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Abstract:
A common method used to obtain 3D range data with
a 2D laser range finder is to rotate the sensor. To com-
bine the 2D range data obtained at different rota on
angles into a common 3D coordinate frame, the axis of
rota on rela ve to the mirror center of the laser range
finder should be known. This axis of rota on is a line in 3D
space with four degrees of freedom. This paper describes
amethod for recovering the parameters of this rota onal
axis, as well as the extrinsic calibra on between the ro-
ta onal axis and a camera. It simply requires scanning
several planar checkerboard pa erns that are also im-
aged by a sta c camera. In par cular, we use only corre-
spondences between lines in the laser scans and planes in
the camera images, which can be established easily even
for non-visible lasers. Furthermore, we show that such
line-on-plane correspondences can be modelled as point-
plane constraints, a problem studied in the field of robot
kinema cs. We use a numerical solu on developed for
such point-plane constraint problems to obtain an ini al
es mate, which is then refined by a nonlinear minimiza-
on that minimizes the ,,line-of-sight" errors in the laser

scans and the reprojec on errors in the camera image.
To validate our proposed method, we give experimental
results using a LMS-100 mounted on a pan- lt device in
a nodding configura on.

Keywords: laser range finder, extrinsic calibra on, point-
plane constraints, minimal condi ons, maximum likeli-
hood es mate

1. Introduc on
Laser range inders (LRF) are used extensively

in mobile robots for many tasks, including localiza-
tion, mapping, and obstacle avoidance. 2D LRFs, such
as the SICK LMS-200 and the Hokuyo UTM-30LX,
have proved to be popular due to their low costs, al-
though the range measurement data are con ined to
a single plane. 3D LRFs such as the Velodyne HDL-
64 are commercially available, but they are not as
widely employeddue to their high costs. Affordable 3D
range sensors such as time-of- light / phase-shift cam-
eras (e.g. Swiss Ranger SR4000) and structured-light
cameras (e.g. Microsoft Kinect) have recently became
available, but they have limited range and are usually
con ined to indoor use.

An economicalmethod for obtaining 3D rangedata
from a 2D LRF is to rotate the LRF, by using a stepper
motor or a pan-tilt device. To combine the LRF range
data obtained at different angles into a single coordi-
nate frame, the axis of rotation relative to the mirror

center inside the laser ranger inder is required. As
shown in Fig. 2, this rotational axis is a line in 3D space
with 4 degrees of freedom.

In this paper, we propose a method to recover the
parameters of this axis by scanning several large pla-
nar checkerboard patterns with the LRF and imaging
the checkerboards with a static camera. In particu-
lar, we use only correspondences between lines in the
laser scans and planes in the camera images, which
can be established easily even for non-visible lasers.

Essentially, the proposed calibration procedure
consists of three main steps. First, static camera-LRF
calibration is performed at two different rotational
angles. Although there already exists numerous solu-
tions to this problem in the literature, we propose in-
stead tomodel the calibration problemusing kinemat-
ics point-plane constraints. This allows us to use the
minimum number of calibration planes, reducing the
amount of time for data acquisition and processing.

In the second step, we obtain an initial estimate for
the rotational axis by performing a screw decomposi-
tion of the relative LRF motion estimated in the irst
step.

In the inal step, starting with an initial estimate
of the parameters of the rotational axis, a nonlinear
minimization is performed to recover its precise val-
ues. For the cost function, instead of the perpendicu-
lar point-to-plane distance that is commonly used, we
propose to minimize the ``line-of-sight'' errors, which
directly models the noise in the LRF range measure-
ments.

2. Related Work
Several methods have been proposed to calibrate

a static 2D LRF with a static camera [1--4]. The most
commonly-used solution is the one given by Zhang [1],
which uses correspondences between lines in a laser
scan and planes in a camera image, aswe do in this pa-
per. In [3] and [4], correspondences between a point
in the laser scan and a line in a camera image are used.
For calibration between a static 3D LRF and a static
camera, Unnikrishnan [5] gives a solution similar to
Zhang's that uses correspondences between planes
in a laser scan and planes in a camera image. As we
will explain in §5, all of these methods can be cast as
point-plane constraints problems. All of these work
aim to ind the transformation between the coordinate
frames of a LRF and a camera.

On the other hand, our current work is focused
on locating the axis of rotation of an articulated 2D
LRF. The solution used by one of the earliest system
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is to have the supporting bracket precisely machined
so that the axis of rotation is aligned with the mirror
center of the LRF [6, 7]. If this is not the case, me-
chanical drawings and handmeasurement are used to
manually locate the offset distance [8]. For the rotat-
ing 2D LRF described in [9], a more elaborate method
described by Weingarten [10] is used, which involves
scanning a cuboid room measured by hand. In all of
these methods, the axis of rotation is assumed to be
perfectly aligned with one of the primary axis of the
LRF, and only the offset distance is determined. In this
paper, bymodelling the axis of rotationwith 4 degrees
of freedom, we allow for rotational misalignment to
occur.

In [11], Pradeep et al. describes a general calibra-
tion method for sensors on an articulated kinematic
chain. This has been implemented as a package for
the Robot Operating System (ROS) for the PR-2 robot.
Their work is similar to ours, but it relies on estab-
lishing correspondences betweenpoint features in the
laser scans and the camera image. To do so, they use
the re lectance values of the laser scan points to locate
the checkerboard corners in the laser scans. However,
re lectance values can be greatly affected by scan-
ning geometry and ambient lighting, making checker-
board detection dif icult. Furthermore, the checker-
board corners are likely to lie in between laser scan
points, and attempting to account for such localiza-
tion errors in the laser scans will make the minimiza-
tion relatively complicated. Instead, by using only the
range values in the laser scans, the noise in the cali-
bration data can be easily modelled byminimizing the
``line-of-sight'' errors, as described in §7.

3. Geometric Model
3.1. Nota on

We use non-bold characters x to represent scalars,
bold lower case letters x to represent vectors, a hat
symbol x̂ to represent unit vectors, a tilde symbol x̃ to
represent homogeneous coordinates, and bold upper
case lettersA to represent matrices.

A coordinate frame belonging to a body A is de-
noted by AF, and its constituent axes by AX, AY, and
AZ. The coordinates of a point x with respect to the
coordinate frameA is denoted byAx. BAH denotes the
homogeneous transformation matrix from AF to BF,
such that Ax̃ = B

AH
Bx̃.

3.2. Coordinate Frames

Weattach a coordinate frameLF to themirror cen-
ter of the LRF (Fig. 1). The LRF rotates around a rota-
tional axis (green line in Fig. 1) that is parallel to ω̂ and
passes through a point u with respect to the origin of
LF. We denote the rotation angle of the LRF around
the rotational axis by θ, and index it by i. The LRF co-
ordinate frame after a rotation to θi is denoted by LiF.

The laser beam of the LRF sweeps out the LX-LY
plane. We denote the angle of the laser beam from the
LX-axis by ϕ and indexed it by j. When the LRF is at
rotation angle θi, a range measurement ρij at beam

Fig. 1. Coordinate frames and transforms used in calibra-
on

azimuth angle ϕij corresponds to a point with coordi-
nates Lixij = [ρij cosϕij , ρij sinϕij , 0]⊤ with respect
to LiF.

We attach a coordinate frame CF to the camera
center, which does notmove during calibration.We in-
dex the checkerboardsused in the calibrationbyk, and
denote them as Bk , attaching a coordinate frame BF

at each of their origin. The plane of the checkerboards
are denoted as πk , with normal n̂k and distance dk
with respect to the camera coordinate frame.

3.3. Rota onal Transforma on of Coordinate Frames

To combine the LRF range data obtained at differ-
ent rotational angles θi, all of the points xij should be
converted to a common coordinate frame. A simple
choice is to use the irst LRF coordinate frameL0F. Af-
ter a rotation of ∆θ = θi − θ0, the transformation of
the LRF coordinate frame is:

Li

L0
H =

[
Rω̂(∆θ) (I3 −Rω̂(∆θ))u

0 1

]
(1)

Alternatively, we can attach a coordinate frame RF

on the rotational axis. If theRX-axis is alignedwith the
rotational axis, two degrees of freedom remain for the
transformation from L0F to RF - a translation along
the rotational axis, and a rotation about the rotational
axis. In order to ix RF unambiguously, we place its
origin to lie in the LY-LZ plane, and its orientation is
chosen as the one having the minimal rotation from
L0F, as shown in Fig. 2.

Thus, given the direction ω̂ = [ωx, ωy, ωz]
⊤ and a

point u = [ux, uy, uz]
⊤ on the rotational axis with re-

spect to L0F, the transformation from RF to L0F is:

L0

R H =

[
Râ(ψ)

⊤ −Râ(ψ)
⊤u∗

0 1

]
(2)

where,
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Fig. 2. Coordinate frames of the rota onal device and the
LRF. The axis of rota on of a rota ng LRF rela ve to its
mirror center has 4 degree of freedoms: 2 for the offset
distance u∗ = [0, u∗y, u

∗
z]

⊤ in the Y− Z plane of the LRF,
and 2 for the unit vector ω̂ in the direc on of the rota-
onal axis

u∗ = u− ux
ωx

ω̂ =

 0
uy − ux

ωx
ωy

uz − ux

ωx
ωz

 (3)

â =
î× ω̂

∥̂i× ω̂∥
=

1√
ω2
y + ω2

z

 0
−ωz

ωy

 (4)

ψ = cos−1(̂i · ω̂) = cos−1(ωx) (5)

and

Râ(ψ) =

ωx −ωy −ωz

ωy ωx + ω2
z

1−ωx

ω2
y+ω2

z
−ωyωz

1−ωx

ω2
y+ω2

z

ωz −ωyωz
1−ωx

ω2
y+ω2

z
ωx + ω2

y
1−ωx

ω2
y+ω2

z


(6)

After a rotation of∆θ = θi−θ0, the transformation
from RF to LiF is thus:

Li

R H =

[
Rω̂(∆θ)Râ(ψ)

⊤ −Rω̂(∆θ)Râ(ψ)
⊤u∗

0 1

]
(7)

3.4. Representa on of the Rota onal Axis

In Eq. (1), the rotational axis is represented by a
point u and a direction ω̂, giving a total of 5 DOF. How-
ever, since u is a vector from the origin of LF to any
point on the rotational axis, another pointu′ = u+λω̂
for any λ ∈ R can also be used. In Eq. (2) and (7), u
is replaced by u∗ = [0, u∗y, u

∗
z]

⊤, a point constrained to
LY-LZ plane, leaving it with only 2 DOF.

Another way to represent the rotational axis is to
make use of the vector product v = ω̂ × u, known as
the moment of the line, which is invariant under the
choice of u, since v′ = ω̂× (u+ λω̂) = ω̂×u = v. The

pair of vectors (ω̂, v) are known as the Plücker coor-
dinates of the line [12]. The two vectors must satisfy
the constraint ω̂ · v = 0, and are de ined up to scale,
so (λω̂, λv) for any λ ̸= 0 de ines the same line; thus,
there are 4 DOF within the six parameters of ω̂ and v.

Given the Plücker coordinates (ω, v) of a line, we
can go back to the point and direction representation
by inding a point u on the line, which can be obtained
simply as [12]:

u =
v× ω

∥ω∥2
(8)

4. Overview of Calibra on Procedure
4.1. Data Acquisi on

Fig. 3. Calibra on setup: 3 ormore planar calibra on pat-
terns are scanned by the rota ng LRF and imaged by a
sta c camera

In our proposed calibrationprocedure, the data ac-
quisition consists of placing nk ≥ 3 planar checker-
board patterns Bk in front of the rotating LRF to be
calibrated, as shown in Fig. 3. A single image of all the
checkerboards is captured to determine their poses
Bk

C H relative to the camera coordinate frame. The LRF
is rotated toni ≥ 2different angles θi, at each ofwhich
a scan Si = {xij} of the checkerboards are made. The
set of points in each scanSi belonging to checkerboard
Bk is denoted by Si,k = {xij | xij ∈ Bk}.

Instead of using nk different checkerboards and
scanning them all at once, one single checkerboard
can be scanned nk times at different poses, giving an
equivalent set of scan points {Si,k}.
4.2. Data Processing

The objective of the calibration is to estimate the
parameters of the rotational axis, (ω̂, v). In order to do
so, we propose a calibration procedure with the three
steps outlined in Algorithm 1 and illustrated in Fig. 4.

Step 1 is equivalent to performing a calibration be-
tween a camera and a static 2D-LRF. This can be ac-
complished using any of the existing methods men-
tioned in §2. However, as we will explain in §5, static
camera-LRF calibration can bemodelled as a kinemat-
ics point-plane constraints problem. Doing so allows
us to use the minimum number of calibration boards,
reducing the amount time for data acquisition and
processing.
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Algorithm 1 Calibration Procedure
1) Initial static camera-LRF calibration

Using scan S0, determine the pose L0

C H of the LRF
at the initial rotation angle θ0 with respect to the
camera.

2) Initial estimate of the rotational axis (ω̂, v)
a) Estimate the inal LRF pose Lni

C H
Using scan Sni , determine the pose of the LRF
at the inal rotation angle θni .

b) Extract (ω̂, v) from Lni

L0
H using the screw de-

composition
3) Nonlinear re inement of L0

C H and (ω̂, v).
Given L0

C H and (ω̂, v), the expected scan data
{S+i,k} can be calculated. The task then is to ind the
optimal L0

C H+ and
(
ω̂+, v+

)
which minimizes the

differences between {Si,k} and {S+i,k}

Step 2 is used to obtain an initial estimate for
the parameters of the rotational axis (ω̂, v). First, the
static calibration of step 1 is repeated, but with the
LRFat the inal rotational angle θni . The rotational axis
can then be extracted using the screw decomposition,
as we will explain in §6. An initial estimate for (ω̂, v)
can also be obtained through other means, such as us-
ing manual measurement or mechanical drawings. In
such cases, step 2 can be skipped.

In step 3, starting with initial value for L0

C H and
(ω̂, v), we use nonlinear optimization to ind the opti-
mal estimates L0

C H+ and
(
ω̂+, v+

)
which minimizes

the errors between the actual scan data {Si,k} and the
expected scan values {S+i,k}, which we will describe in
detail in §7.

5. Step 1: Sta c Camera-LRF Calibra on using
Point-Plane Constraints

5.1. Kinema cs Point-Plane Constraints

In the point-plane constraints problem, n points xi
on a rigid bodyB are constrained to lie on n planesπi

whoseparameters are knownwith respect to a ground
coordinate frame GF (Fig. 5). The goal is to recover all
possible poses B

GH of the bodyBwith respect to GF.
This is a problem studied in kinematics. In [13],

Selig shows, using algebraic geometry, thatwith amin-
imum of 6 point-plane constraints, up to 8 solutions
can be obtained. In [14, 15], Wampler shows equiva-
lent results, along with numerical methods for obtain-
ing the solutions.

5.2. Modelling Sta c Camera-LRF Calibra on

Treating the LRF as the bodyB and the camera co-
ordinate frameas the ground coordinate frameGF, it is
straightforward to see that the static camera-LRF cali-
brationproblemcanbemodelled as a point-plane con-
straints problem. TheLRF is able tomeasurepointsxij
with respect to its own coordinate frame LF. These
points are known to lie on a checkerboard plane πk

imaged by the camera. Thus, the plane parameters

(a) Step 1: Ini al sta c calibra on

(b) Step 2: Ini al es mate of the rota onal axis (ω̂, v)

(c) Step 3: Refinement of L0
C H and (ω̂, v)

Fig. 4. Calibra on Procedure

(n̂k, dk) are knownwith respect to the camera coordi-
nate frame CF. Each checkerboard pattern scanned by
the LRF and imaged by the camera gives one line-on-
plane constraint, which is equivalent to two indepen-
dent point-on-plane constraints, as any other point
on the same line will give a redundant point-on-plane
constraint. With 3 checkerboards, we obtain the min-
imum number of n = 6 to solve the point-plane con-
straints problem.

5.3. Numerical Solu on

For a point xij in the body coordinate frame BF, it
lies on a planeπk with normal n̂k at a distance dk from

Articles 33



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N◦ 2 2013

Fig. 5. The kinema cs point-plane constraints problem

the origin in GF if:

n̂⊤
k (R xij + t) + dk = 0 (9)

Here, R ∈ SO(3) and t ∈ R3 are the rotation and
translation of the transformation B

GH from GF to BF.
Using a quaternion q = [qw, qx, qy, qz]

⊤ to repre-
sent a rotation asR = 1

q⊤q
R(q), (9) can be rewritten

as:

Fijk(q, t) = n̂⊤
k (R(q) xij) + q⊤q dk + q⊤q n̂⊤

k t = 0

= q⊤M ijkq+ q⊤q n̂⊤
k t

(10)

Here, the quaternion q is a homogeneous vector in P3,
and not necessarily a unit vector as is commonly em-
ployed. This was done to avoid the need to impose
a quadratic constraint. As a result, the scalar prod-
uct q⊤q appears in the denominator to normalize the
quaternion.M ijk is a 4×4 symmetric matrix contain-
ing the elements of xij , n̂k , and dk .

Given n point-plane constraints, a system of n
equations in the form of Eq. (10) is obtained, which is
quadratic in q and linear in t. The linear terms q⊤q t
can be eliminated through Gaussian elimination, leav-
ing n − 3 equations in q. For the minimum case of
n = 6, we obtain a system of 3 quadratic polynomi-
als in the 3 free variables of q, which gives up to 8 so-
lutions. This can be solved using Gröbner bases [16].
In [14, 15],Wampler gives a eigenvalue-basednumeri-
cal solution, which he calls ``numerical Gröbner bases''.

For n > 6, we can ind a unique solution by solv-
ing subsets of the n constraints and ind the common
solution among them. However, if there is noise in the
data, there will be no solution that can simultaneously
satisfy all the constraint equations. Instead, Wampler
gives linear solutions for the separate cases of n = 7,
8 ≥ n > 12, and n ≥ 12. In the following, we give a
brief review of the solution for 8 ≥ n > 12. The reader
is referred toWampler's papers [14, 15] for further de-
tails.

Eq. (10) can be rewritten in a linear form in terms
of the 2nd degree monomials of q:

Fijk(q, t) = Cijkq̃+ q⊤q n̂⊤
k t (11)

Here, Cijk is a 1 × 10 vector with rearranged entries
of M ijk , and q̃ is a 10 × 1 vector with the 2nd de-
gree monomials of q in lexicographical ordering: q̃ =
[qw

2, qwqx, qwqy, qwqz, qx
2, qxqy, qxqz, qy

2, qyqz, qz
2]⊤.

With n points on n planes, we can stack the con-
straints of Eq. (11) to get a system of equations:

F (q, t) = Cq̃+ q⊤q N t (12)

Here,C is a n× 10matrix, andN is a n× 3matrix
containing the normal vectors n̂⊤

k . To solve this sys-
tem, we need to have rank(N) = 3, meaning that the
normal vectors of the planes should span 3-space.

Pre-multiplying Eq. (12) with N⊥, a (n − 3) × n
matrix spanning the left null space of N , we reduce
the system to a set of n − 3 homogeneous quadratic
polynomials in q:

F (q) = N⊥Cq̃ (13)

This can be minimized using SVD, with the solution q̃
being the right singular vector corresponding to the
smallest singular value. The rotationR(q) is extracted
from q̃ and substituted back in (12) to recover the
translation t.
5.4. Minimal Condi ons

In the camera-LRF calibration method given by
Zhang [1], a linear solution is given to obtain an ini-
tial estimate for the camera to LRF transformation
L
CH . Each line-on-plane correspondence gives two in-
dependent equations in nine unknown parameters, so
a minimum of 5 LRF scan and image pairs are needed.

InWasielewski's calibration method [3] using LRF
point on image line correspondences, each set of cor-
respondence gives one constraint equation in nine un-
known parameters, so a minimum of 9 LRF scan and
image pairs are needed. In Li's method [4] which uses
a calibration target giving two image lines, aminimum
of 5 LRF scan and image pairs are needed.

As mentioned above, a line-on-plane correspon-
dence can bemodelled as two point-plane constraints.
As we describe in [17], a point-on-image-line corre-
spondence can also be modelled as a point-plane con-
straint, where the plane passes through the camera
center and the image line. Table 1 shows a summary
of the minimum number of LRF-scan and image pairs
required by the different methods, as well as the min-
imum conditions when modelled using point-plane
constraints.

Although usually, it is preferable to use more laser
scans and image pairs to provide redundant data to
reduce the effects of noise, leading to more accurate
calibration results. However, we use the fact that we
already have a lot of redundant data from the scans
{Si} at different rotational angles θi. Thus, we aremo-
tivated to ind theminimal solution for the initial static
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Tab. 1. Minimum LRF-scan and image pairs

Method Correspondences Scan-Image Pairs
Original Point-Plane

Zhang [1] line-on-plane 5 3 (4)*
Wasielewski [3] point-on-image-line 9 6 (7)*
Li [4] point-on-image-line 5 3 (4)*
*number in brackets indicate pairs required for unique solution

camera-LRF calibration step, and instead rely on us-
ing redundant data over all the rotational angles θi in
the inal minimization described in §7 to reduce the
effects of noise in the calibration.

Although using point-plane constraints to model
the different type of correspondences reduces the
minimal scan-image pairs required only very slightly,
the advantage of using point-plane constraints is that
all types of correspondences can be modelled uni-
formly and solved using a single method.

6. Step 2: Ini al Es mate of the Rota onal Axis
using Screw Decomposi on

Using the static camera-LRF calibration method
described in §5, we obtain an initial estimate for L0

C H

and Lni

C H for step 1 and step 2(a) respectively. Com-
posing the camera to LRF transforms, we obtain the
relative LRFmotion between the two rotational angles
θ0 and θni :

Lni

L0
H =

(
L0

C H
)−1

· Lni

C H (14)

According to Chasles's theorem, every spatial
transformation can be decomposed as a screw dis-
placement - a rotation about a line together with a
translation along the same line [12]:

Lni

L0
H =

[
Rω̂(∆θ)

Lni

L0
t

0 1

]
(15)

=

[
Rω̂(∆θ)

∆θ
2π pω̂ + (I3 −Rω̂(∆θ))u

0 1

]
(16)

Eq. (16) is known as the ``screw matrix'' [12, 18], rep-
resenting a rotation of angle ∆θ around a line called
the screw axis that has direction ω̂ and passes through
the point u. p is the pitch of the screw motion, corre-
sponding to the translation along ω̂ for every revolu-
tion around the screw axis. Compared with Eq. (15),
while the rotationmatrix remains the same, the trans-
lation has been decomposed into a translation along
the rotational axis ∆θ

2π pω̂, and a translation perpendic-
ular to the rotational axis (I3 −Rω̂(∆θ))u.

GivenRω̂(∆θ) and Lni

L0
t of the relative LRFmotion

from θ0 and θni , we can recover the parameters of its
equivalent screw displacement as:

p =
2π

∆θ
ω̂ · Lni

L0
t (17)

u = (I3 −Rω̂(∆θ))
†
(

Lni

L0
t− ∆θ

2π
pω̂

)
(18)

Since (I3 −Rω̂(∆θ)) ω̂ = 0, (I3 −Rω̂(∆θ)) is a
singular matrix; thus, its pseudo-inverse is used in
Eq. (18) to recover u.

Ideally, the decomposition of the relative motion
Lni

L0
H of the LRF from angle θ0 to θni will give a screw

displacementwith zero pitch p = 0, and the screw axis
(ω̂, v) is the rotational axis of the LRF. Furthermore,
if we repeat the static camera-LRF calibration at an-
other rotation angle θi and compute Li

L0
H , the screw

decomposition should give the same screw axis (ω̂, v).
However, with noise in the calibration data, such ideal
results will not be obtained. The task then remains
to inding the optimal rotational axis

(
ω̂+, v+

)
that

minimizes some error functionwhich accounts for the
noise in the calibration data.

7. Step 3: Nonlinear Refinement
The linear solution to the point-plane constraints

problem given in §5.3 minimizes an algebraic error.
To ind the optimal calibration parameters, an opti-
mization thatminimizes ameaningful geometric error
should be performed. The error function most com-
monly used in static camera-LRF calibration is the
point-to-plane distance ePP

jk :

arg min
L
C
H

∑
j,k

ePP
jk

2
=

∑
j,k

∥nk
⊤ (R xj + t) + dk∥

2

(19)

Fig. 6. Point-to-plane error ePP
jk vs. line-of-sight error

eLOS
jk

As shown in Fig. 6, this is the perpendicular dis-
tance from the planeπk to the point xj . However, if we
assume that thepointsxj = f(ϕj , ρj)measuredby the
LRF contains only zero-mean Gaussian noise Lwj ∼
N(0,Lσ2) in its range values ρj , so ρj = ρ+j + Lwj ,
then instead of the point-to-plane errors ePP

jk , a better
error to minimize is the ``line-of-sight'' distance eLOS

jk ,
as illustrated in Fig. 6.
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arg min
L
C
H

∑
j,k

eLOS
jk

2
=

∑
j,k

∥x+j − xj∥2

=
∑
j,k

∥ρ+j − ρj∥2
(20)

In Eq. (20), given plane πk : (n̂k, dk) for the kth plane,
the ideal coordinates x+j is calculated as the inter-
section point of the plane πk with the line passing
through theLRFmirror center and themeasuredpoint
xj . Using x̂j to denote xj

∥xj∥ :

x+j =
−dk − t⊤nk

x̂⊤j R
⊤nk

x̂j (21)

Ignoring errors in πk : (n̂k, dk), Eq. (20) gives
a maximum likelihood estimate for R, t. To account
for errors in the pose of the checkerboard planes
πk : (n̂k, dk) estimated by the camera, assuming zero-
mean Gaussian noise Cwj ∼ N(0, Cσ2) in the image
coordinates yj of the checkerboard corners with 3D
coordinates bj , the minimization can be augmented
with the image reprojection errors of the checker-
board corners:

arg min
L
C
H,

Bk
C

H

Cσ2

nxLσ2 + nyCσ2

∑
j,k

∥x+j − xj∥2+

Lσ2

nxLσ2 + nyCσ2

∑
j,k

∥yj −K ·
(
Bk

C R bj +
Bk

C t
)
∥2

(22)

Here, Bk

C H =

[
Bk

C R Bk

C t
0 1

]
is the pose of the kth

checkerboard with respect to the camera. nx is the
number of laser scan points xj , and ny is the number
of checkerboard corners yj .

To estimate the optimal parameters
(
ω̂+, v+

)
for

the LRF rotational axis, we perform the minimization
with all points xij obtained over all rotational angles
θi, i = 0, . . . , ni:

arg min
L0
C

H,ω̂,v,
Bk
C

H

Cσ2

nxLσ2 + nyCσ2

∑
i,j,k

∥x+ij − xij∥2+

Lσ2

nxLσ2 + nyCσ2

∑
j,k

∥yj −K ·
(
Bk

C R bj +
Bk

C t
)
∥2

(23)

In this optimization, only the pose of the LRF at the
irst rotational angle L0

C H is directly included as pa-
rameters; the pose of the LRF at the other rotational
angles Li

C H are calculated from (ω̂, v) using Eq. (1)
and (8).

8. Experimental Results
To test our calibration algorithm, we use the LRF

(SICK LMS-100) mounted on a pan-tilt unit (Directed
Perception PTU-D46), as shown in Fig. 7.

Fig. 7. The 2D LRF mounted on a pan- lt unit used in our
calibra on

Fig. 8 shows the checkerboards setup for our cal-
ibration, with the checkerboard patterns being auto-
matically detected using OpenCV. Instead of using the
minimum of 3 planes, which would give up to 8 so-
lutions for the initial static camera-LRF calibration, 4
planes are used to simplify the computation. As de-
scribed in §5, the normals {n̂k} of the checkerboard
planes {πk} should span R3, so care must be taken
so that not all of the checkerboards are vertical. For
example, if only the vertical walls in a room are used,
{n̂k} would only span R2, giving a degenerate con ig-
uration.

Fig. 8. Checkerboard pa erns extracted in camera image

Fig. 9 shows a single laser scan, with points be-
longing to the checkerboards identi ied by running
RANSAC line- itting over the scan data multiple times.

Fig. 9. Points in each laser scan belonging to the checker-
boards are extracted using RANSAC line-fi ng

For the inal optimization in Eq.(23), we used
Lσ = 12mm, corresponding to the statistical error
of the LMS-100 as given by the manufacturer, and
Cσ = 0.5px for the image localization noise. The re-
sults of our calibration are tabulated in Table 2, and
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checkerboards reconstructed using these parameters
are shown in Fig. 10. The reconstruction of a small in-
door environment after calibration is shown in Fig. 11.

Tab. 2. Calibra on Results

Parameter Initial Final
Axis Translation Off-
set
(mm)

[0,−30, 160] [0,−27.6, 158.9]

Axis Rotational Offset 0◦ 10.14◦

Line-of-Sight Error
(mm)

8.08 7.24

Fig. 10. Laser points with intensity values reconstructed
a er calibra on, showing a rough outline of the scanned
checkerboard pa erns

Fig. 11. Indoor environment reconstructed a er calibra-
on

The calibration results show a small change in the
location and orientation of the rotation axis, as well as
a slight decrease in the line-of-sight errors. Although
the inal parameters of the rotational axis differ only
slightly fromthoseobtainedusinghandmeasurement,
it accounts for all the degrees of freedom of the rota-
tional axis. Furthermore, although the reconstructed
checkerboards show only modest improvements, the
importance of proper calibration will be more notice-
able for data with larger range, as well as when fusing
the range data with image data.

9. Conclusions
In this paper, we proposed a method for recover-

ing the rotational axis of a rotating 2D LRF. Instead of
assuming that the rotational axis is aligned with one
of the primary axis of the LRF, we model it as a line in
3D space with 4 DOF. The calibration consists of per-
forming static camera-LRF calibration at two different

rotational angle to obtain an initial estimate, followed
by a nonlinear optimization to re ine the results.

However, instead of using existing static camera-
LRF calibration methods, we model it as a kinemat-
ics point-plane constraints problem. This allows us to
minimize the number of calibration planes that are
needed, simplifying the calibration; also, various types
of correspondences can be handled in a uniformman-
ner. Furthermore, we describe theminimization of the
``line-of-sight'' errors, which directlymodels the noise
in the range measurements of a LRF.
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