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Abstract:
This paper presents evaluation of various contemporary
interest point detector and descriptor pairs in the context
of robot navigation. The robustness of the detectors and
descriptors is assessed using publicly available datasets:
the first gathered from the camera mounted on the industrial
robot [17] and the second gathered from the mobile robot
[20]. The most efficient detectors and descriptors for the
visual robot navigation are selected.
Keywords: point features, detectors, descriptors

1. Introduction
The detection, description and matching of point fea-

tures plays a vital role in most of the contemporary algo-
rithms for visual odometry [1, 2] or visual simultaneous
localization and mapping [3, 4]. Over the last decade sev-
eral new fast detectors such as FAST (Features from Ac-
celerated Segment Test) [5], SURF (Speeded Up Robust
Features) [6], CenSurE (Center Surround Extrema) being
basis for STAR [7] and descriptors e.g. SURF [6], BRIEF
(Binary Robust Independent Features) [8], ORB (Oriented
FAST and Rotated Brief) [9], FREAK (Fast Retina Key-
point) [10] have been proposed and successfully applied
to robot navigation tasks. As the processing speed is the
key aspect in such tasks, some of the detectors and de-
scriptors have been either implemented in FPGA (Field
Programmable Gate Array) [11, 12] or simplified [13].

At the moment, to the extent of authors knowledge
there is no comparative study of the newest point detectors
and descriptors with regard to their applicability in robot
navigation. In [14] and [15] the authors describe the desired
characteristics of point detectors and descriptors, however
they do not present any experimental results. The authors
in [17] have compared various interest point detectors using
sequences recorded with the camera placed on an industrial
robot. In the follow up research they compared the detector-
descriptor pairs efficiency, however only cross-correlation,
SIFT (Scale Invariant Feature Transform) [19] and DAISY
descriptors were considered. Another experimental study
has been presented in [16] where the detector-descriptor
pairs have been graded according to the number of feature
matches supporting the 8-point algorithm solution found by
the RANSAC algorithm. This indirect evaluation method
was forced by difficulties in gathering the ground truth
correspondence data for image pairs.

This paper presents an evaluation of detector-descriptor
pairs in the context of robot navigation. The measure of the
pair’s efficiency is based on the reprojection error of point
feature pairs matched on two images. The images used were
selected from the publicly available datasets [17, 20]. The
analysis allows selecting detector and descriptor pair most

suitable for application in the robot navigation both in the
context of accuracy.

The rest of the paper is structured as follows: Section 2
provides a description of the detectors and descriptors eval-
uated in the study. Procedure is presented in Section 3.
Section 4 contains results while Section 5 contains con-
cluding remarks and the planned future work.

2. Detectors and descriptors
2.1. The Shi-Tomasi feature detector
The Shi-Tomasi (GFTT) feature detector is relies on

investigating the local auto-correlation function of the
image intensity function [21]. To perform this, the so called
structural tensor is used (Eq. 1).

A =
∑
u

∑
v

w(p, q)

[
I2x IxIy
IxIy I2y

]
(1)

The Ix and Iy terms denote the partial image deriva-
tives in x and y directions, respectively. The term w(p, q)
denotes the convolution with a weighting window over the
area (p, q). A Gaussian is the most common choice for the
weighting window, as it makes the responses isotropic. The
feature strength measure Mc is then defined as given in
equation 2.

Mc = min(|λ1|, |λ2|) (2)

Corners are the local maxima of Mc above some arbi-
trary threshold t.

2.2. FAST feature detector
The FAST [5] feature detector inspects the values of

the intensity function of pixels on a circle of the radius
r around the candidate point p. The pixel on a circle is
considered ’bright’ if its intensity value is brighter by at
least t, and ’dark’ if its intensity value is darker by at least
t than the intensity value of p, where t is some arbitrary
threshold. The candidate pixel is classified as a feature on
a basis of a segment test – if a contiguous, at least n pixels
long arc of ’bright’ or ’dark’ pixels is found on the circle.
The original solution uses r = 3 and n = 9. An illustration
of the segment test is given in Fig. 1.

The ID3 algorithm is used to optimize the order in
which pixels are tested, resulting in high computational
efficiency. The segment test alone produces small sets of
adjacent positive responses. To further refine the results, an
additional cornerness measure is used for non-maximum
suppression (NMS). As the NMS is applied to only a frac-
tion of image points that successfully passed the segment
test, the processing time is kept short.
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Fig. 1. The illustration of the segment test used by the FAST
feature detector.

Fig. 2. Masks used by the CenSurE (left) and STAR (right)
feature descriptors.

2.3. SURF feature detector
SURF [6] is an image feature detector and descriptor,

inspired by the SIFT detector/descriptor. The main moti-
vation for the development of SURF has been to overcome
SIFT’s main weakness – its computational complexity and
low execution speed. SURF has been reported to be up to
a few times faster than SIFT without compromising the
performance. The detection step in SURF takes advantage
of the Haar wavelet approximation of the blob detector
based on the Hessian determinant. The approximations of
Haar wavelets can be efficiently computed using integral
images, regardless of the scale. Accurate localization of
multiscale SURF features requires interpolation.

2.4. STAR feature detector
The STAR keypoint detector has been developed as

a part of the OpenCV computer vision library. It is a deriva-
tive of the CenSurE (Center Surround Extrema) feature
detector [7]. The authors of the solution aimed at the cre-
ation of a multiscale detector with full spatial resolution.
As described in [7], the subsampling performed by SIFT
and SURF affects the accuracy of feature localization. The
detector uses a bi-level approximation of the Laplacian of
Gaussians (LoG) filter. The circular shape of the mask is
replaced by an approximation that allows to preserve ro-
tational invariance and enables the use of integral images
for efficient computation. Scale-space is constructed with-
out interpolation, by applying masks of different size. The
shape of the masks used for feature detection by CenSurE
and STAR are given in Fig. 2.

2.5. SURF feature descriptor
The SURF [6] feature descriptor uses Haar wavelets in

conjunction with integral images to encode the distribu-
tion of pixel intensity values in the neighborhood of the
detected feature while accounting for the feature’s scale.
Computation of the descriptor for a given feature at the
scale s begins with the assignment of the dominant orienta-

Fig. 3. Division of the processed window into subregions
and sampling points as used by the SURF feature descrip-
tor.

tion to make the descriptor rotation invariant. The process
starts with computing the Haar wavelet responses in two
dominant directions for every point within the radius of 6s
from the feature.

The size of the square wavelet masks is also adjusted
according to the feature scale and set to 4s. The responses
are then weighted with a Gaussian centered at the feature
point. Each one of the responses gives rise to a point in the
vector space, with the x-responses along the abscissa and
the y-responses along the ordinate. Afterwards, a circle
segment covering an angle of π

3 is rotated around the
origin (feature point). The responses under the segment are
summed and form a resultant vector. The rotation angle
corresponding to the longest resultant vector is selected as
the dominant orientation of the feature descriptor.

The computation of the descriptor itself starts with
placing a square window with a side length of 20s cen-
tered on the feature point and oriented as computed in the
previous step. The window is divided into 4× 4 regular
square subregions. Each subregion is divided into 5× 5
uniformly distributed sample points. For each sample point,
the Haar wavelet responses for two principal directions are
computed as shown in Fig. 3.

Each subregion contributes to the descriptor with four
components: the sums of the responses in the two principal
directions (dx, dy) and their absolute values, as given in
equation 3.

DESCsub = [
∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|] (3)

The responses from the 16 subregions are once again
weighted with a Gaussian mask according to the relative
position of the subregion and the analyzed point. For 16
subregions, the descriptor size is 64.

2.6. BRIEF feature descriptor
The BRIEF [8] descriptor proposed in [8] uses binary

strings for feature description and subsequent matching.
This enables the use of Hamming distance to compute the
descriptors similarity. Such similarity measure can be com-
puted very efficiently – much faster than the commonly used
L2 norm. Due to BRIEF’s sensitivity to noise, the image is
smoothed with a simple averaging filter before applying
the actual descriptor. The value of each bit contributing
to the descriptor depends on the result of a comparison
between the intensity values of two points inside an im-
age segment centered on the currently described feature.
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Fig. 4. An example random sampling pattern used by the
BRIEF feature descriptor; point pairs used for comparison
are connected with lines.

The bit corresponding to a given point pair is set to 1 if
the intensity value of the first point of this pair is higher
than the intensity value of the second point, and reset oth-
erwise. The authors of the original solution tested a few
sampling strategies for selecting the point pairs. The em-
pirical results have shown that sampling according to the
Gaussian distribution centered on the described feature
point results in best performance. The proposed descriptor
is 512-bit long and computed over a 48× 48 pixel image
patch, although the length of the descriptor and the size
of the window can be changed to adapt to the application
at hand. The initial smoothing is performed with a 9× 9
pixel rectangular averaging filter. The basic form of BRIEF
is not invariant w.r.t. rotation. Example random sampling
pattern used by BRIEF is given in Fig. 4.

2.7. ORB feature descriptor
The ORB [9] (Oriented FAST and Rotated BRIEF)

descriptor extends the BRIEF descriptor by adding two
important improvements. The first one is to augment the
descriptor with orientation data from the FAST feature
detector. This allows to make the descriptor robust to in-
plane rotation. This is done by rotating the coordinates
of the point pairs for binary tests around the described
feature by the feature orientation angle. Second innovation
is the selection scheme for point pairs whose comparisons
contribute to the descriptor. The random sampling has
been replaced with a sampling scheme that uses machine
learning for de-correlating BRIEF features under rotational
invariance. This makes the nearest neighbor search during
matching less error-prone.

2.8. FREAK feature descriptor
The FREAK [10] (Fast Retina Keypoint) descriptor is

another extension of the basic concepts of BRIEF [8]. It
provides the descriptor with feature orientation by summing
the estimated local gradients over selected point pairs.
Using a specific point sampling pattern allows to apply
more coarse discretization of rotation, allowing for savings
in memory consumption. A special, biologically inspired
sampling pattern is also used. While the resulting descriptor
is still a binary string, the sampling pattern allows for the
use of a ’coarse-to-fine’ approach to feature description.

Fig. 5. The four trajectories of the Robot Data Set and the
position of the reference frame.

Fig. 6. Exemplary pair of images from the Robot Data
Set with matches using the FAST detector and BRIEF
descriptor.

Point pairs carrying the information on most distinctive
characteristics of the feature neighborhood are compared
in the first place. This allows for faster rejection of false
matches and shortening of the computation time.

3. Experiments
3.1. Datasets
Two datasets were used in the experiments. The Robot

Data Set [17, 18] consists of 60 scenes, registered from 119
positions under varying lighting conditions using ahigh
resolution camera mounted on the industrial robot. The
camera positions form 4 trajectories: 3 angular with con-
stant distance from the scene and one linear with constant
camera heading (Fig. 5). Such a diverse dataset allows to
evaluate the robustness of detector-descriptor pairs with
regard to the scale, rotation and illumination changes. Ex-
emplary images from the dataset are presented in the Fig. 6.

The second dataset used in the experiment is a video
sequence gathered with the Kinect sensor mounted on
the wheeled robot [20]. The ’Pioneer SLAM’ sequence
consisting of 2921 images was used. The robot’s trajectory
during the sequence registration is presented on the Fig. 7.
Exemplary images from the second dataset are presented
in the Fig. 8.

The above datasets have been selected for the experi-
ment as they reflect the two scenarios encountered in the
context of mobile robot navigation. The first represents
the situation in which the mobile robot observes the same
scene from a number of positions differing in distance and
viewing angle. It is important to notice that the camera re-
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Fig. 7. The ’Pioneer SLAM’ trajectory.

Fig. 8. Exemplary images from the Freiburg Data Set with
matches using the FAST detector and BRIEF descriptor.

mains on a constant altitude which would also be the case
for most of the mobile robots. The ability to match feature
points and consequently recognize a previously seen scene
is crucial especially in the context of loop-closing.

The second dataset presents the challenges usually
present in the tasks used in the localization of the mobile
robot. The sequence consists of images gathered from the
onboard camera where the consecutive images differ only
slightly and usually no in-plane rotation is present. The
ability to detect and match features in such sequences is
especially important in tasks such as the visual odometry
or visual SLAM.

Both the datasets contain images, ground truth data
of the camera position, camera intrinsic parameters and
distortion coefficients.

3.2. Evaluation
The following procedure was performed for every ana-

lyzed pair of images:
1) the point features were detected on both images using

the selected detector;
2) the point features descriptors were calculated using the

selected descriptor algorithm;
3) the coordinates of the features were undistorted and

normalized according to the camera parameters;
4) the essential matrix E describing the images’ epipolar

geometry was calculated using the relative ground truth
translation (t =

[
tx ty tz

]T ) and rotation (R)
between the two camera positions:

E = R

 0 −tz ty
tz 0 −tx
−ty tx 0

 ; (4)

5) the features from both images were matched by mini-
mizing the distance between their descriptors resulting
in the set of quadruples (ui, vi, Uj , Vj) where (ui, vi)
are the normalized coordinates of the feature extracted
from the first image and (Uj , Vj) are the normalized co-
ordinates of the best matching feature from the second
image;

6) for each quadruple the symmetric reprojection error
was calculated according to:

err =MAX (|ei, (Uj , Vj)| , |ej , (ui, vi)|) (5)

where ei and ej are the epipolar lines defined as:

aix+ biy + ci = 0 (6)
Ajx+Bjy + Cj = 0 (7)[
ai bi ci

]T
= E

[
ui, vi, 1

]T (8)[
Aj Bj Cj

]T
=

[
Uj , Vj , 1

]
E (9)

If the error was smaller than the threshold thresh the
match was considered an inlier;

7) the ratio of the number of inliers to the number of
matches was calculated.

The final score of the detector-descriptor pair over a dataset
was calculated as the mean of the inliers to matches ratios
of all the image pairs in the dataset.

4. Results
The Table 1 presents the average number of features

found by the evaluated detectors on the images from both
datasets. It is clearly visible that the STAR detector has
been able to find the smallest number of features – over six
times fewer than the second-worst detector.

The Tables 2–5 contain the maximal and minimal
matching ratios of the tested detector-descriptor pairs over
the sequences from the Robot Data Set. As expected the
maximal matching ratios have been observed for the small-
est angular or linear displacement. Increasing the displace-
ment has caused the reduction of the matching ratio down to
the minimal values that have been observed for the biggest
displacements. Please confront Fig. 9–14.

Analogously, the Table 6 presents the maximal and
minimal matching ratios of the detector desciptor pairs
over the Freiburg dataset. The smallest ratios have been
observed for the biggest difference in frames. Suprisingly,
the best matching has been observed while matching every-
second frame. This shows that the computation of the visual
odometry parameters under too small displacement of
features between two consecutive images is inaccurate
(Fig. 15).

The experiments show, that binary vector based BRIEF
and ORB descriptors have clearly outperform the other
tested solutions. Interestingly, the third binary vector de-
scriptor – FREAK – displayed a significantly lower match-
ing accuracy than the other tested solutions, contrary to the
claims in [10]. The popular SURF feature descriptor per-
formed relatively well, but since it offers lower matching
accuracy than BRIEF and ORB and is slower to compute
and match, there are strong arguments against using it.

14 Articles



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N◦ 1 2013

Tab. 1. The average number of detected features.
Detector Robot Image Dataset Freiburg Dataset
FAST 1469 634
Pyramid FAST 2292 1074
GFTT 1469 868
PyramidGFTT 2984 773
SURF 4580 1421
StarKeypoint 221 101

SURF is also the descriptor being most influenced by
the type of the detector it is paired with. This is visible es-
pecially in the results from the Freiburg dataset (figure 15).
It is worth noting that the use of pyramid FAST and GFTT
detectors with a multi-scale SURF and ORB descriptor
does not increase the matching performance when using
a scale-aware descriptor. This is rather surprising, and is
probably caused by the necessity of performing interpola-
tion to determine the location of the feature, which nega-
tively impacts on the feature location accuracy in higher
scales.

The Star keypoint detector is not burdened by this
additional inaccuracy, as it offers full location accuracy
across all scales. The results for the linear sequence shown
in figure 14 support this claim. It must be noted however,
that the Star descriptor requires a relatively feature-rich
environment, as the average feature count it returns is
relatively low as shown in Table 1.

5. Conclusions
The various, contemporary point features detector and

descriptor pairs were compared in order to determine the
best combination for the task of robot visual navigation.
The sequences chosen as a testbed displayed typical point
feature distortions encountered during indoor mobile robot
navigation – scaling and affine transformation with very
little or none in-plane rotation.

As all descriptors perform well when paired with the
FAST corner detector, the FAST-BRIEF pair is a good
choice when processing speed is a concern. Under the
camera movement conditions featured in both of the test
sequences used, the additional computational cost to bear
when using descriptors and detectors robust to in-plane
rotation and large scaling seems to be unjustified. This also
confirms the need for testing the detector-descriptor pairs in
the context of the application, as the requirements raised by
it may differ significantly from the requirements raised by
typical, commonly used benchmarking image sequences.
In the future it is planned to compare the efficiency of the
detector-descriptor pairs in the monocular SLAM system.
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Fig. 10. Matching ratio of points detected with the Pyramid FAST detector. Robot Image Dataset.

16 Articles



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 7, N◦ 1 2013
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Fig. 12. Matching ratio of points detected with the Pyramid GFTT detector. Robot Image Dataset.
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Fig. 14. Matching ratio of points detected with the StarKeypoint detector. Robot Image Dataset.
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