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Abstract:
This paper addresses an online 6D SLAM method for
a tracked wheel robot in an unknown and unstructured
environment. While the robot pose is represented by its
position and orientation over a 3D space, the environ-
ment is mapped with natural landmarks in the same space,
autonomously collected using visual data from feature de-
tectors. The observation model employs opportunistically
features detected from either monocular and stereo vi-
sion. These features are represented using an inverse depth
parametrization. The motion model uses odometry read-
ings from motor encoders and orientation changes mea-
sured with an IMU. A dimensional-bounded EKF (DBEKF)
is introduced here, that keeps the dimension of the state
bounded. A new landmark classifier using a Temporal Dif-
ference Learning methodology is used to identify undesired
landmarks from the state. By forcing an upper bound to the
number of landmarks in the EKF state, the computational
complexity is reduced to up to a constant while not com-
promising its integrity. All experimental work was done
using real data from RAPOSA-NG, a tracked wheel robot
developed for Search and Rescue missions.
Keywords: simultaneous localisation and mapping, ex-
tended Kalman filter, feature detector, inverse depth
parametrization, landmark evaluation, temporal differ-
ence learning

1. Introduction
SLAM is one of the most promising fields in robotics,

aiming at tracking the location of a robot and map its
surroundings using external sensor data. EKF, when applied
to SLAM, proves to work reasonably well with distinct,
well-matched observations and a small state for estimation.
However, insertion of new data over time without removal
increases EKF complexity, hindering its scalability over
time.

By memory-bounding the state, EKF complexity is
assured to grow with time and, using proper classifiers,
undesired features are automatically removed. A side effect
from this removal procedure is that the map becomes
visually sparse, but as long as it suffices the SLAM needs
for stable predictions, one can use proper techniques to
acquire visually more compelling maps.

This work was implemented on RAPOSA-NG,
a tracked wheel robot for SaR missions (Figure 1). This
robot has an adjustable frontal body, where both the IMU
and camera are located. Since most SaR robots perform mo-
tion within irregular terrains, this paper focuses on estimat-
ing both its position and attitude in a 3D euclidean space. It
uses an IMU to measure orientation changes and encodes
odometry from both wheels to measure translation changes

over time. Also, this paper introduces an elegant way to in-
sert landmarks in the state from both monocular and stereo
visualizations using the inverse depth parametrization. All
landmarks are treated the same way, regardless of their
origin. While monocular observations have no depth infor-
mation, depth can be estimated through parallax changes
over time. Stereo observations, on the other hand, provide
depth, which not only allows for more accurate maps with
fewer observations, but also solves the problem of map
scale, common to most monocular SLAM techniques1.

J.J. Leonard and H.F. Durrant-Whyte introduced Simul-
taneous Localization and Mapping (SLAM) terminology
to the robotics field and the concept of geometric bea-
cons: natural landmarks present in the environment that
can be reliably observed, as well as described in terms of
a concise geometric parametrization (referred in this paper
simply as landmarks) [5]. Geometric beacons can be ac-
quired with many different types of sensors, as long as the
aforementioned qualities are maintained.

Davison et al. proposed a real-time algorithm which re-
covers the location of a monocular camera over time using
SLAM with a random walk motion model [3]. However,
feature initialization requires more than one observation, so
that a proper triangulation for an initial depth estimate can
be done. Also, it needs to acquire landmarks with known
depth for scale initialization. Thus, Civera and Davison
presented an inverse depth parametrization that represents
landmarks uncertainty with more accuracy than the stan-
dard XYZ parametrization [2]. The increase of accuracy
can be justified by the higher degree of linearity of the in-
verse depth parametrization over XYZ parametrization.
However, this representation over-parametrizes each land-
mark (6 instead of the 3 components of XYZ), increasing
the EKF complexity even further. They also defined a land-
mark classifier that removes 50% of all predicted landmarks
that should be visible but are not detected by any feature
detector. This approach leads to the landmark classifier in-
troduced in this paper. The usage of a random walk model
assumes a well behaved motion with smooth linear and
angular velocities over time, a condition that often fails
for tracked wheel robots in non-planar grounds (e.g., stair
climbing).

Pinies et al. included the usage of an IMU to the vision
SLAM with inverse depth parametrization [7]. In fact,
having orientation changes measured with an IMU, the
uncertainty of the camera location is reduced. However, it
does not decrease the uncertainty when only linear motion
is observed, which leads to the need of odometry inclusion
presented in this paper. As for the map scale problem,
in order to solve it, this paper extends the inverse depth
parametrization usage for stereo vision as well.
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Fig. 1. RAPOSA-NG.

2. State and Model Definitions
We address the problem of simultaneously estimating

the robot pose and landmark positions (SLAM) using
a probabilistic approach based on the Extended Kalman
Filter. The state of this filter encompasses both the robot
pose and the landmark positions. The motion model is used
in the predict step, while the observation model is used in
the update step, as usual [5].

2.1. State Representation
The SLAM algorithm estimates the pose of the camera

frame with respect to a world frame. The camera frame is
considered to be located at the midpoint between the two
stereo cameras.

The EKF state is defined as

st =
(
rTt q

T
t y1

T · · · ynT
)T
, (1)

where vector rt and unit quaternion qt represent the camera
position and attitude (i.e., pose of the camera frame) in
the world frame at time t. All yi from i ∈ {0, . . . , n}
correspond to 3D point landmarks represented using an
inverse depth parametrization,

yi = (Xo
i Y

o
i Z

o
i θi φi pi)

T (2)

where (Xo
i , Y

o
i , Z

o
i )T is an arbitrary point in XYZ, θi and

φi are the azimuth and elevation of the semi-ray that crosses
both this point and the landmark in the world frame and
pi is the inverse of the distance between (Xo

i , Y
o
i , Z

o
i )T

and the landmark. This parametrization is capable of rep-
resenting any landmark in space. One can compute yXY Zi ,
the landmark position in XYZ, by

yXY Zi = oi +
1

pi
mi (3)

where

mi =

cosφi sin θi
− sinφi

cosφi cos θi

 . (4)

Usually, oi corresponds to the focal point of the cam-
era when the landmark was first observed. While this
parametrization has more degrees of freedom than neces-
sary (6 instead of 3), it has interesting properties regarding
linearity over EKF [2].

Top view

Side view

Stereo
Camera

Fig. 2. Horizontal stereo camera representation.

2.2. Observation Model
The observation model describes how each feature is

perceived by the sensors. Each feature can be perceived in
either stereo by both cameras, or mono by only one of the
cameras. In any case, the observation model provides the
expected pixel position of each feature, for each one of the
cameras. This computation is performed in two steps:
1) For each landmark yi in state, compute a directional

vector in the camera frame that points from the camera
position to the landmark position as

hi
C
t = Rq∗t (pi (oi − rt) +mi) (5)

where Rq∗t is the rotation matrix that rotates the world
frame to the camera frame (from qt conjugate, q∗t ).

2) Using the Pinhole Camera Model, for each landmark i
situated in front of the camera, project the landmark po-
sition, along that directional vector, to each one of the
image planes of the cameras. This model assumes a sin-
gle camera with no lenses, nor aperture radius. It does
not model any type of image distortion or blur present in
every camera. For this paper, information retrieved for
observation analysis passed through a correction pro-
cess using camera’s proprietary software before being
used by the EKF, returning an undistorted image with
known intrinsic parameters, while maintaining a wide
visual range. This software also rectifies each pair of
stereo images, by projecting them to a common image
plane [6]. If no software correction is available, dis-
tortion can be compensated with proper models using
distortion parameters intrinsic to the camera, retrieved
through calibration methods. An horizontal stereo cam-
era is used in this paper to acquire image data from two
different sources. Since all images are properly recti-
fied, a given pair of features from both cameras only
correspond to the same landmark if they both share the
same horizontal axis. This rectification also results in
a pair of images with the same size and intrinsic param-
eters. A set of coordinate frames, (XCLt , Y CLt , ZCLt)
and (XCRt , Y CRt , ZCRt), are defined for the left and
right camera, respectively. After the rectification pro-
cess, both right and left camera frames share the same
orientation as the camera frame and are displaced by b
along the XCt axis. To simplify the formalism, a pa-
rameter kLR is introduced, where

kLR =

{
0, from left (L) camera
1, from right (R) camera (6)
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Both directional vectors from left and right cameras,
hi
CL
t and hiCRt , can easily computed from hi

C
t ,

hi
CL/CR
t = hi

C
t − (−1)k

LR

h′it (7)

where

h′it = pi b̄ and b̄ =
(
b 0 0

)T
. (8)

With the pinhole model, one can either model an
observation from both cameras,

zStereoit =

zLuit

zRuit

zvit

 =

zuit

zuit

zvit

− fC mu pi

hz
C
i t

−bb
0

 ,

(9)

or from left or right camera only,

zLeftit =

(
zLuit

zvit

)
zRight
it

=

(
zRuit

zvit

)
. (10)

2.3. Motion Model
The motion model employs the odometry readings

to estimate linear movement along the body frame and
IMU readings to estimate incremental rotations of the
robot. The frame transformations among the defined frames
propagate these movement measurements, as well as their
uncertainties (as covariances), to the camera frame.

Three different frames are defined for the robot for each
iteration t.
1) Camera frame, representing the camera pose at itera-

tion t, as defined in subsection 2.1;

2) Body frame, representing the robot body pose at iter-
ation t. In RAPOSA-NG, the transformation between
this frame and the previous one depends solely on the
angle of the frontal body of the robot;

3) IMU frame, representing the IMU pose at instant t.
The angular velocity ωimu can be modelled through
the IMU gyroscopes. In RAPOSA-NG, this frame is
attached to the frontal body.
The motion model employs the odometry readings to

estimate linear movement along the body frame and IMU
readings to estimate incremental rotations of the robot. In
RAPOSA-NG the IMU is mounted on the frontal body,
and thus the IMU frame shares the same attitude as the
camera frame.

From odometry the robot obtains linear movement
along the body frame, by averaging the velocity of both
tracks. Differential movement is discarded, since tracked
wheel robots provide unreliable angular movement mea-
surements from odometry. From the IMU, the robot obtains
attitude changes. These changes are modeled as an angular
velocity ωimu, defined by

ωimu
t = ωgyro

t + ωbias
t + ωεt , (11)

where ωgyro
t is the angular velocity retrieved from the

IMU, ωbias
t is the bias error normally associated with most

IMUs (if the IMU uses optical or MEMS technology and is
calibrated, it can be assumed no ωbias

t for some period of
time [10]) and ωεt is a normally distributed error with zero-
mean. From ωimu one can obtain an incremental rotation
qimu
t using a zeroth-order integrator as described in [9].

The frame transformations among the frames defined
in section 2.1 propagate these movement measurements, as
well as their uncertainties (as covariances), to the camera
frame.

2.4. Feature Initialization
Over time, visual observations are made and new land-

marks are attached to the state from observed visual fea-
tures. Many criteria can be used to establish when new
landmarks should be inserted and how many. For instance,
one can add a new landmark every time a visual feature
is observed that does not match any landmark in the state.
However, doing so is computationally ineffective as it fills
the state in a short time if no landmark removal procedure
is performed.

Assuming the usage of the stereo camera, one can
acquire monocular features either from the left or from
the right camera. Also, some features acquired from both
cameras correspond to the same landmark, resulting in
a stereo feature. Depending on whether the new landmark
in state results from a monocular feature or from a stereo
feature, two different initializations are introduced:
1) From a monocular observation: If a new landmark

yn+1 is to be appended to the state from a feature
detected by only one of the cameras, first a directional
vector for the respective camera frame is computed
using the Pinhole Camera Model. The (Xo

i , Y
o
i , Z

o
i )T

is set to the respective camera center, and θi and φi
are set to the azimuth and elevation of the semi-ray
that crosses this point and the feature location in image
plane.

hCL/CRn t =

 1
fC mu

(cu − zL/Runt
)

1
fC mv

(cv − zvnt
)

1

 (12)

Having Rqt from qt in state and knowing that both
left and right camera frames share the same orientation
from the robot state, the directional vector can be related
to the world frame by

hnt = Rqt h
CL/CR
n t (13)

and


on
θn
φn
pn

 =


rt + (−1)k

LR

Rqt b̄
arctan(hxnt, hznt)

arctan(−hynt, |hxznt|)
p0

 (14)

where

|hxznt| =
√

(hxnt)
2 + (hxnt)

2 (15)

It is impossible to gain depth information from just
one observation, thus an initial arbitrary value p0 serves
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Fig. 3. Top view of camera frame for stereo vision of
a landmark yi.

as an initial estimation for the inverse depth given
enough uncertainty. This parametrization is approx-
imately linear along the corresponding semi-ray, allow-
ing the EKF to sustain and correct large errors for the
depth estimation.

2) From a stereo observation: Using epipolar geometry,
one can compute the landmark parameters for the in-
verse depth parametrization, but including a measured
depth, rather than a default value. The (Xo

i , Y
o
i , Z

o
i )T

are set to the camera frame, θi and φi are set to the az-
imuth and elevation of the semi-ray that crosses the
camera frame and the landmark XYZ position extracted
from stereo.

If the landmark comes from a stereo pair of features,
using epipolar geometry it is possible to obtain the first
a directional vector from the camera frame is computed
using the Pinhole Camera Model. Since both left and
right camera frames share the same distance from the
camera frame but in opposite directions, the directional
vector can be calculated as

hCnt
=

 1
fC mu

(cu − 1
2 (zLunt

+ zRunt
))

1
fC mv

(cv − zvnt
)

1

 . (16)

In the same fashion as equation (13),

hnt = Rqt h
C
nt

(17)

and


on
θn
φn
pn

 =


rt

arctan(hxnt, hznt)
arctan(−hynt, |hxznt|)

pe

 , (18)

where pe can be computed using epipolar geometry [4],

pe =
zLunt

− zRunt

2 b fC mu |hCnt
|
. (19)

2.5. Feature Detector and Descriptor
For landmark detection and matching, this work uses

ORB (Oriented FAST and Rotated BRIEF), a rotation-only
invariant feature detector and descriptor [8]. Although less
reliable than SURF [1] and no scale invariant, it still be-
haves with great accuracy for small scale changes. While
both methods have good performances, ORB is faster but
less accurate than SURF regarding scale changes. However,
if those changes are considered small, ORB accuracy suf-
fices the SLAM needs. ORB computes FAST features with
added orientation information from the intensity centroid.
For the descriptors, it uses BRIEF descriptors, calculated
from binary intensity tests and rotated using the orientation
assigned.

3. Dimensional-Bounded EKF (DBEKF)
One of the major problems regarding the Extended

Kalman Filter is the fact that its computational complex-
ity increases over a quadratic order with the number of
landmarks.

This paper introduces a Dimensional-Bounded Ex-
tended Kalman Filter (DBEKF) which equips EKF with
criteria for landmarks insertion and removal. For that, a new
Landmark Classifier has to be introduced first. Figure 4
shows the proposed DBEKF architecture.

3.1. Landmark Classifier
For the DBEKF, a landmark yi is said to be visible in

state st, yi ∈ Vst , if it is observable from state st. Also,
yi is detected at iteration t, yi ∈ Dt, if the feature detector
points out a corresponding feature. In a perfect scenario
without any physical occlusions, Vst = Dt, that is, if
the landmark is visible it should be detected. However,
feature detectors are prone to error: descriptors can fail to
point out some correspondences and miss features from
being detected. These inaccuracies are crucial to classify
each landmark’s usability in state. Since it is assumed that
no landmarks have physical occlusions, a visible but not
detected landmark can only represent a failed match. In
these cases, failed matches promote the corresponding
landmark to be removed from the state.

A Temporal Difference Learning approach is used to
predict a measure of the utility, uit, of each landmark at
iteration t:

uit =

{
Guit−1 + (1−G)1iDt

if yi ∈ Vst

uit−1 otherwise.
(20)

whereG is a arbitrary weight set by the user and the indica-
tor function (G ∈ [0, 1]), 1iDst

, is defined for detectability,

1iDst
=

{
1 if yi ∈ Dst

0 else
. (21)

The lower the utility of a landmark, more likely it is to
be removed from the state. The initial value for utility is
ui0 = 1. Due to (20) and (21), uit ∈ [0, 1].

3.2. Landmark Removal
Assuming Ml as the maximum number of landmarks

imposed by the user to the DBEKF, the Landmark removal
procedure is composed of three criteria:
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Fig. 4. DBEKF flowchart.

1) Utility Threshold: when uit reaches a value below
T ∈ [0, 1] at iteration t, it is discarded from the state;

2) Negative Inverse Depth: all features with negative
inverse depth (e.g., due to a feature mismatch) are
automatically discarded from the state;

3) Emergency Removal: if the amount of matched land-
marks is below a threshold ml, the oldest landmarks
are removed from the state as such to leave room for
the new ones.

4. Results
All experimental results presented in this paper are

from two different datasets made with RAPOSA-NG. Each
dataset is the result of a ROS2 log file recording during op-
eration. It contains odometry readings from left track, right
track and inclination arm position at 10 Hz each, angu-
lar velocity readings from IMU at 30 Hz, rectified images
from both cameras at 15 Hz, and all features retrieved from
image readings using feature detector ORB at 15 Hz. Un-
less otherwise stated, all tests performed with DBEKF have
an upper bound of Ml = 60 landmarks in state, an utility
weight factor of G = 0.8, an utility threshold of T = 0.01
and a minimal number of matched landmarks per observa-
tion of ml = 10. Results may slightly vary for the same
dataset in different runs, since the log file is played in real
time (as well as the SLAM algorithm).

The datasets are denoted here A and B, both illus-
trated in figure 5. In dataset A, RAPOSA-NG performs
a near-squared trip of 3 × 3 meters in a soccer field full
of newspaper pages, wooden planks and other sort of ob-
jects, simulating debris. Dataset B comprises RAPOSA-NG
climbing up and down a set of stairs. The stairs set has 0.62
meters of height.

By upper limiting the number of landmarks in state
by a value Mlandmarks, EKF computational complexity
becomes upper bounded as well. If there are enough obser-
vations to grant Mlandmarks in state for estimation at every
iteration, the computational load should be constant for all
time. This situation happens to all experiments presented
on this thesis.

Figure 6 shows the time duration and number of re-
moved features per DBEKF iteration with both monocular
and stereo observations from datasets “A” and “B”, re-
spectively. As expected, the computational complexity is

AAA
Square

B
Stairs

Fig. 5. Datasets A (top) and B (bottom). The indicated line
represents the trajectory travelled by RAPOSA-NG during
the experiment, in the direction pointed by the arrowhead.
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Fig. 6. Time duration (top) and number of removed features
(bottom) per DBEKF iteration for datasets “A” (a) and
“B” (b) with both monocular and stereo observations.

near constant for all time during both experiments, pre-
senting some peaks and fluctuations due to new landmark
initialization, the number of feature observations per up-
date and other processing tasks unrelated to this software.
Regarding dataset “A”, one can notice some time intervals
where a larger number of features are removed. These in-
tervals happen when the robot finishes rotating 90 degrees
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Fig. 7. Average time per iteration for different upper bounds
in DBEKF for datasets “A” and “B”.

Fig. 8. SLAM results using DBEKF with dataset A. The
trajectories shown are: in blue/grey is the camera trajectory
with only odometry and IMU, while the black one used
SLAM estimation. Covariance for the final position is also
shown, as well as the final covariances of the landmarks in
state.

and faces a new plane of observations, requiring space for
new landmarks in state. It then discards older landmarks
in order to acquire new ones. Dataset “B” presents some
peaks regarding the number of feature observations as well,
where the robot experienced drastic observation changes
due to the rough movement of RAPOSA when finishing
climbing up or starting to climb down the stairs.

From the average time reading in both experiments, it is
clear that the SLAM algorithm fully performs in real time.
However, it does not take into account the time needed for
feature acquisition using feature detectors such as SURF
or ORB.

Figure 7 shows the average time per iteration for dif-
ferent upper bounds in DBEKF with both datasets. As
expected, despite the dataset, the time per iteration rises
near a cubic order. It is important that, although the com-
putational power becomes constant, a reasonable upper
bound is chosen to avoid large time intervals for the EKF
that can otherwise reveal linearity problems.

Figures 8 and 9 present the trajectories estimated by
DBEKF for datasets A and B, in comparison with using
odometry alone. Note that on both cases the algorithm
was capable of correcting the errors induced by odometry,
being able to return to the initial position of each dataset
(note that no closure detection algorithm was employed).

In Figure 10 a comparison between several configu-

Fig. 9. SLAM results using DBEKF with dataset B. Refer
to figure 8 for graphical notation.
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Fig. 10. Evolution of the pose covariance from SLAM using
DBEKF for dataset A (a) and B (b) along time. The different
traces correspond to the use of mono features only, of stereo
features only, and of all features.

rations is made, in terms of estimated uncertainty of the
robot pose. This uncertainty is measured in terms of the
trace of the position estimation covariance matrix (the cor-
responding 3× 3 submatrix of the state covariance). The
configurations are: use of monocular features only, use
of stereo features only, and use of all features. This result
shows that the combination of mono and stereo features
outperform any other configuration.

5. Conclusions
The usage of both cameras as a stereo vision decreases

the uncertainty from all landmarks and allows a better
initialization for the SLAM algorithm, but the lack of stereo
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features may offer some problems to the SLAM problem if
no other type of observations are used. In this work, both
stereo and monocular features are used as observations,
and as such one can use monocular information without
worrying with the map scale problem (referred in Section 1)
as long as stereo observations are available. From the
presented results, it is clear that using both monocular and
stereo observations in the way introduced here increases
the overall quality of SLAM over monocular only or stereo
only observations.

Although the usage of the Extended Kalman Filter
(EKF) has been extensively used to solve the SLAM prob-
lem, its computational complexity grows unbounded with
the number of landmarks. This paper showed that, with
DBEKF, one can achieve good estimations with constant
complexity when removing landmarks from state according
to an utility evaluation criterion.

Notes
1Assuming no a priori initialization of map scale.
2http://www.ros.org
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