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Abstract:
This paper concerns a classification problem of 3D shapes
being in motion. The goal is to develop the system with
real-time capabilities to distinguish basic shapes (corners,
planes, cones, spheres etc.) that are moving in front of
RGB-D sensor. It is introduced an improvement of SoA al-
gorithms (normal vector computation using PCA Principal
Component Analysis and SVD Singular Value Decomposi-
tion, PFH – Point Feature Histogram) based on GPGPU
(General Purpose Graphic Processor Unit) computation.
This approach guarantee on-line computation of normal
vectors, unfortunately computation time of the PFH for
each normal vector is still a challenge to obtain on-line ca-
pabilities, therefore in this paper it is shown how to find
a region of movement and to perform the classification
process assuming the decreased amount of data. Proposed
approach can be a starting point for further developments
of the systems able to recognize the objects in the dynamic
environments.
Keywords: RGB-D camera, point cloud, normal vector
estimation, point feature histogram, parallel programming

1. Introduction
Understanding shapes being in motion is still an open

problem in mobile robotics especially if we would like to
perform this task on-line. Understanding changes in dy-
namic environment is still a problem not only because of
the limitation of the available sensors but also because of
the computational complexity of algorithms performing
this task. Currently there are available sensors (3D laser
VELODYNE or RGB-D camera like KINECT) that can
provide accurate 3D data for INDOOR and OUTDOOR
environments. This sensors provide data on-line, therefore
it could be possible to detect changes in the environment in
short intervals of time. Unfortunately there is no existing
approach to perform computation on such data, therefore it
is proposed to improve State of The Art by the usage of
NVIDIA GPGPU with CUDA (Compute Unified Device
Architecture). Using GPGPU is a promising choice be-
cause it can run thousand of kernels (functions performed
on GPGPU) using decomposed 3D data set. The problem
of understanding 3D shapes being in motion can be de-
composed, therefore we can perform computation for each
single 3D point in parallel. Unfortunately it is possible only
for normal vector computation and motion-detection, the
Point Feature Histogram (PFH) is still demanding problem
because of its computational complexity.

2. Related Work
Currently we can observe numerous research related

with modern RGB-D KINECT like sensors. In [1] Kurt3D,

data from KINECT sensor is shown, which gives an im-
pression that State of the Art (SoA) already offers effi-
cient mobile platforms equipped with advanced sensors
for observing dynamic environments. Semantic objects
identification [2] is well known research direction, unfor-
tunately currently related with the static environments [3],
usually extracted from 3D laser data [4]. In [5] a model of
an indoor scene is implemented as a semantic net, this ap-
proach is also used in [6]. In [7] the location of features
is extracted by using a probabilistic technique (RANSAC:
RANdom SAmple Consensus) [8]. It was shown in [9]
that the region growing approach, extended from [10] us-
ing k-nearest neighbor (KNN) search, is able to process
unorganized point clouds.

The research presented in this paper is inspired by the
work [11], where authors were able to recognize several
shapes such as corners, cylinders, edges, planes, torus etc.
They proposed Point Feature Histogram(PFH) technique to
distinguish different classes. Unfortunately the performance
of proposed Point Feature Histogram algorithm was not
satisfactory, therefore authors proposed faster approach –
Fast Point Feature Histogram (FPFH) [12].

Based on The State of the ART it is claimed that the
problem of understanding shapes being in motion is not
yet discussed, therefore it was decided to develop system
that can be a starting point to solve mention problem.

3. Normal Vector Estimation
Estimating the surface normal is performed by PCA –

Principal Component Analysis (Figure 1) of a covariance
matrix C created from the nearest neighbors of the query
point. The main contribution was to develop the PCA solver
based on Singular Value Decomposition SVD method
that can be performed in parallel for each query point
at one single step. In last step of the algorithm it is checked
if normal vectors are consistently oriented towards the
viewpoint and flip otherwise.

Fig. 1. Estimating the surface normal is performed by PCA
– Principal Component Analysis of a covariance matrix C
created from the nearest neighbors of the query point.
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3.1. Parallel Implementation
Figure 2 demonstrates the parallel implementation of

normal vector estimation in NVIDIA CUDA framework.
The idea was to perform normal vector estimation in two
steps assuming performing computation for each query
point in parallel. First step is to compute covariance matri-
ces and store the result in the GPGPU’s shared memory.
In second step normal vector estimation is performed us-
ing SVD (Singular Value Decomposition) method for each
query point in parallel. The main contribution was to imple-
ment the CUDA kernels for covariance matrix computation
and SVD solver. It is important to emphasize the NNS
(Nearest Neighborhood Search) method in this approach.
It is used the fixed organization of RGB-D data (640x480
or 320x240 data points), therefore NNS (Nearest Neigh-
borhood Search) is performed for neighbors assigned by
neighboring indexes to the index of query point. Additional
threshold determines the radius of search space.

Fig. 2. Parallel implementation of normal vector estimation
in NVIDIA CUDA framework.

4. Point Feature Histogram
A histogram of values encodes the local neighborhood’s

geometrical properties by generalizing the mean curvature
at a point p. This method provides an overall density and
pose invariant multi-value feature [11]. Figure 3 demon-
strates the PFH – Point Feature Histogram for query point.
This method provides a possibility to distinguish several
types of shapes such as plane, cylinder, corner, sphere etc.

Fig. 3. Normal vector estimation visualization and Point
Feature Histogram for query point.

4.1. Parallel Implementation
To improve the performance of Point Feature Histogram

(PFH) computation CUDA based parallel computation is
used. Current implementation computes 64 histograms at
single step. Figure 4 shows an idea. For the quantitative
comparison with State of the Art (PCL – Point Cloud
Library) the PFH is composed of three features, therefore
the dimension is 125 (5x5x5).

Fig. 4. The idea of parallel implementation of 64 PFH’s
computation at single step. The maximum amount of near-
est neighbors to a query point is 1024. It has to be per-
formed the computation for each pair of normal vectors in
neighborhood ( [11]), therefore kernels are organized into
1024x1024x64 data structure.

4.2. PFH classification
The method used for classification is K-Means clus-

tering, where an iterative search for the optimal k clusters
is performed. Histograms that are belonging to the same
class tend to be grouped together in the same cluster. The
cluster label can be verified by looking at its proximity to
the mean histogram of the proper shape. This approach
guarantee finite amount of computation steps to obtain can-
didate labels. The disadvantage is the low classification
result (60% – 70%), but it is not considered as a prob-
lem because in general we deal with on-line classification
process.

5. Motion Detection
In the presented approach it is assumed that RGB-D

sensor is static during motion detection. Motion detec-
tion is performed by comparing current RGB-D frame to
the previous one. If there is a large difference in range
for corresponding query points or large angle between
corresponding normal vectors it is obtained the region of
motion. This procedure is extremely fast and does not affect
the classification procedure in the sense of computational
time. Figure 5 demonstrates the ball being in motion and
corresponding computed region of motion (red color).

6. Experiments
6.1. Classifier Training and Testing
To train the system we have to provide training data

set composed of labeled histograms (supervised learning).
The method used for classification was introduced in sec-
tion 4.2. The method is using an iterative search for the
optimal k cluster, therefore histograms that are belonging to
the same class tend to be grouped together are are marked
by the same label. During the training of the system user
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Fig. 5. Motion detection, red color corresponds to the
region of motion.

is marking similar histograms by the same label. Figure 6
demonstrates the idea of collecting training data with the
help of developed HMI (Human Machine Interface). The
HMI is designed especially for supervised learning pur-
pose. Example of histograms taken to the classifier training
procedures are marked by pink color in Figure 6. Bottom
picture shows classification result as different colors/labels
for different histograms.

7. Quantitative Comparison with State of The
Art
The goal of this paper is to compare quantitatively the

performance of open source library PCL (Point Cloud Li-
brary) and proposed parallel implementation called cuPCL.
The main problem for CUDA computation is a bottleneck
related to the copy data from/to host to/from device. The
host is related with CPU, device is related with GPGPU.
The implementation is dedicated for NVIDIA FERMI ar-
chitecture with an advantage of double floating point pre-
cision capability. Figure 7 shows the comparison between
PCL and cuPCL of normal vector estimation of depth im-
age 640x480 vertexes. The performance is measured for
different radius of NNS (Nearest Neighborhood Search)
procedure, it is obvious that with more radius we should
expect more time for computation. The reasonable radius
is 3 cm and for this value the cuPCL speed up over PCL is
over 16 (GPGPU GF540M).

Based on the previous observation it is proposed to
decrease amount of data from 640x480 to 320x240 of
processed points. Figure 8 shows the comparison between
PCL and cuPCL of normal vector estimation of depth
image 320x240 vertexes. The speed up is over 10 for radius
3 cm. It is important to emphasized the decreased variance
of computational time for cuPCL what is an optimistic
observation to build real time systems.

Last experiment concerns the qualitative comparison
of PFH (Point Feature Histogram) computation. We can
observe satisfactory speed up (over 40 for radius 3 cm) for
cuPCL what can give an impression that it is possible to
build on-line system. Unfortunately this figure demonstrates
the performance for computing 64 histograms in a single
step. To perform more PFH computation we need more
GPGPUs, what can be considered as a limitation for modern
mobile platforms.

Fig. 6. Three training and one testing data sets. Histograms
taken to the classifier training procedures are marked by
pink color. Bottom picture shows classification result as
different colors/labels for histograms of different classes
(for example brown color corresponds to the wall).

8. Conclusion
In this paper new implementation capable to classify

shapes being in motion is proposed. The system is able to
detect regions of motion and to perform classification of
64 Point Feature Histograms on-line (between 2 and 10
frames per second, depends on GPGPU). The improve-
ment is based on NVIDIA CUDA implementation of the
algorithms that are available in State of The Art PCL (Point
Cloud Library) library. The main contribution of this paper
are new method for detecting motion, new parallel imple-
mentation of SVD (Singular Value Decomposition) solver
for PCA (Principal Component Analysis) analysis related
with normal vector estimation. The system can classify up
to 64 shapes being in motion on-line with the 60% – 70%
of classification result. It can process more histograms but
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Fig. 7. The performance of normal vector estimation of
depth image 640x480 vertexes computed via CPU(PCL)
and GPU(cuPCL).

Fig. 8. The performance of normal vector estimation of
depth image 320x240 vertexes computed via CPU(PCL)
and GPU(cuPCL).

Fig. 9. The performance of 64 Point Feature Histograms
computed via CPU(PCL) and GPU(cuPCL).

it will determine the use of more GPGPUs assuming the
same performance.
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