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Abstract:
This paper describes the ground classifica�on procedure
for a six-legged walking robot. The terrain is classified
according to the informa�on gathered with the 6-DOF
torque-force sensors. The sta�s�cal descrip�on of the ob-
tained signals allow to obtain compact representa�on of
the contact type for each 6-DOF component. Namely, the
4-element vector �variance, skewness, kurtosis, fi�h mo-
ment] was used. Subsequently Discriminant Analysis was
applied separately for classifica�onof each component of
the 6-DOF vector. The signal which gives the best classifi-
ca�on rate was established. The obtained result provides
the informa�on for the design of the new contact sensors
for the robot feet.

Keywords:walking robot, torque-force sensor, compliant
ground, classifica�on

1. �ntroduc�on
Walking robots to work reliably in outdoor envi-

ronment have to adopt their gait parameters to the
type of the surface they are walking on. The infor-
mation on the terrain could be obtained using tactile
probing.

So far the terrain classi�ication was performed
mainly for the wheeled robots as it is was described
in several articles [2, 12, 14]. The authors use ac-
celerometers to measure vibrations during the move-
ment of the robot to identify the terrain type. The se-
ries of articles [3--6] describes the research where an
inclined tactile probewith accelerometerwas used for
surface identi�ication. In their articles authors were
showing the results of testing several data classi�i-
cation methods to obtain reliable classi�ication re-
sults. Some research in tactile probing was also con-
ducted for the walking robots. Early work was pre-
sented in [8, 9]. Further research on this topic was
described in [6], where the robot RHex uses inertial
and actuator cues for environment identi�ication. In
the latest research [7], the robot uses vibrations of the
legs to classify several types of the terrain. The topic
of the compliant ground and its in�luence on the loco-
motion patterns is also investigated in a human brain
research. The work on this issue was reported in [10,
11].

In our research we are focused on the on-line ter-
rain classi�ication. The purpose of our investigations
is to allow the robot to identify several types of terrain
while walking. In consequence the robot would obtain
the information required to change the type of the gait
accordingly to the characteristics of the ground. The

Fig. 1.Messor robot while walking on the ar�ficial grass

main contribution of this paper is the experimental
validationof the feasibility of the on-line terrain classi-
�ication. Moreover, the obtained results allow to indi-
catewhich components of the 6-DOFgeneralized force
vector of the contact should be chosen for the classi�i-
cation purposes. This information could also be used
for designing the robot foot contact sensors.

2. �ac�le Sensin� �or �round �lassi�ca�on
2.1. Experimental Setup

The experimental setup consists of the Messor
which is a biologically inspired six-legged walking
robot. Its trunk has the following dimensions: width
26 cm and length 30.6 cm, while the segments of the

Fig. 2. ATI Mini45 F/T transducer
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Fig. 3. ��pes of terrain: so� ground (a), ar��cial grass (b), gravel (c), pebbles (d), sand (e)

Fig. 4. �omponents of the contact force vector for the robot walking on: so� ground (a), ar��cial grass (b), solid ground
(c), gravel (d), pebbles (e), sand (f). Each component is marked with a color: red - Fx, green - Fy , blue - Fz

leg are: coxa 5.5 cm, femur 16 cm, tibia 23 cm. The de-
tailed description of the robot could be found in [13].
The machine is shown in Figure 1. The robot foot is
equipped with 6-DOF torque-force sensor and has the
spherical shape. The applied ATI Mini45 F/T trans-
ducer is shown in Figure 2. The sensor allows to mea-
sure forces of the magnitude up to 290 N (resolu-
tion = 1/8 N) and to measure torque of the magnitude
up to 10 Nm (resolution = 1/376 Nm).

In the experiment the robot is walking straight
with the wave gait. The direction of the robot move-
ment is alignedwith the x-axis of the torque-force sen-
sor for the robot legs in their initial position. The ori-
entation of the coordinates frames of the robot and
the transducer was shown in Figure 2. The step length
is equal to 6 cm, and the walking speed is equal to
2.79 cm/s. The testing set comprise six types of ter-
rain: soft ground - rubber paver tiles, arti�icial grass,
solid ground - concrete �loor, gravel, pebbles and sand.
The testing set was shown in Figure 3, solid ground
is the concrete pavement surrounding the ground
probes.

Each experiment trial consisted of 6 steps. 10 trials
for each terrain type were performed. Example of the
force and torque signals obtained from the transducer
while the robot was walking on each type of the ter-
rain was shown in Figure 4 and Figure 5 respectively.

Each plot represents signals for different type of ter-
rain. Each component of the force and torque vector
was marked with appropriate colors. As it can be seen
in Figure 4 (Fz signal - blue line) the measurements
are starting when the robot foot is on the ground. The
initial force resulting from the weight of the robot is
assumed to be neutral value - 0. In the Fz signal six
peakswith positive value could be observed. These are
representing six steps performed by the robot.

Subsequently the signal from each trial was di-
vided into separate steps of the robot gait. Initial and
�inal steps were removed from the data set to ob-
tain measurements from the regular robot walk, not
in transient states. Final data set consist of six subsets
of 36 steps for each type of terrainwhich gives 216 six-
dimensional vectors of signals. The example of the sin-
gle step response for each type of terrain was shown
in Figure 6.

Further the single step signal in time domain for
each 6-DOF componentwas transformed into features
vector comprising four elements:
1) variance;
2) skewness;
3) kurtosis;
4) �ifth moment.
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Fig. 5. �omponents of the contact torque vector for the robot walking on: so� ground (a), ar��cial grass (b), solid ground
(c), gravel (d), pebbles (e), sand (f). Each component is marked with a color: red - Tx, green - Ty , blue - Tz

Fig. 6. The force (a,b,c) and torque (d,e,f) signals of the 6-DOF generalized force vector of contact for the single step for
each type of terrain: red - so� ground, green - ar��cial grass, blue - solid ground, cyan - gravel, magenta - pebbles and
yellow - sand

The features were extracted from the time window
(single step) of size W (2.15 s). The selection of fea-
tures was inspired by the previous research reported
in [5, 14]:

The example plot of three selected features (vari-
ance, skewness, kurtosis) for each signal is shown
in Figure 7. For the visualization purposes only 3-D
vector was chosen. �n mentioned above �igures the
red crosses represent the features vector for the soft
ground, green circles for the arti�icial grass, the blue

star for the solid ground, the cyan dots for gravel, the
magenta squares for pebbles and yellow diamonds for
sand. �n the �igures it could be seen that the clusters
of points are distinguishable. Additionally distribution
of points representing features vector could be com-
pared with the time domain response of the same sig-
nals shown in Figure 6.

Using the group of points obtained in previous sec-
tion the Discriminant Analysis (DA), described in [1],
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Fig. 7. Cloud of points for the features obtained from the force (a,b,c) and torque (d,e,f) signals of the 6-DOF generalized
force �ector of contact for the single step� �he mar�ers for each t�pe of the terrain are� red cross - so� ground, green circle
- ar��cial grass, blue star - solid ground, c�an dot - gra�el, magenta square- pebbles and �ello� diamond - sand

was used in order to obtain the separation between
the clusters of points and in consequence to build the
classi�ier. In the classi�ication process the training set
consisted of 156 points (26 for each group - terrain
type) and the sample set comprised 60 points (10 for
each group - terrain type). The target setwas prepared
beforehand for the known training set.

In the presented research three types of the dis-
criminant function were applied to solve the classi�i-
cation problem. First method uses the linear function
- Linear Discriminant Analysis (LDA) where a multi-
variate normal density, with a pooled estimate of co-
variance is �itted to each group. Next the quadratic
functionwas applied to obtainQuadratic Discriminant
Analysis (QDA), where multivariate normal densities
with covariance estimates strati�ied by group is �it-
ted. Finally discriminant function with Mahalanobis
distances with strati�ied covariance estimates was ap-
plied to the classi�ication process. The results of the
obtained error for the training data are shown in Ta-
ble 1 and graphically presented in Figure 8. As it can
be seen the best performance was obtained for signal
Fz and the Quadratic Discriminant Analysis.

Tab. 1.�isclassi�ca�on �rror

Fx Fy Fz Tx Ty Tz FzTz

l 0.56 0.46 0.23 0.39 0.54 0.44 0.15
m 0.65 0.46 0.26 0.58 0.72 0.61 0.18
q 0.47 0.44 0.21 0.32 0.43 0.35 0.10

3. Experimental Results
The data presented in Table 1 suggest that the QDA

should be used in further investigations. However by
looking at confusion matrices for the testing set it can
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Fig. 8.�isclassi�ca�on error rate for the training data

be seen that the better classi�ication performancewas
obtained for the LDA. The QDA is better �itted to the
training data but the LDA has in this case better gen-
eralization properties. The confusionmatrices for LDA
were shown in Tables 2, 3, 4, 5, 6, 7.

For the LDA it can be seen that the best perfor-
mancewas obtained for theFz (Table 4. For this signal
it could be observed that the block matrix of 4 sub-
matrices of dimensions 3x3 was obtained. Upper left
block concerns three types of terrain: soft ground, ar-
ti�icial grass and solid ground. For these three types of
ground good classi�ication rate was obtained. The sec-
ond block bottom right concerns: gravel, pebbles and
sand. For these types of terrain poor classi�ication per-
formance was obtained. Other two blocks of the ma-
trix are �illed with zeros, so it is possible to form two
subsets of terrain types. Namely, non-friable and fri-
able. In the subset of friable materials it is hard to dis-
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tinguish between gravel and send basing only on the
information about the contact forces. Other good can-
didate signal but with weaker performance is Tz (Ta-
ble 7) here the block matrix wasn't obtained but still
there are 1.0 and 0.9 values on the diagonal of the ma-
trix.

In the experiments the use of one signal from the
transducer for the ground identi�ication could be seen
as usingweak classi�ier. In order to improve classi�ica-
tion performance the combination of at least two sig-
nals could be used to obtain stronger classi�ier. This
assumption was checked for earlier mentioned signal
Fz (Table 4) and signal Tz (Table 7). The classi�ier ob-
tainedby combining this two signals has better perfor-
mance than the classi�ier for two separate signals as
it could be observed in Table 8. In conducted research
other signals:Fx,Fy ,Tx,Ty ,Tz are less informative for
the ground classi�ication process as they are not block
matrices.

Tab. 2. �onf�s�on matr�� for t�e tes�n� set for t�e Fx

component of 6-DOF contact vector

soft grass solid gravel pebbles sand
st 0.7 0.1 0.1 0.0 0.1 0.0
gs 0.3 0.6 0.1 0.0 0.0 0.0
sd 0.2 0.1 0.6 0.0 0.0 0.1
gl 0.0 0.3 0.1 0.1 0.1 0.4
ps 0.0 0.0 0.1 0.6 0.0 0.3

snd 0.0 0.1 0.1 0.4 0.0 0.4

Tab. 3. �onf�s�on matr�� for t�e tes�n� set for t�e Fy

component of 6-DOF contact vector

soft grass solid gravel pebbles sand
st 0.8 0.1 0.1 0.0 0.0 0.0
gs 0.3 0.4 0.2 0.1 0.0 0.0
sd 0.3 0.1 0.5 0.0 0.0 0.1
gl 0.0 0.2 0.0 0.5 0.1 0.2
ps 0.0 0.0 0.2 0.4 0.2 0.2

snd 0.0 0.0 0.0 0.6 0.0 0.4

Tab. 4. �onf�s�on matr�� for t�e tes�n� set for t�e Fz

component of 6-DOF contact vector

soft grass solid gravel pebbles sand
st 1.0 0.0 0.0 0.0 0.0 0.0
gs 0.3 0.7 0.0 0.0 0.0 0.0
sd 0.0 0.0 1.0 0.0 0.0 0.0
gl 0.0 0.0 0.0 0.3 0.7 0.0
ps 0.0 0.0 0.0 0.2 0.5 0.3

snd 0.0 0.0 0.0 0.8 0.0 0.2

4. Conclusions
In this article the on-line classi�ication of the ter-

rain using the tactile probing was presented. The ex-
periments were conducted on the six legged walking
robot. The use of the statistical description of the ob-
tained signals allowed to obtain compact representa-

Tab. 5. �onf�s�on matr�� for t�e tes�n� set for t�e Tx

component of 6-DOF contact vector

soft grass solid gravel pebbles sand
st 0.7 0.1 0.1 0.0 0.1 0.0
gs 0.3 0.4 0.0 0.0 0.0 0.3
sd 0.0 0.0 0.8 0.0 0.0 0.2
gl 0.1 0.0 0.2 0.4 0.1 0.2
ps 0.2 0.2 0.0 0.5 0.0 0.0

snd 0.0 0.4 0.0 0.1 0.0 0.5

Tab. 6. �onf�s�on matr�� for t�e tes�n� set for t�e Ty

component of 6-DOF contact vector

soft grass solid gravel pebbles sand
st 0.2 0.1 0.4 0.1 0.0 0.2
gs 0.1 0.8 0.1 0.0 0.0 0.0
sd 0.2 0.0 0.8 0.0 0.0 0.0
gl 0.0 0.3 0.1 0.0 0.2 0.4
ps 0.2 0.1 0.1 0.0 0.2 0.4

snd 0.4 0.1 0.0 0.0 0.1 0.4

Tab. 7. �onf�s�on matr�� for t�e tes�n� set for t�e Tz

component of 6-DOF contact vector

soft grass solid gravel pebbles sand
st 0.5 0.1 0.0 0.0 0.0 0.4
gs 0.1 0.9 0.0 0.0 0.0 0.0
sd 0.0 0.0 1.0 0.0 0.0 0.0
gl 0.0 0.1 0.3 0.1 0.3 0.2
ps 0.0 0.1 0.2 0.1 0.5 0.1

snd 0.1 0.4 0.3 0.0 0.0 0.2

Tab. 8. �onf�s�on matr�� for t�e tes�n� set for t�e Fz &
Tz components of 6-DOF contact vector

soft grass solid gravel pebbles sand
st 1.0 0.0 0.0 0.0 0.0 0.0
gs 0.1 0.9 0.0 0.0 0.0 0.0
sd 0.0 0.0 1.0 0.0 0.0 0.0
gl 0.0 0.0 0.0 0.2 0.5 0.3
ps 0.0 0.0 0.0 0.1 0.8 0.1

snd 0.0 0.0 0.0 0.3 0.0 0.7

tion of the foot contact torque/force responses for the
different types of terrain.

The experimental validation proved that the on-
line terrain classi�ication for thewalking robot is feasi-
ble. Robot does not have to stop to identify the terrain.
It could be done while walking.

�oreover conducted research allowed to �ind the
components of the 6-DOF foot contact generalized
force vector which gives the best classi�ication results.
Namely, it is Fz signal and Tz . This information is use-
ful while constructing classi�iers as well as designing
the robot foot contact sensors.

As a future work the research on combining three
or more signals for the classi�ier is foreseen. �ome
boosting methods could be applied or the longer vec-
tors of features could be employed to make the classi-
�ication process more reliable. The test of other clas-
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si�ication methods will also be done. Furthermore the
research on the in�luence of the direction and speed of
the movement on the classi�ication process has to be
done. Additionally the information from other sensing
modalities such as 2-D and 3-D visual sensors could be
used to support ground identi�ication process.
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