
ing redundant data over all the rotational angles 6; in
the final minimization described in §7 to reduce the
effects of noise in the calibration.

Although using point-plane constraints to model
the different type of correspondences reduces the
minimal scan-image pairs required only very slightly,
the advantage of using point-plane constraints is that
all types of correspondences can be modelled uni-
formly and solved using a single method.

6. Step 2: Initial Estimate of the Rotational Axis
using Screw Decomposition

Using the static camera-LRF calibration method
described in §5, we obtain an initial estimate for g”H

and é” H for step 1 and step 2(a) respectively. Com-
posing the camera to LRF transforms, we obtain the
relative LRF motion between the two rotational angles
B and 6,,,:

Ln ” -1 Ln,
H=(¢H) -("H (14)

According to Chasles's theorem, every spatial
transformation can be decomposed as a screw dis-
placement - a rotation about a line together with a
translation along the same line [12]:

. Lo,
Srp = lRa(Ae) Lo t] (15)
0 0 1
B {RQ(AH) 20p& + (I3 — Ro(A0))u
- 0 1

(16)

Eq. (16) is known as the “screw matrix" [12, 18], rep-
resenting a rotation of angle A# around a line called
the screw axis that has direction w and passes through
the point u. p is the pitch of the screw motion, corre-
sponding to the translation along @ for every revolu-
tion around the screw axis. Compared with Eq. (15),
while the rotation matrix remains the same, the trans-
lation has been decomposed into a translation along
the rotational axis %pd;, and a translation perpendic-
ular to the rotational axis (I3 — R (A6)) u.

. Lo, . .
Given Ry (Af) and ;" t of the relative LRF motion
from 6y and 6,,,, we can recover the parameters of its
equivalent screw displacement as:

Since (I3 — Ry(Af)w = 0, (Is— Ry(A0)) is a
singular matrix; thus, its pseudo-inverse is used in
Eq. (18) to recover u.

Ideally, the decomposition of the relative motion
f: H of the LRF from angle 6, to 6,,, will give a screw
displacement with zero pitch p = 0, and the screw axis
(w,v) is the rotational axis of the LRF. Furthermore,
if we repeat the static camera-LRF calibration at an-
other rotation angle 6; and compute fOH, the screw
decomposition should give the same screw axis (w, v).
However, with noise in the calibration data, such ideal
results will not be obtained. The task then remains
to finding the optimal rotational axis (&",v*") that
minimizes some error function which accounts for the
noise in the calibration data.

7. Step 3: Nonlinear Refinement

The linear solution to the point-plane constraints
problem given in §5.3 minimizes an algebraic error.
To find the optimal calibration parameters, an opti-
mization that minimizes a meaningful geometric error
should be performed. The error function most com-
monly used in static camera-LRF calibration is the
PP,

point-to-plane distance e, :

2 2
arg minZeka = Z Ing " (Rx; +t)+dy]|
LH .
o Jk

J.k
(19)
Fig. 6. Point-to-plane error 6§ka vs. line-of-sight error
LOS
el

As shown in Fig. 6, this is the perpendicular dis-
tance from the plane 7, to the point x;. However, if we
assume that the pointsx; = f(¢;, p;) measured by the
LRF contains only zero-mean Gaussian noise “w; ~
N(0,%0?) in its range values pj, s0 p; = pf + “wy,
then instead of the point-to-plane errors efkp, a better

error to minimize is the “line-of-sight” distance e,”,

as illustrated in Fig. 6.
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arg minz:efkos2 = Z X — x,]?
¢H g Jk
=> o} = pill?
Jsk

In Eq. (20), given plane 7y, : (i, dy) for the k™ plane,

the ideal coordinates X;“ is calculated as the inter-

section point of the plane m; with the line passing

through the LRF mirror center and the measured point
x;. Using X, to denote 2
J

(20)

—dy, — tTnk .

= TR Y (21)

Ignoring errors in m : (N, dg), Eq. (20) gives
a maximum likelihood estimate for R, t. To account
for errors in the pose of the checkerboard planes
7 : (N, dy) estimated by the camera, assuming zero-
mean Gaussian noise “w; ~ N(0,%0?) in the image
coordinates y; of the checkerboard corners with 3D
coordinates b;, the minimization can be augmented
with the image reprojection errors of the checker-
board corners:

C .2

. g
argmlnm Z ||Xj - Xj||2+
SHoFH X YUk

L 2
> ly; — K- (3R b, + 3t |
7,k

g
nx£ o2 + nyCo?
(22)

By By
e ()R @1 t} is the pose of the k™
checkerboard with respect to the camera. ny is the
number of laser scan points X;, and ny is the number
of checkerboard corners y;.

To estimate the optimal parameters (™, v*) for
the LRF rotational axis, we perform the minimization
with all points Xx;; obtained over all rotational angles
gi,’i :0,...,ni:

Here, ng =

@0.2

: + 12

arg min nLo? - neCo? E Hxij — X"+
COHGVNH X LR
“o? B B 2
k k

T Sy k (2R, )

0% + nyCo? - ly; e i te |
7

(23)

In this optimization, only the pose of the LRF at the
first rotational angle éOH is directly included as pa-
rameters; the pose of the LRF at the other rotational
angles éiH are calculated from (@, v) using Eq. (1)
and (8).

8. Experimental Results

To test our calibration algorithm, we use the LRF
(SICK LMS-100) mounted on a pan-tilt unit (Directed
Perception PTU-D46), as shown in Fig. 7.
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Fig. 7. The 2D LRF mounted on a pan-tilt unit used in our
calibration

Fig. 8 shows the checkerboards setup for our cal-
ibration, with the checkerboard patterns being auto-
matically detected using OpenCV. Instead of using the
minimum of 3 planes, which would give up to 8 so-
lutions for the initial static camera-LRF calibration, 4
planes are used to simplify the computation. As de-
scribed in §5, the normals {f} of the checkerboard
planes {7} should span R3, so care must be taken
so that not all of the checkerboards are vertical. For
example, if only the vertical walls in a room are used,
{n;} would only span R?, giving a degenerate config-
uration.

Fig. 8. Checkerboard patterns extracted in camera image

Fig. 9 shows a single laser scan, with points be-
longing to the checkerboards identified by running
RANSAC line-fitting over the scan data multiple times.

Fig. 9. Points in each laser scan belonging to the checker-
boards are extracted using RANSAC line-fitting

For the final optimization in Eq.(23), we used
o = 12mm, corresponding to the statistical error
of the LMS-100 as given by the manufacturer, and
€s = 0.5px for the image localization noise. The re-
sults of our calibration are tabulated in Table 2, and
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checkerboards reconstructed using these parameters
are shown in Fig. 10. The reconstruction of a small in-
door environment after calibration is shown in Fig. 11.

Tab. 2. Calibration Results

Parameter Initial Final

Axis Translation Off- [0,—30,160] [0, —27.6,158.9]
set

(mm)

Axis Rotational Offset 0° 10.14°
Line-of-Sight Error 8.08 7.24
(mm)

rotational angle to obtain an initial estimate, followed
by a nonlinear optimization to refine the results.

However, instead of using existing static camera-

LRF calibration methods, we model it as a kinemat-
ics point-plane constraints problem. This allows us to
minimize the number of calibration planes that are
needed, simplifying the calibration; also, various types
of correspondences can be handled in a uniform man-
ner. Furthermore, we describe the minimization of the
“line-of-sight" errors, which directly models the noise
in the range measurements of a LRE.

Fig. 10. Laser points with intensity values reconstructed
after calibration, showing a rough outline of the scanned
checkerboard patterns

Fig. 11. Indoor environment reconstructed after calibra-
tion

The calibration results show a small change in the
location and orientation of the rotation axis, as well as
a slight decrease in the line-of-sight errors. Although
the final parameters of the rotational axis differ only
slightly from those obtained using hand measurement,
it accounts for all the degrees of freedom of the rota-
tional axis. Furthermore, although the reconstructed
checkerboards show only modest improvements, the
importance of proper calibration will be more notice-
able for data with larger range, as well as when fusing
the range data with image data.

9. Conclusions

In this paper, we proposed a method for recover-
ing the rotational axis of a rotating 2D LRF. Instead of
assuming that the rotational axis is aligned with one
of the primary axis of the LRF, we model it as a line in
3D space with 4 DOF. The calibration consists of per-
forming static camera-LRF calibration at two different
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