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Abstract: 
Web winding systems allow the operations of unwind-
ing and rewinding of various products including plastic 
films, sheets of paper, sheets, and fabrics. These opera-
tions are necessary for the development and the treat-
ment of these products. Web winding systems generally 
consist of the same machine elements in spite of the di-
versity of the transported products. Due to the wide rang 
variation of the radius and inertia of the rollers the sys-
tem dynamic change considerably during the winding/ 
unwinding process. Decentralized PI controller for web 
tension control and linear speed control are presented in 
this paper. The PI control method can be applied easily 
and is widely known, it has an important place in control 
applications. Simulation results show the effectiveness of 
the proposed linear speed and tension controller for web 
winding multi motors systems.

Keywords: multi motors web winding system, PI con-
troller, tension control, linear speed control

1.  Introduction
Many types of materials are manufactured or proc-

essed in the form of a sheet or a web (textile, paper, 
metal, etc.) which then couples the processing rolls and 
the associated motor drives. The drives are required to 
work in synchronization to ensure quality processing 
and rewinding of the product. Tension is a very impor-
tant web manufacturing and process setting. If severe 
tension variations occur, rupture of the material during 
processing or degradation of product quality can occur, 
resulting into significant economic losses due to ma-
terial loss and reduced production rate. Therefore, in 
order to minimize a potential loss, the need arises to ad-
equately control the tension within a predefined range 
in a mo-ving web processing section. Henceforth, due 
to their importance in industry, tension control prob-
lems have drawn the attention of many researchers. One 
problem is the establishment of a proper mathematical 
model. In [1], a mathematical model of a web span is 
developed, but this model does not predict the tension 
transfer. This problem was addressed in [2] and [3], with 
the assumption that the strain in the web is very small. 
However, the form of the nonlinear and coupling terms 
in the model are not always convenient for controller 
design so that other model structures, with comparable 
precision, are desirable. Several control strategies have 
been suggested to maintain quality and reduce sensitiv-
ity to external disturbances, including centralized mul-
tivariable control schemes for steel mill applications 

[4], [5] and an H∞ control strategy to decouple web 
velocity and tension [3], [6]. Also, for tension regula-
tion in a web transport system, [7] proposed a control 
method based on a unique active disturbance rejection 
control (ADRC) strategy, which actively compensates 
for dynamic changes in the system and unpredictable 
external disturbances.  In [8] and [9], Port-Controlled 
Hamiltonian with Dissipation (PCHD) modeling is con-
sidered to develop stabilization strategies with a physi-
cal interpretation and motivation of the control action, 
interpreted as the realization of virtual dampers added 
to the system, which  resulted into a type of dual ac-
tion controller with velocity feedback and velocity er-
ror feedback terms. Some limited improvements were 
obtained in disturbance rejection properties and robust-
ness with respect to some parameter variations. The 
conventional PI control dominates industry, it is simple 
and easy to implement [15]. Tuning of PI controllers 
is intuitive and is well accepted by practitioners. PIs 
can at most achieve a compromise in performance in 
terms of system response speed and stability, and this 
approach becomes insufficient at the increasingly high 
web velocities demanded by the industry and with thin 
or fragile materials. Nonlinearities that appear at high 
velocities, disturbance rejection properties and robust-
ness to some parameter variations must be accounted 
for by the controller. A decentralized nonlinear PI con-
troller is proposed to respond to this demand. The mod-
el of the winding system and in particular the model of 
the mechanical coupling are developed and presented 
in Section 2. Section 3 shows the controllers design for 
winding system. Section 4 shows the Simulation results 
using Matlab Simulink. Finally, the conclusion is drawn 
in Section 5.

2.  System model 
In this system, the motor M1 carries out unreeling 

and M3 is used to carry out winding, the motor M2 
drives two rollers via gears “to grip” the band (Fig. 1). 
The stage of pinching off can make it possible to isolate 
two zones and to create a buffer zone [8, 9]. The ob-
jective of these systems is to maintain the linear speed 
constant and to control the tension in the band. 

The used motors are three phase induction motors 
type which each one is supplied by an inverter voltage 
controlled with Pulse Modulation Width (PWM) tech-
niques. A model based on circuit equivalent equations 
is generally sufficient in order to make control synthe-
sis. The electrical dynamic model of three-phase Y-
connected induction motor can be expressed in the d-q 
synchronously rotating frame as [13]:
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Where the parameters of the PI controller are 

K LP = 2 r                             (17)

K LI = 2 2r                            (18)

In the sequel, the decentralized structure shown on 
(Fig. 4) will be considered. The control structure is com-
posed of 3 elementary controllers associated respectively 
to each motor. 

The cascade control configuration uses the tension as 
primary measurement and velocity as secondary meas-
urement. The manipulated variable is the torque applied 
to the motors.  

4. Simulation Results
The system was simulated in the MATLAB SIMU-

LINK environment for a three motors winding system 
the winding system and the control system parameters 
are given in Appendix.

As shown in Fig. 5, Fig. 8 and Fig. 11. An improve-
ment of the linear speed is registered, and has follows 

the reference speed for PI controller after 0.3 sec, in all 
motors, with the overshoot in linear speed (5%). Fig. 6 
and Fig. 7 show that the radius and the inertia moment of 
unwinder M1 decrease compared with the radius and the 
inertia moment of Motor M3 is increase shown in Fig. 9 
and Fig. 10. 

Fig. 4. Decentralized control for web winding system
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Fig. 5. The linear speed of unwinder M1 

Fig. 6. The radius of unwinder M1 

Fig. 7. The inertia moment of unwinder M1 

0 1 2 3 4 5
0

5

10

15

20

25

Times (s) 

V
1,V

re
f [

m
/s

ec
]

V1

Vref

While introducing the anticipatory term 1 2U U U= +  
where 2 ( )i iU V ES T= − −  then we gets 

1idT U
dt L

=                                                                   (16) 

This equation allows us to define the structure of 
controller shows in the Fig 3. Note that this structure 
contains a controller, an anticipation term as well as a 
linearization. 
 
 

 
 
 
 
 
 

Where the parameters of the PI controller are  

2PK L= r  (17) 

22IK L= r (18) 
In the sequel, the decentralized structure shown on 

(Fig.4) will be considered. The control structure is 
composed of 3 elementary controllers associated 
respectively to each motor.  

The cascade control configuration uses the tension as 
primary measurement and velocity as secondary 
measurement. The manipulated variable is the torque 
applied to the motors.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.  Si 

 

 

 

 

4. Simulation Results 

The system was simulated in the MATLAB SIMULINK 
environment for a three motors winding system the winding 
system and the control system parameters are given in 
Appendix. 

As shown in Fig. 5, Fig. 8 and Fig. 11. An improvement of 
the linear speed is registered, and has follows the reference 
speed for PI controller after 0.3 sec, in all motors, with the 
overshoot in linear speed (5%). Fig. 6 and Fig. 7 show that the 
radius and the inertia moment of unwinder M1 decrease 
compared with the radius and the inertia moment of Motor M3 
is increase shown in Fig. 9 and Fig. 10.  
 

 
 

 
 

 

0 1 2 3 4 5
0

5

10

15

20

25

Times (s) 

V
1,V

re
f [

m
/s

ec
]

V1

Vref

0 1 2 3 4 5
1.24

1.242

1.244

1.246

1.248

1.25

Times (s)

R
1 [

m
]

0 1 2 3 4 5
0.0215

0.0216

0.0217

0.0218

0.0219

0.022

Times (s)

J 1 [
N

.m
]

R
[

]

PI 
Controller )(

1

1TES −−

T2 

T2-ref 

U2 

V2-ref + 

+ 

T2 T3 

IFOC IFOC IFOC 

Linear speed 
Controller

Linear speed 
Controller

Linear speed 
Controller 

Tension 
Controller

Tension 
Controller 

T2-ref T3-ref 

V2-ref 

M1 

M2 

M3 

V2 

T3 T2 

Fig. 3. Tension controller 

Fig. 4. Decentralized control for web winding system 

Fig. 5. The linear speed of unwinder M1 

Fig. 6. The radius of unwinder M1 

Fig. 7. The inertia moment of unwinder M1 

While introducing the anticipatory term 1 2U U U= +  
where 2 ( )i iU V ES T= − −  then we gets 

1idT U
dt L

=                                                                   (16) 

This equation allows us to define the structure of 
controller shows in the Fig 3. Note that this structure 
contains a controller, an anticipation term as well as a 
linearization. 
 
 

 
 
 
 
 
 

Where the parameters of the PI controller are  

2PK L= r  (17) 

22IK L= r (18) 
In the sequel, the decentralized structure shown on 

(Fig.4) will be considered. The control structure is 
composed of 3 elementary controllers associated 
respectively to each motor.  

The cascade control configuration uses the tension as 
primary measurement and velocity as secondary 
measurement. The manipulated variable is the torque 
applied to the motors.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.  Si 

 

 

 

 

4. Simulation Results 

The system was simulated in the MATLAB SIMULINK 
environment for a three motors winding system the winding 
system and the control system parameters are given in 
Appendix. 

As shown in Fig. 5, Fig. 8 and Fig. 11. An improvement of 
the linear speed is registered, and has follows the reference 
speed for PI controller after 0.3 sec, in all motors, with the 
overshoot in linear speed (5%). Fig. 6 and Fig. 7 show that the 
radius and the inertia moment of unwinder M1 decrease 
compared with the radius and the inertia moment of Motor M3 
is increase shown in Fig. 9 and Fig. 10.  
 

 
 

 
 

 

0 1 2 3 4 5
0

5

10

15

20

25

Times (s) 

V
1,V

re
f [

m
/s

ec
]

V1

Vref

0 1 2 3 4 5
1.24

1.242

1.244

1.246

1.248

1.25

Times (s)

R
1 [

m
]

0 1 2 3 4 5
0.0215

0.0216

0.0217

0.0218

0.0219

0.022

Times (s)
J 1 [

N
.m

]

R
[

]

PI 
Controller )(

1

1TES −−

T2 

T2-ref 

U2 

V2-ref + 

+ 

T2 T3 

IFOC IFOC IFOC 

Linear speed 
Controller

Linear speed 
Controller

Linear speed 
Controller 

Tension 
Controller

Tension 
Controller 

T2-ref T3-ref 

V2-ref 

M1 

M2 

M3 

V2 

T3 T2 

Fig. 3. Tension controller 

Fig. 4. Decentralized control for web winding system 

Fig. 5. The linear speed of unwinder M1 

Fig. 6. The radius of unwinder M1 

Fig. 7. The inertia moment of unwinder M1 

Fig. 5. The linear speed of unwinder M1

Fig. 6. The radius of unwinder M1

Fig. 7. The inertia moment of unwinder M1

 

 
 

 
 

 
 

 
 

 
 

From the figures (14-15), we can say that: the tension 
follows the reference tension with application of PI controller. 

 It appears clearly that the classical control with PI 
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better performances in both of the overshoot control and the 
tracking error. However is easy to apply.  
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Fig. 8. The linear speed of Motor M2

Fig. 9. The radius of motor M2
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From the Figures (14-15), we can say that: the ten-
sion follows the reference tension with application of PI 
controller.

 It appears clearly that the classical control with PI 
controller in linear speed control and tension control of-
fers better performances in both of the overshoot control 
and the tracking error. However is easy to apply. 

Table 1. System parameters
 

E 1.6e8 L1= L2= L3[m] 5

S [m2] 2.75e-3 ƒn [Hz] 50

R1 [m] 1.25 T1ref= T2ref [N] 4 

R2=R3 [m] 0.25 V2ref  [m/s] 20

J01=J02= J03[Kg.
m2] 0.022 p 2

5. Conclusion
The objective of this paper consists in developing 

a model of a winding system constituted of three mo-
tors that is coupled mechanically by a strap whose ten-
sion is adjustable and to develop the methods of analysis 
and synthesis of the commands robust and their applica-
tion to synchronize the three sequences and to maintain 
a constant mechanical tension between the rollers of the 
system.  
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Fig. 10. The inertia moment of Motor M2
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Fig. 11. The linear speed of winder M3
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Figure.10 – The inertia moment of Motor M2. 

Fig. 12. The radius of winder M3

Fig. 13. The inertia moment of winder M3

 
 
 
   

 
Table 1. System parameters 

  
E 1.6e8 L1= L2= L3[m] 5 
S [m2] 2.75e-3 ƒn [Hz]  50 

R1 [m] 1.25 T1ref= T2ref [N] 4  

R2=R3 [m] 0.25 V2ref  [m/s] 20 

J01=J02= 
J03[Kg.m2] 

0.022 p 2 

 

5. Conclusion 

The objective of this paper consists in developing a 
model of a winding system constituted of three motors that 
is coupled mechanically by a strap whose tension is 
adjustable and to develop the methods of analysis and 
synthesis of the commands robust and their application to 
synchronize the three sequences and to maintain a constant 
mechanical tension between the rollers of the system.   

Computer simulations show the robustness and the 
performance of the winding system with the PI controllers, 
however PI control dominates industry and it is simple and 
easy to implement. 
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