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Abstract: 
This paper presents the use of auditory occupancy 

grids (AOGs) for mapping of a mobile robot’s acoustic 
environment.  An AOG is a probabilistic map of sound 
source locations built from multiple measurements using 
techniques from both probabilistic robotics and sound 
localization.  The mapping is simulated, tested for ro-
bustness, and then successfully implemented on a three-
microphone mobile robot with four sound sources.  Using 
the robot’s inherent advantage of mobility, the AOG cor-
rectly locates the sound sources from only nine measure-
ments.  The resulting map is then used to intelligently po-
sition the robot within the environment and to maintain 
auditory contact with a moving target.

Keywords: auditory occupancy grids, sound localiza-
tion, occupancy grids, mobile robot 

1. Introduction
Robots are becoming ever more common in our homes, 

offices, factories, military, and emergency-response units.  
In every application, the more information a robot has 
about its environment, the more versatile it is.  Robots 
are equipped with cameras, ultrasonic sensors, laser range 
finders, accelerometers, and microphones.  The informa-
tion obtained is then used for mapping, locating, tracking, 
and informed decision-making. 

While robotic vision has seen great advances, robotic 
audition is still in its infancy.  Yet hearing – specifically, 
sound location – is not unimportant for robots.  Assistive 
robots need to be able to respond to verbal commands 
such as “Come here” by finding where “here” is.  
Mechanic robots need to listen to factory machinery or 
car engines to detect unwanted or troublesome sounds.  
Sentry and security robots need to recognize suspicious 
noises, locate their origin, and investigate.  Search and 
rescue robots need to locate the sound of survivors in 
smoky buildings and piles of debris.

Compounding the issue is the myriad of noises 
surrounding the robot.  Human bystanders, cars, televi-
sions, radios, plumbing, air vents, and machinery create 
unwanted noises.  The robot itself generates noises from 
its internal fans, motors, and drive systems.  Furthermore, 
these noises echo off of nearby surfaces, creating phantom 
sources and locations.

This paper explores how to use one of the robot’s 
unique advantages: its mobility.  As a robot moves, it 
can keep track of the auditory information to generate 
a sound-based map of the environment.  The effect of 

location-specific echoes and self-generated noise is 
diminished when information from multiple locations is 
compiled, while the stationary sound sources materialize 
out of the noise.  What results is a probabilistic contour 
map of the auditory scene, such as that in Figure 1.  Given 
these auditory occupancy grids (AOGs) [1], a robot is 
better equipped to listen, such as by moving to a quiet 
location, maintaining a line-of-hearing to a target, or 
comparing two time-different AOGs of the same area.

The following sections cover the background, simu-
lation, robustness, and implementation of these AOGs.  
First, we begin by briefly reviewing techniques used in 
this paper, and discuss related research in robotics.  Then, 
we present the creation of these grids from multiple 
measurements, both in simulation and implementation 
with a mobile robot.  Given these maps, we explore 
several of their uses. 

2. Background
AOGs combine techniques from two well-established 

research fields.  The mapping component comes from 
probabilistic robotics while the auditory processing is 
based on sound localization.  We briefly review funda-
mentals of each, and then discuss the limited research that 
intersects them.

The term auditory occupancy grid is necessary to 
distinguish these maps from traditional noise maps.  For 

Figure 1.  Auditory occupancy grid for the robot’s work-
space, generated from nine measurements.  Lighter color 
corresponds to higher probability.  The four sound sourc-
es are designated by asterisks, and are correctly located
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many years, acoustical and safety engineers have used 
noise maps for modeling potentially hazardous environ-
ments or determining noise impact levels for proposed 
infrastructure [2].  Unlike AOGs, noise maps are straight-
forward contour maps of sound pressure levels, and do 
not directly reflect source location.

2.1. Probabilistic robotics
Probabilistic robotics is the application of probability 

theory to robotic sensing and mobility [3].  For example, 
suppose a robot is using a laser range finder to locate 
an object in its workspace.  Traditional, deterministic 
robotics assumes the object to be wherever the sensor 
measures the strongest return.  Probabilistic robotics, 
on the other hand, represents the sensory information 
as a probability distribution that inherently includes the 
uncertainty of the measurement.  Standard probability 
mathematics can then be used to combine multiple 
measurements from multiple sensors to define a more 
confident belief about the environment.

The first step in this process is the converting of raw 
sensor data into a probability distribution.  This algorithm 
is called the inverse sensor model [4] because it is uses 
the data measured by the sensor to describe a model for 
that sensor.  A simple example of a sensor model is one 
that scales the sensor data to a range of probabilities 
between arbitrary bounds:

 [ ] [ ]min max min max: :data data p p→ . (1)

The bounds represent the highest confidence assigned 
to any single sensor measurement, since the strongest 
sensor return is mapped to pmax and the weakest to 
pmin.  More complicated models exist, such as filtering 
algorithms.  For example, Grabowski  et al. [5] devel-
oped a dynamic inverse sensor model to improve sonar 
mapping amid specular reflection.  Similarly, Thrun 
[6] used maximum-likelihood filtering of sensor data 
to improve the mapping and reduce possible conflicts 
between multiple measurements.  Note that the prob-
ability distribution is not a probability density function 
– the probabilities do not necessarily sum to unity.

Once the sensor data is in terms of probabilities, it 
can be combined with other measurements to improve the 
robot’s belief.  Combining multiple probabilities is gener-
ally done by a Bayes filter [7].  Given a prior belief and 
a conditional sensor measurement, the updated posterior  
belief is
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In numerical algorithms, this equation becomes 
unstable with values near zero and one, so the log odds 
(LO) method [8] is often used: 
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where i is any variable and LOinitial is the log odds of the 
default probability (usually 0.5, or 50%).  Then, the poste-
rior probability can be recovered by
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This is also called the binary Bayes filter.
Probabilistic beliefs are then used for various purposes, 

such as mapping the robot’s environment, location of the 
robot within that environment, tracking of objects, or 
planning of paths or control.

In this paper, however, we focus on the mapping and 
assume accurate knowledge of the robot’s pose.  Mapping 
of the auditory scene is done by a grid of cells where each 
cell has a probability of being occupied by an object (first 
introduced by Elfes [9]).  This grid is called an occupancy 
grid [3], certainty grid [10], or evidence grid [11], and is 
usually used for mapping of the physical environment.  

Occupancy grids are most useful for stationary, i.e., 
static, environments, although there has been some 
recent research in applying them to dynamic situations.  
For example, Wolf et al. [12] used separate static and 
dynamic occupancy grids to map a robot’s environment, 
while using a landmark-occupancy grid to locate the robot 
within it.

2.2. Sound localization
While occupancy grids come from probabilistic 

robotics, the auditory processing techniques used in 
AOGs come from the well-established field of sound 
localization.

Sound can be localized based on two or more record-
ings at known locations.  Suppose a source is emitting 
a sound, s(t), which is recorded by two microphones 
of known locations.  The microphones record different 
sounds, ma(t) and mb(t), each containing an attenuated 

  1 The frequency domain equation follows directly from the time do-
main equation given properties of Fourier transforms and cross cor-
relations.

Figure 2.  Sample Time Difference on Arrival (TDOA) 
for two microphones spaced 1 meter apart, assuming the 
sound travels 343 m/s
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(due to distance, medium, directionality, etc.) and time-
delayed version of the source with unknown noise.  Given 
the time difference between the two recordings, called 
the Time Difference on Arrival (TDOA), the source must 
be located somewhere on a surface in space that corre-
sponds to that TDOA.  In two dimensions, this surface 
is a parabola – see Figure 2; in n-dimensional space, 
one microphone pair restricts the source to a one-less-
dimensional ((n-1)-dimension) space.

The TDOA between two microphones is found by 
performing a cross correlation of the signals, either in the 
time domain, 

 ( ) ( ) ( )t a bcorr m t m t d
τ

τ τ τ= −∫ ,

or in the frequency domain, 

 ( ) ( ) ( ) j
t a bcorr M M e dωτ

ω
τ ω ω ω−= ⋅∫ , 

where τ is a time shift.1  Here, ( )aM ω  and ( )bM ω  are the 
Fourier transforms of microphone recordings ma(t) and 
mb(t), ( )bM ω  is the complex conjugate of ( )bM ω , and 

1j = − .  The best estimate for the TDOA is thus the τ 
that maximizes the cross correlation.  

The frequency domain technique is standard because 
of its accuracy.  The accuracy in the time domain is 
restricted by the sampling frequency: mi(t-τ) must be 
known, so τ must be in timestep increments.  Figure 3 
shows the effect of this increment for a sample micro-
phone placement and a sampling time of 5000 Hz.  On the 
other hand, any τ can be tested in the frequency domain, 
so the frequency domain analysis allows for more accu-
rate calculation of the TDOA.   However, the frequency 
analysis requires a Fourier transform of the signals, which 
can be computationally intensive in near-real-time appli-
cations.

In most applications, three or more microphones are 
used.  Given n microphones, there exist (n-1) indepen-
dent pairings and respective TDOAs.  Thus, with three 
microphones in two dimensions, the source can be trian-
gulated to the intersection of the two parabolas.  In three 

dimensions, four microphones are needed.  Additional 
microphones (e.g., eight [13,14], thirty-two [15], or even 
128 [16]) are often used to provide more comparisons and 
improve robustness.  

Another way of approaching the localization is to 
assign a likelihood value to each position in space based 
on the time delay corresponding to that position.  The 
Steered Response Power (SRP) [17] for microphone pair 
(a,b) at each robot location x is defined as

( ) ( ) ( ) xj
ab a bM M e dωτ

ω
ω ω ω−= ⋅∫F x ,

where τx is the expected TDOA for that location.  These 
correlations add to give the SRP given all microphone 
pairs: 

1 1
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This likelihood function thus maps the probabilities 
around the microphone array.

The SRP can be tuned to certain frequencies by 
including a prefiltering weighting in the cross correla-
tion, W(ω): 
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This is called the Generalized Cross Correlation 
(GCC) [18].  The most common weighting is the Phase 
Transform (PHAT) [14,19], 

 1( )
( ) ( )PHAT

a b

W
M M
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ω ω
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because it reduces the effect of echoes – the echoed 
frequencies appear stronger in the microphone recordings 
but are normalized by the weighting term.  The PHAT 
weighting also reduces the effect of unequal preamplifiers 
on the microphone signals.  With a PHAT weighting, the 
GCC reduces to an integral of phase-based terms.

In the literature, there has been much work done on 
sound localization, although usually with set of stationary 
microphones distributed around a room. For example, 
Stillman and Essa [20] used a four-microphone array for 
localization in a smart room.  Mungamuru and Aarabi 
[21] used models of source and microphone directivity 
to improve upon the GCC PHAT algorithm for stationary 
microphone arrays distributed about a simulated room.  
Also, Aarabi [19] combined ten weighted likelihood 
maps from two-microphone arrays to locate three sound 
sources. 

2.3. Auditory sensing in robots
There has been some research on sound localization 

using human-like robots.  For example, Nakadai et al. [22] 
built a biologically inspired two-microphone humanoid 
robot that localizes sound sources using inter-aural phase 
and intensity differences.  Unfortunately, they found that 
the front-back ambiguity couldn’t be solved without 
active audition [23], such as by rotating the microphone 
array [24].  Huang et al. [25] used a three-microphone 
array and biomimetic processing to determine direction 

Figure 3.  Comparison between (a) time domain and (b) 
frequency domain cross correlations for 5000 Hz signals.  
The color bands correspond to points in space that have 
the same corr(τ) values.  The time domain is restricted by 
the sampling frequency while the frequency domain can 
be more detailed given finer increments of τ
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to two sound sources.  Implementing it on a mobile robot, 
they then combined visual and auditory information to 
localize a human speaking [26].

For tracking sound sources from a mobile robot, 
Valin et al. [13] used an eight-microphone array, beam-
forming, and particle filtering.  (In a previous work [27], 
they implemented a simplified method for determining 
the angle to a source based on a far-field assumption.)  
Likewise, Sasaki et al. [15] used a thirty-two-microphone 
array on a mobile robot to map two moving sound 
sources.

Using auditory evidence grids as an intersection 
between probabilistic robotics and sound localization was 
first proposed by Martinson and his colleagues.  They 
implemented auditory evidence grids on a mobile robot 
via a four-microphone array.  They were successful in 
locating two sources, but needed post-processing to locate 
three [28].  They were also able to determine source 
volume and directionality by having the robot approach 
each source to investigate it [29].  In addition, they have 
successfully applied their mapping to human tracking and 
speech recognition, for improved human-robot interaction 
[30].  

3. Creating AOGs on a mobile robot
Giving a mobile robot the ability to localize sound is 

not necessarily easy.  In many applications, the robot’s 
environment does not have a previously distributed static 
microphone array, and the mobile robot must carry the 
array with it.  All sound measurements must be taken at 
the robot’s location with limited distance between micro-
phones, greatly reducing the accuracy of localization.  
Figure 4 shows a comparison of sound localization for 
fixed three-microphone arrays of two different radii.  The 
figure also illustrates another common issue with closely 
spaced microphone arrays: the array can locate the angle 
to the source accurately, but not the distance.

environment to verify the AOG algorithm.  Second, we 
map randomly-located sound sources to get a sense of 
its robustness.  Third, we implement it on a mobile robot 
for one environment, as a proof of concept.  While these 
results are not meant as an in-depth experiment, they do 
show that AOGs are successful in many environments.  
For both simulation and implementation, we use a three-
microphone array for simplicity; however, the algorithm 
holds for any number of microphones.

3.1. Simulation
Let us illustrate the procedure via the simulation we 

created in MATLAB.  Suppose we have a mobile robot in 
a two-dimensional 5x5 meter workspace with four omni-
directional, dimensionless sound sources (see Figure 5).  
We grid the workspace into 0.1x0.1 meter cells; for each 
cell we want to determine the probability that it holds a 
sound source.  Thus, each cell initially has a probability 
of 0.5.  This grid is the AOG.

Figure 4.  Sound localization for two arrays of different 
radii.  The closer array has poorer localization, espe-
cially along the radial direction

Figure 5.  The three-microphone (labeled a-c) mobile ro-
bot’s workspace, showing sound source locations (num-
bered 1-4) and path (plus signs represent measurement 
locations).

For the simulation, the four sound sources were 
modeled as omnidirectional signals consisting of a sum of 
250 sinewaves (p) with uniformly distributed frequency 
(ωp) and phase (ϕp), and with pressure attenuation based 
solely on distance between source k and microphone i 
(dk,i).  We numbered the sources as 1-4 (e.g. Figure 5).  
For each microphone recording, the sources were indi-
vidually time-delayed (τ) based on distance.

 The robot carried a three omnidirectional microphone 
array, equally distributed on a 0.2-meter flat circle 
centered at the robot’s center (Figure 5).  We labeled the 
microphones as a-c.  Because the sound signals were 
sums of sinewaves rather than recordings, they could 
be time-shifted analytically to create omnidirectional 
microphone signals (ma(t), mb(t), and mc(t)).  For each 
microphone, the four source signals were then combined 
along with uniformly distributed random noise (n(t)).  
The general magnitudes of the sources  (ck)  were 1.0, 
0.5, 0.5, and 1.0, with a noise magnitude of 1.0 for each.  
Mathematically, source k was

( )
250

1
( ) sink k p p p

p
s t c c tω ϕ

=

= +∑ ,

A mobile robot, however, has the advantage of mobility 
over static microphone arrays.  As the robot traverses its 
environment, it can take multiple sound measurements 
that can be fused together to make a clearer, more accu-
rate occupancy grid of the auditory scene.  This AOG is 
similar to (but not directly analogous to) an elevation map 
of an area.  

The following sections detail a validation of the AOG 
concept.  First, we simulate the robot, microphones, and 
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where ck is the general magnitude of source k (1.0, 
0.5, 0.5, or 1.0), and cp is the magnitude of sinewave p 
(randomly distributed).  Thus, microphone recording for 
microphone i was

( )( ),

4 250

,
1 1

( ) noise( ) attenuated_and_delayed_ ( )

( ) sin  ,k

k i

i
sources

c
i p p i k pd

k p

m t t s t

n t c tω τ ϕ
= =

= +

= + − +

∑

∑ ∑
 

These source and microphone models are simplistic, but 
serve the purpose of our simulation.  The simulation also 
ignores any robot-generated noise (such as from onboard 
motors or fans).

At each robot pose throughout the workspace, we 

obtain a 3-meter-radius likelihood map for sound sources, 
F(x) (Equation 4), for the surrounding area based on 
1024-sample simulated microphone recordings.   This is 
approximately equal to a sampling rate of 5000 samples 
per second (the maximum sampling rate for our physical 
implementation discussed later).  Thus, frequencies above 
a frequency of 2500 Hz (which includes much of the 
audible range) can cause aliasing.  The likelihood map is 
centered on the robot and covers a subset of the overall 
workspace.  We chose a radius of 3 meters based empiri-
cally on the useful range of our microphone array.  To 
calculate F(x), we used the GCC with PHAT weighting 
(Equation 4) using Fast Fourier Transforms.  Because the 
position-dependent time delays, τx, are independent of the 
microphone recordings, we calculated them beforehand.   

Figure 6 shows a sample likelihood map for a situa-
tion with only one sound source.  Each microphone pair 
defines a parabola of high likelihoods.  When combined, 
the result is one area of high likelihood.  The three weaker 
arcs in Figure 6d are artifacts of the individual pairings.  
Note that the simulation involves more complicated like-
lihood maps, since the multiple sources create multiple 
parabolas in each microphone pairing.

Next, the likelihood values are converted to prob-
abilities to form a single-measurement probabilistic map, 
which we call the sensor grid.  Our inverse sensor model 
scales the likelihood values to a range between 0.1 and 
0.9 probability (as in Equation 1), based on the minimum 
and maximum values seen at that the corresponding robot 
pose.  This in an arbitrary model and has implications on 
the quality of the AOG, as we will discuss later.   Math-
ematically, our scaling for any likelihood, F(x), is

( ) ( )( )min
max min

0.9 0.10.1sensorp F F
F F

−
= + ⋅ −

−
x x ,

where Fmax and Fmin are the maximum and minimum 
likelihoods.  

The simulated robot traversed the space as shown 
previously in Figure 5, generating sensor maps and fusing 
them together using the binary Bayes filter (Equation 2). 

The resulting AOG is shown in Figure 7.  In the figure, 
color corresponds to probability, with white representing 
highest probability and the highest contour lines repre-
senting 90% confidence (contours are at 23, 45, 68, and 
90%).  Visually, the algorithm successfully located the 
four sources, even though the microphones are tightly 
grouped on the mobile robot.  Furthermore, while each 
likelihood map is relatively coarse (Figure 6d), the 
resulting AOG is quite accurate.

To localize the sound sources from the AOG, we used 
a threshold of 70% probability to isolate peaks. This 
threshold can significantly affect the number and loca-
tions of the sources – in general, increasing the threshold 
decreases the number of sources found, and can increase 
or decrease the location accuracy depending on the shape 
of the peaks.  The 70% used here was chosen empirically 
from the robustness test discussed later as a robust and 
consistent threshold across various workspaces.  Here, 
using averages for the peaks weighted based on each 

Figure 6.  Likelihood maps for one source, for (a) mi-
crophones a and c, (b) microphones a and b, (c) micro-
phones b and c, and (d) combined

Figure 7.  Auditory occupancy grid for simulated robot 
and sources (represented by asterisks)
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nearby point’s probability, 
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we calculate each peak’s weighted center.  The four 
sources were localized within 0.19, 4.3, 4.1, and 4.3 cm, 
respectively.

3.2. Robustness of the algorithm
As a test of the robustness of the AOG algorithm to 

source location and distribution, we simulated 100 four-
sound-source environments and located the sources in 
them.  For each environment, the four sound sources 
were randomly placed among the nine possible locations 
shown in Figure 8.  The AOG simulation mapped each 
acoustic environment, and then located sources based on 
the resulting peaks.  From initial tests, we empirically 
chose a threshold of 70% and a minimum peak weight of 
1.5 (units of probability).

The results show that AOGs are relatively robust to 

source positioning in the environment.  Of the 100 tested 
trials, the algorithm correctly found four sources 65% of 
the time, and incorrectly found three or five sources 19% 
and 16% of the time, respectively.  However, in the three-
source results there were no false positives (all sources 
found were valid), and in the five-source results there 
were no false negatives (all valid sources were found).   
Thus, the AOG located 381 out of the 400 sources (95%).

For the correctly located sources, the AOGs averaged 
a maximum localization error per environment of 8.7 
cm, with the worst localization error of 22 cm.  Figure 9 
shows the percent of sources found with each error, and 
within each error (probability and cumulative density 
functions).  The majority of sources were found with very 
small errors: over 50% were found within 3 cm, while 
90% of the sources were found within 9 cm.  This is 
surprisingly accurate for only nine sound measurements.

3.3. Implementation  
Next, we implemented AOGs on an in-house wireless 

mobile robot (see Figure 10) as a proof of concept.  Our 
goal was to validate the simulation and algorithm, not to 
conduct a full experiment.

The robotic system consists of two computers running 
MATLAB’s xPC Target software: a host desktop where 
the algorithms are programmed, and the robot’s onboard 
target PC-104 stack.  The robot’s computer includes 
an Advantech PCM-3375 CPU (533 MHz) carrying 
a 512 MB CompactFlash card as a hard drive, a Sensoray 
526 DAQ board, and miscellaneous input/output/protec-
tion circuitry.  Algorithms are programmed on the host 
computer in Simulink, compiled into C code via Real-
Time Workshop, ported to the robot via xPC, and run 
there as a kernel.  Data can be ported back to the host 
computer for additional analysis and plotting.

The robot uses three Audio-Technica MT830c omnidi-
rectional condenser lavalier microphones and drive motor 
encoders.  The microphones are attached to 20-cm arms 
extending radially, as modeled in the simulation, with 
onboard preamplifiers.

The four sound sources were selected to give a range 
Figure 8. Robot’s path (same as before) and possible 
source locations for the robustness test

Figure 9.  Number of sources found in the robustness test 
with each error value (probability density), and within 
each error value (cumulative density)

Figure 10.  Photograph of the mobile robot, with PC-104 
stack, three-microphone array, and wireless Ethernet 
bridge
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of sounds typical of a mobile robot’s environment.  They 
were (recall the numbering as shown in Figure 5):
1. A knocking at approximately 5 Hz, to create distinct 

high-frequency beats in the microphone recordings.
2. A recording of classical music, with a mix of long 

tones and regular beats.
3. A recording of a human speaking, with irregular 

patterns and frequencies.
4. An electric shaver, with relatively constant frequen-

cies.
The sound sources were not all at the same volume – 

source 1 (tapping) and source 4 (shaver) were both louder 
than the other two (as in the simulation).  The sources 
were positioned facing up (perpendicular to the robot’s 
workspace) to minimize directionality of the sound, since 
the current algorithm assumes omnidirectionality.

The robot traveled around the 5x5 meter workspace as 
shown previously in Figure 5.  At each location, it briefly 
stopped moving and recorded 0.2 seconds of sound at 
5000 Hz, generated a sensor grid for that location from 
a 1024-sample correlation window, and updated its AOG.  

Figure 11 shows a comparison between sensor grids 
from the simulated and real robots, when the robot is in 
the center of its workspace.  In the plots, the color corre-
sponds to probability of a source, with white representing 
90% probability, to black representing 10% probability.  
The sensor maps correctly locate the sounds sources since 
the white beams point to them.  The sensor maps in Figure 
are similar, giving credence to our simulation.  Recall that 
the simulation used simple models for the sound sources 
and microphones.

The overall AOG is shown previously in Figure 1, 
where lighter colors correspond to higher probability.  The 
map correctly locates the sound sources, with the highest 
contour lines representing 97% confidence (contours are 
at 24, 49, 73 and 97%).  Even though the four sources 
had various volumes, they were all strongly located (see 
Figure 12): distance errors were 10.3, 7.3, 8.4, and 0.4 
cm, respectively.  This AOG is similar to the one from 
the simulation.  

In addition, two small peaks can be seen in the bottom 
right and upper right of the grid (in both the simulation 
and the implementation) – these are false peaks can be 
eliminated with further measurements, or simply based on 
their size.  From analyzing the map as it was generated, 
it appears that these peaks are artifacts of the sensor grids 
radial-direction inaccuracy.  

The AOGs are still effective at locating the sound 
sources in this application when using time-domain 
correlations.  Figure 13 shows the robot’s AOG using 
time-domain correlations (same contours).  While not 
as accurate as the previous GCC version, it still locates 
the four sources from nine measurements.  The sensor 
maps generated during the time-domain analysis are 
coarser (recall Figure 3), and unweighted like the GCC, 
yet the AOG algorithm is still successful.  This result is 
promising for applications where the Fourier transforms 
needed by the GCC are too computationally intensive.

The AOGs show that the robot successfully located 
the four various sources with only nine measurements.  
The robot now has an understanding of the auditory land-

Figure 11.  Sensor maps for the central location in the 
workspace, for (a) the simulation and (b) the implemen-
tation.  Color corresponds to probability, from white for 
90% to black for 10%.  The white beams correctly point 
to the sources (asterisks)

Figure 12. Sources’ locations as calculated from the 
AOG.  All sources were correctly located within 20 cm
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scape and can use that knowledge for various tasks.  In 
the following section, we present and implement several 
uses for the AOG.

4. Using AOGs
We now discuss several uses for the AOG, using the 

real-world AOG found via the implementation.

4.1. Moving to a sourceless location
In some situations, such as when the robot is listening 

for commands or suspicious sounds, it may be beneficial 
for the robot to move to a position of low source-proba-
bility.  This is not the same as moving to the quietest loca-
tion in the workspace, but it is moving to the area that is 
least likely to contain an interfering source.  We can find 
this location from the AOG, using a similar method to 
the source locating.  Using a threshold of 5% probability 
and weighted average of the largest space, we get the map 

and location shown in Figure 14.  When commanded, the 
robot moved to this location.

4.2. Line of hearing
Another situation that benefits from the acoustical 

knowledge is when attempting to track a moving source 
that the robot is listening to.  Suppose the robot is trying 
to listen to a source of interest, such as a human speaking.  
Clearly, the best method for hearing the human is to move 
next to it.  But suppose the human is moving in the given 
workspace across the bottom border from left to right, 
while the robot is constrained to the top border – the robot 
is listening to the human from across the room.

In this application, the robot can use standard beam-
forming techniques [13] to focus the listening towards the 
human, but it is also advantageous for the robot to posi-
tion itself along its border such that there are no sources 
between it and the human.  That is, sources between the 
robot and human will hurt the robot’s listening capability.

The robot can use its mobility and the AOG to main-
tain a low-source-probability “line-of-listening” with the 
source of interest. 

We implemented this with a discrete path-step algo-
rithm. A human moved across the bottom border from 
left to right at a constant speed.  The robot started on the 
left of the top border and moved intelligently along that 
border, at twice the speed of the human.  At each time 
step, the robot had several possible locations to move 
to – to the left or to the right – based on its speed (and 
bounded by the edges of the map).  For each possible 
location, there exists a line-of-listening, l(x) with n points, 
from robot to human made up of map locations and their 
corresponding probabilities.  The robot assigned a weight, 
w(x), to each possible location based on the probability 

Figure 13. Auditory occupancy grid for the robot’s work-
space using time-domain correlations.  The sound sourc-
es are still located

Figure 15. Line-of-listening tracking of human speaker.  
The human moved along one border, while the robot 
moved along the opposite so as to minimize the prob-
ability of a sound source between them.  The second plot 
compares the intelligent tracking to default tracking

Figure 14. Sourceless location as calculated from  
the AOG
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that a source exists somewhere on that line, by combining 
each point’s probability via standard statistics: 

 ( )
(1 2) (1) (2) (1) (2)

( ) ( ) (1 2 3... ) .
p p p p p

w p l p n
∪ = + −

= = ∪ ∪ ∪x x

It then moved to the position with the lowest 
weight.  This weighting could be of another form, such 
as maximum probability seen, average probability, etc.  
Figure 15 shows the path taken by the human and robot. 
It also shows the probability of a source along the line-
of-listening for both a default exact-position tracking and 
the intelligent weighted tracking.  The weighted tracking 
reduced the probability of sound interference, and thus 
improved the ability of the robot to listen to the human.

5. Conclusions and Future Work
We have successfully mapped four sound sources in 

two dimensions using a three-microphone mobile robot.  
The simulation, robustness test, and implementation show 
that high quality, accurate AOGs are achievable from 
only nine measurements, for various source locations.  
We have also successfully demonstrated several uses for 
these auditory maps.

We are continuing to research AOGs.  For example, the 
AOGs presented here were created when our mobile robot 
paused its motion to maintain position and eliminate self-
generated noise while the sound segments were recorded.  
This procedure may not be desirable in all applications.  
Can the maps be generated on the fly without any pauses?

In addition, the robot’s workspace did not include any 
sound-echoing surfaces or obstacles that typically degrade 
a robot’s listening capability.  The AOGs should be robust 
enough to strong reverberations – are they?

AOGs could prove useful in some three-dimensional 
applications, such as factories or car engines.  Once again, 
the AOGs should be easily extendable – are they?

One limitation of all occupancy grids is that they are 
designed to record static information.  As mentioned 
earlier, work by Wolf [12] and others (e.g., [31]) suggest 
that occupancy grids can be used for dynamic environ-
ment, and there has been limited robotic sound localiza-
tion of moving sources (e.g., [13,15]).  How can AOGs 
be applied to dynamic environments?

The inverse sensor model used here was a simple 
scaling from likelihood values (from the cross correla-
tion) to a probability range.  This model has limitations 
when the likelihood map is near unity.  For example, if 
the robot is far from all sources, the likelihood map will 
be near zero – each cell receives a low likelihood from the 
cross correlation.  With our sensor model, however, the 
slightly-more-likely cells are scaled to high probabilities, 
even though the likelihood map implies that they probably 
don’t contain sources.  One way to mitigate this effect is 
to use the maximum and minimum likelihoods seen at any 
robot pose as the boundaries for the scaling.  However, 
this is post hoc information, and we found it gives too 
much weight to only one or two likelihood maps.  How 
can the inverse sensor model be improved?

Finally, in this paper we have demonstrated only a 
few sample applications for AOGs, although many more 

exist.  What lessons can be learned from the application 
of AOGs to new situations?
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