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Abstract:
Research on multi-robot systems often demands the use
of a large population of small, cheap, and low capability
mobile robots. Many non-trivial behaviors demand these
robots to be localized in real-time. This paper addresses
the problem of absolute localization of such low capability
robots using onboard sensors and local computation. The
approach is based on the use of a pair of scan lines per-
ceived by an onboard B&W camera to detect and decode
artificial visual landmarks deployed along the environ-
ment. Each landmark consists on a dual-layer barcode
which can encode its pose with respect to a global co-
ordinate frame. Thus, the robot is not required to store
a map of the landmark locations onboard. The method is
based on an Extended Kalman Filter (EKF) fusing odome-
try readings with absolute pose estimates obtained from
the camera. Experimental results using an e-puck robot
with 8 KB of RAM and a 16 MIPs processor are presented,
comparing the location estimates with both ground truth
and odometry.
Keywords: vision based barcode detection, homography
transformation, absolute robot localization, low capability
robots

1. Introduction
There are several multi-robot systems which make use

of numerous relatively simple robots for potential group-
level benefits including scalability, flexibility, and robust-
ness to individual failures. Swarm robotics is a good ex-
ample of such a system [1, 2]. However, due to practical
reasons (e.g., cost), each robot contains reduced sensing,
energy and computational capabilities. This makes it dif-
ficult to include localization systems necessary for most
practical, task oriented, applications, since these involve
the movement of individuals and/or the transport of ob-
jects through precise goal points. This paper addresses this
problem by proposing an onboard localization system for
low capability robots.

The localization system is based on an EKF, fusing
movement predictions directly provided by the noisy mea-
surements of the wheel movement, with absolute pose
estimates obtained from scanning barcode landmarks with
a camera, onboard the robot. Each barcode is uniquely
identified by its embedded code. However, in presence
of critical memory space restrictions, the embedded code
can also encode the landmarks absolute poses in the en-
vironment, thus preventing the usage of lookup tables.
A simplified version of the standard barcode encoding
methods is used to save computational effort. This work
assumes structured environments based on corridors and
vertical white walls. The robot used to test the developed

system is the e-puck educational robot from EPFL uni-
versity, due to its extremely low computational (16 MIPs)
and memory (8 KB) capabilities, and also the broad devel-
opment support since it has a large userbase. Its reduced
memory only allow for the extraction of 8 B&W lines of
camera image. More information about the e-puck features
and architecture can be found in [3].

Some localization systems have been developed for the
e-puck. In [4] a decentralized localization system is de-
scribed, using an external mobile component with high
computational capability and preforming autonomous lo-
calization, to compute the position in the environment of
each e-puck. In [5], another decentralized system is pro-
posed, in which an external component receives the sensor
data from the e-puck camera and performs landmark detec-
tion and localization processing with particle filters. The
landmarks are colored which demands more computational
and memory capabilities. In [6], a centralized system was
proposed, also based on particle filters for localization, us-
ing gray images to extract bearing information from black
landmarks in the scenario. This system is lighter in terms
of landmark detection but it allows only for relative posi-
tioning of the robot to the landmarks, requiring extra model
matching techniques [7] to obtain the absolute position of
the robot.

The first two systems involve external components to
compensate for computational limitations, which can com-
promise navigation decisions through communication over-
head, and is sometimes impractical due to communication
limitations. The last two systems require a lookup table for
the landmark positions, which compromises the scalability
of the number of landmark used, bounding the environ-
ment size with respect to the landmark density necessary
to achieve the desired localization performances. This fac-
tor is here of extreme importance given the low memory
space of the used robot.

Several algorithms that can perform barcode detection
already exist for simple portable 2D cameras. The detec-
tion process can be divided into three parts: 1) Barcode
localization in the image: most methods extract regions
where it is most likely the barcode to exist, called regions of
interest (ROI), using gradient methods [8–11] and wavelet
transforms [12] to find regions with high unidirectional
derivative density caused by the barcode stripes, or bina-
rization methods to find dense black and white regions [13].
2) Obtaining barcode geometric parameters such as the
lengths of projected stripes in the camera, and geometric
distortions induced by the perspective transformation in-
herent of the observation point: in [9, 12, 13] single scan
lines are used to extract the stripe length, and in [8, 10]
a perspective transformation estimation, intrinsically con-
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taining the stripe length and the geometric distortions, is
performed. 3) Decoding the embedded code, directly using
the scan lines and the computed geometric parameters to
obtain the barcode stripes, and using the barcode encoding
to decode them.

The described methodologies use the whole image
and introduce great computational complexity, in terms of
barcode localization, through image processing. This paper
introduces a simplified 1D version of the above methods,
limited to the possible 8 B&W camera lines, based on
additional restrictions for the barcode positioning on the
environment.

2. Barcode Localization
2.1. Barcode Design Framework
To maximize the number of encoded bits, the used

barcode type, illustrated in Fig. 1 is composed of two
layers of Nstripes geometrically identical white (spaces
or ’0’s) and black (bars or ’1’s) stripes of Xdim width and
h
2 height. It is composed of three major areas:1) embedded
code, which contains the unique barcode sequence, and
can also allow the encoding of the binary representation
of the barcode’s pose in the environment, (xbw, y

b
w, θ

b
w); 2)

guard sets, included at each barcode horizontal edge, with
Nguard bar-space pairs; 3) quiet zones, composed of a set
of spaces placed around the barcode to prevent detectors
from confusing the barcode’s signal from the rest of the
signal. Fig. 2 depicts the geometry of the problem. A 3D
frame associated to each barcode is inserted in barcode’s
center, thus defining its pose in the environment. The z
axis defines the direction from the lower layer to the upper
layer.

Fig. 1. Barcode major areas and geometric parameters.

The camera, modeled here by the pinhole model, with
a focal length of f and a principal point of coordinates
(ox, oy), uses two horizontal scan lines, equally distant
from the optical axis, for barcode detection. The scan lines
are taken from the top and bottom of the captured image,
which contains Qx pixels width and Qy pixels height,
producing respectively, horizontal and vertical fields of
view, named FOVx and FOVy . The vertical center of the
barcode must be aligned with the camera’s height to ensure
each scan line is aligned with its layer.

Fig. 2 and Fig. 3 illustrate a barcode observation si-
tuation and its respective projection in the ground plane.
The intersections of the optical axis, ro, and its orthogonal
axis, rp, with the y axis of the barcode are named respec-
tively, B2 and B1. From Fig. 3, it can be concluded that
a point in the barcode surface, b, relates to the respective
projected point in the camera plane, ∆, by the following:

Fig. 2. Geometry of the problem: a double layered barcode
scan with the chosen scan lines for each layer and the re-
spective projections in the barcode surface (in red/darker).

Fig. 3. The Ground projection of a double barcode scan,
seen through the camera frame.

ox −∆

f
=

cos(θ)

sin(θ)

b−B2

B1 − b
= m

B2 − b
B1 − b

(1)

where θ is the inclination of the camera to the barcode
and m is the slope of rp defined as −(tan(θ))−1. Relevant
θ’s are contained in the [−π2 ,

π
2 ] interval, but due to the

symmetry of the problem one only needs to consider the
[0, π2 ] part to analyze the problem for the whole interval.
Considering the points associated to the stripe transitions
of the barcode, respectively bk and ∆k, the width of each
barcode stripe projected in the camera, Lk, can be defined
as |∆k−1 −∆k|. Using (1), this width can be expressed as
follows:

Lk = fXdimm
B1 −B2

(B1 − bk−1)(B1 − bk)
, (2)

where bk = (0.5Nstripes − k)Xdim. The minimum ob-
servation boundary which allows barcode detection, for
each θ, is described by the geometrical locus from where
at least one barcode edge coincides with the limits of the
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camera’s FOVx, defined by two lines, with the following
expressions:

y = b0 + tan

(
θ − FOVx

2

)
x (3)

y = bNstripes
+ tan

(
θ +

FOVx
2

)
x (4)

The maximum observation boundary, for each θ, is
described by the geometrical locus from where the camera
is observing the barcode with at least one projected stripe
with the minimum length that still allows barcode detection,
Lmin. Replacing, in (2), Lk with Lmin, and B1 and B2

with their respective expressions in function of x and y,
respectively defined by the line expressions of rp and ro,
one can describe this geometrical place as an hyperbola:

x2Axx+y2Ayy+2xyAxy+2xBx+2yBy+C = 0 (5)

Axx = 1 Ayy = tan2(θ) Axy = tan(θ)

Bx =
Xdim

2

(
(Nstripes − 1) tan(θ)− f

Cmin

1

cos2(θ)

)
By =

Xdim

2
(Nstripes − 1) tan(θ)

C = −X
2
dim(Nstripes − 2)Nstripes tan2(θ)

4

The Nyquist theorem for digital signal recovery states
that the receiver cannot recover signals with frequencies
higher than one half the sampling period. Since the camera
samples the signal with a period of 1 pixel, the lowest period
allowed for the signal is of 2 pixels, which means Lmin is 1
pixel. The detection area, for each θ, is found between the
minimum and maximum observation boundaries, defined
respectively, by (3) and (4) and by (5). Also, the scan line
inclination cause, from a certain distance, d′max, illustrated
in Fig. 4, parts of the barcode not to be captured, thus
precluding the detection. The respective distance to the
barcode center, can be expressed as:

d = d′max − 0.5w sin(θ) = h
f

Qy
− 0.5w sin(θ) (6)

Expressions (3) to (6) constrain the following design
variables: the number of stripes (Ninf ), their size (Xdim

and h), the camera’s focal length (f ) and its image size
(Qx and Qy). They provide a framework which allows the
choice of the barcode and camera parameters according to
the detection area requirements.

2.2. Barcode Detection Algorithm
Each barcode layer is independently detected by each

respective scan line. Fig. 5 represents a typical grayscale
image retrieved by the camera. The detection process for
each scan line can be described as follows:

1) Binarize the signal into black and white regions;
2) Generate barcode hypotheses;
3) Obtain the embedded codes from each hypothesis;

Fig. 4. Side view of the detection problem, from a plane
orthogonal to the ground, parallel to the camera’s optical
axis and passing through the barcode’s center.

4) Extract the most likely camera observation pose in the
barcode frame, for each hypothesis.

The detections on both scan lines, whose horizontal posi-
tions differ by less than a few pixels, are merged together
to form a complete barcode. Next, the embedded code is
extracted and the binary sequence obtained, inversely ap-
plying the method used for encoding. In this case, the NRZ
method is used. A Cyclic Redundancy Check (CRC) se-
quence in the end of the code is used to prevent bit detection
errors.

Fig. 5. Typical barcode structure on a captured image.

The binarization process is performed using a threshold
computed from the mean of the maximum and minimum
pixel intensities of the scan line. To filter regions which are
too close to the computed threshold, a distance between
that threshold and the intensity of each region is used.

Barcode hypotheses are formed by extracting ROIs
from the binarized signal. Black regions around a seed
point, consisting in the smallest black region, are connected
until the predicted barcode size, computed from the width
of the seed and the barcode specifications (Nstripes and
quiet zones), is reached. Several ROIs can be extracted
by repeating the process to the remaining regions of the
scan line. The method has the problem of not considering
the geometric distortions for the ROI length computation,
which requires the barcodes to be a certain distance apart
from each other, otherwise more than one barcode can be
caught inside the same ROI. Since the walls of the scenario
are assumed white, an extracted ROI must be related to
a barcode.

Also, for each hypothesis, a perspective transformation,
H , translating points in the camera plane, ∆, to points in
the barcode surface, b, is computed, using the transitions of
the hypothesis’s guard sets, present in each ROI edge. The
homography concept is used to define the transformation,
since it provides a linear system, resulting in fast estima-
tions. The former points in homogeneous coordinates are
respectively, ∆h =

[
∆ 1

]T and bh =
[
b 1

]T .
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From Fig. 3, one can conclude the following:

A =

[
αT0
αT1

]T
, B =

[
βT0
βT1

]T
, ∆h = λA−1Bbh

(7)
where α0 and α1, β0 and β1, are the vectors describing
the position and orientation of respectively, the camera
plane and the barcode frame, in respect to the camera’s
focal point, which defines the camera frame. α1 and β1 are
defined as unit vectors. Thus, A and B are 2x2 matrices.
A−1B is encapsulated in a 2x2 homography matrix H .

The embedded code for each hypothesis is obtained by
sampling the respective ROI according to a grid of stripe
middle points, which is built using the estimated perspec-
tive transformation, as shown in Fig. 6. The sampling is
done sequentially from the borders to the center of the ROI
while enhancing the perspective transformation, H , with
each new transition found.

Fig. 6. Projected middle stripe points and barcode transi-
tions, predicted from the estimated transformation during
the detection process.

The camera pose in the barcode frame, (xcb, y
c
b , θ

c
b),

is obtained from a simple homography decomposition.
Observing Fig. 3, one can easily build matrix A, in (7),
using the camera parameters. From A and the estimated
H , B can be computed apart from a scale factor, necessary
to make β1 a unit vector. From Fig. 3, one can see that β0
is directly the barcode position in the camera frame, and
β1 defines its orientation in the same frame, which is of
opposite value of the camera orientation in the barcode
frame, θcb . The expression for that angle is as follows:

−θcb = π + sgn

(
β1x
β1y

)
arccos

 1√
1 +

(
β1x

β1y

)2
 (8)

The camera position in the barcode frame is obtained
by applying the inverse of the barcode axis transformation
matrix to the origin of the camera frame, as follows:

 xcbycb
1

 =

 cos(θcb) sin(θcb) β0x
− sin(θcb) cos(θcb) β0y

0 0 1

−1  0
0
1

 (9)

3. Robot Localization System
3.1. Observation Model
The robot pose in the environment, (xk, yk, θk), is esti-

mated onboard the robot. Periodic movement information,
obtained directly from the stepper motor pulses, is used in
the predict of the EKF algorithm, applying a linear mo-
tion model. Barcode measurements, acquired by a barcode
sensor, from applying the above described method to the
captured images, are used in the update of the EKF algo-
rithm.

3.2. Observation Model
Observing Fig. 7, (xk, yk, θk) can be obtained from

the robot pose in the barcode frame, (xrb , y
r
b , θ

r
b ) and the

barcode absolute pose in the environment, (xbw, y
b
w, θ

b
w),

using the following transformation:

 xkyk
θk

 =

 cos(θbw) − sin(θbw) 0
sin(θbw) cos(θbw) 0

0 0 1

 xrbyrb
θrb

+

 xbwybw
θbw


(10)

The (xbw, y
b
w, θ

b
w) can be directly decoded from the em-

bedded code, or obtained from a lookup table using the em-
bedded code has the landmark identifier. The (xrb , y

r
b , θ

r
b )

is obtained relating (xcb, y
c
b , θ

c
b) computed for the respec-

tive barcode detection, with the camera’s pose in the robot
frame. Expression (10) is used as the observation model.
An empirical model for the noise associated to the extrac-
tion of (xcb, y

c
b , θ

c
b), is also added. This model is discussed

in the result section.

Fig. 7. Relations between world frame, barcode frame and
robot frame.

3.3. Onboard implementation
The robot pose in the environment, (xk, yk, θk), is esti-

mated onboard the robot. Movement information, obtained
directly from the stepper motor pulses, is used in the pre-
dict of the EKF algorithm, applying a linear motion model.
Barcode measurements are acquired from applying the
above described method to the captured images, and are
used in the update of the EKF algorithm. The localization
system is divided into three main phases: 1) barcode de-
tection for every captured image, which is always running,
2) periodic extraction of movement information relative
the last extraction, assigning a time stamp referring to the
extraction time, and 3) pose estimation, applying EKF pre-
dict and update steps with the odometry information and
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the barcode observations obtained during the last image
processing, ordered according their time stamps. The bar-
code observations have their time stamps set to the middle
of their image processing period. Fig. 8 shows the time
diagram for the three phases.

Fig. 8. Time diagram for the major processing phases of
the localization system.

4. Experimental Results
The accuracy of the barcode design framework and

the performance of the barcode detection algorithm were
evaluated based on a dataset with 30 barcode visualizations
for each distance, d, and inclination, θ, pair, with d from
10 cm to 60 cm in 5 cm steps, and θ from 00 to 600 in 150

steps. The barcodes used have 12 stripes in each layer for
the embedded code, 2 bar-space pairs for each guard set,
and each stripe have 1.5 mm of width and 1.25 cm of height.
The embedded code reserves 24 bits to store (xbw, y

b
w, θ

b
w)

and the last 8 bits to store the CRC error detection bits.
The camera used has a focal length of 80 vertical pixels
and 640 horizontal pixels, and the image frame has 480
pixels width and 8 pixels height.

Two cases were here considered. The first, shown in
Fig. 9 a), consists in frontal barcode detections (θ = 00), to
test the robustness of the detection range to barcode varia-
tions. Four random barcodes were used and for all of them,
the respective detection rates drop sharply at 50 cm, which
is the maximum distance derived from the scan line incli-
nation, computable from expression (6) for θ = 00. Only 3
false detections in the 1320 detections were found. The
second case, shown in Fig. 9 b), consists in barcode de-
tections for the several θ values, using just one random
barcode. The predicted detection ranges, computable from
the barcode design framework (equation (5)) and repre-
sented in Fig. 9 b), were matched with the experimental
ranges. One can observe that, for the first two θ values,
the detection ranges are below their predicted values. This
happens since the respective ranges are higher than the
maximum distance derived by the scan line inclinations,
which is about 50 cm. For the other θ values, predicted
ranges are consistent with the results. An Lmin of 1.5 pix-
els, instead of the early discussed 1 pixel, was used since it
better explains the results.

For the latter case, the accuracy for the estimation of the
relative pose of the camera in the barcode frame was ana-

Fig. 9. Barcode detection rate with distance: a) Frontal
perspective situation using 4 random barcodes. b) Several
inclination situations for a random barcode, with the the-
oretical maximum observation distances (black dots) for
each considered inclination.

lysed by performing a statistical analysis on the computed
relative pose estimates from all the experiments, shown
in Fig. 10. From this data, an empirical model, based on
the 3x3 covariance matrix representing the noise when ex-
tracting (xcb, y

c
b , θ

c
b), can be built. The coordinates (xcb, y

c
b)

are assumed independent from θcb . The data shows that the
uncertainty in (xcb, y

c
b) has an exponential behavior with

the distance to the barcode, d, and follows the inclination
to the barcode, θ. The empirical regressions, using mean
squares, for both eigenvalues and the rotation angle, for the
2x2 matrix representing that uncertainty, are as follows:

λ1(d) = e25.70d−15.46 λ2(d) = e16.15d−17.27 (11)

rotation(θ) = 1.91θ − 1.43 sgn(θ) (12)

Where θ can be replaced with θcb + π, and d with√
(xcb)

2 + (xcb)
2.

Fig. 10. Statistics for the extraction of the camera’s pose in
barcode frame, for a random barcode.

The localization system was evaluated using the sce-
nario defined by Fig. 11. Using a joystick, the robot per-
forms several laps around the scenario. The pose was esti-
mated in real time and transmitted to an external computer.
Odometry measurements were saved between periods of
100 ms and the barcode sensor took about 400 ms to pro-
cess each image for barcodes (300 ms for image capture
and 100 ms for image processing). A marker is placed
on top of the robot, solidary with the robot frame, and is
tracked by an external camera, using the ARToolKit Tool-
box1, to provide a groundtruth for the robot pose in the
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environment. A calibration to transform the 3D poses, pro-
vided by the ARToolKit, to 2D poses, for comparisons
with the groundtruth, was also performed. 11 shows the re-
sults of the algorithm in comparison with odometry alone,
for the whole path of an experiment, in which the robot is
supposed to follow a triangular route. It is observed that
while the algorithm estimations maintain the robot local-
ized in a triangular route, the odometry based estimator
progressively diverges from the route.

Fig. 11. Path estimation with the developed localiza-
tion system (green/lighter) against the odometry alone
(red/darker), for an experiment in which a triangular route
is performed.

Figs. 12 and 13 show the Euclidean distance and the ori-
entation errors between the algorithm’s and the groundtruth
pose estimations, throughout the whole path of an experi-
ment. The last figure corresponds to a kidnapping situation.
The marked points correspond to instants where the algo-
rithm used barcode information for pose update. In normal
conditions (Fig. 12) the localization error is shown to be
smaller than the robot radius. In the kidnapping situation,
the results show that the algorithm can recover from wrong
estimations provided very few barcode observations (in this
case two to four). One can also observe that there is nor-
mally a high error decrease when pose correction events
occur due to barcode observations, which shows the high
accuracy of the barcode related measurements.

5. Conclusions
In this paper we described a localization system on-

board low capability robots (8 KB memory and 16 MIPs
processor). The proposed system was implemented in the
e-puck, having shown to converge with an error of about
just 1.5 cm in average, for the barcode, robot and scenario
specifications used in the experiments. Further experiments
are foreseen using an autonomous navigation controller on
the robot, relying on the localization results provided by
the developed system.

Future developments will target common situations
where only a portion of the barcode is inside the image,
which prevents barcode observations and can possibly lead
the robot off the navigation track. Also, a study of the
optimal positioning of the barcodes in the environment
will be considered, using the developed mathematical
framework. A new scenario will be used to translate an
example of a real case scenario where this localization

Fig. 12. Estimation error quantification of the algorithm
along the robot’s path. a) Position error. b) Orientation
error.

Fig. 13. Estimation error quantification for a kidnapping
situation. The robot starts with a wrong pose estimate, and
in the middle of the experiment a kidnap is also applied. a)
Position error. b) Orientation error.

system should be deployed.

Notes
1URL: http://www.hitl.washington.edu/artoolkit/ (Retrieved on 1 Jan-

uary 2013).
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