
Abstract:

1. Introduction
In modern manufacturing systems, parallel manipu-

lators have become more and more popular for a variety
of technological processes, including high-accuracy po-
sitioning and high-speed machining [1], [2]. This gro-
wing attention is inspired by their essential advantages
over serial manipulators, which have already reached the
dynamic performance limits In contrast, parallel ma-
nipulators are claimed to offer better accuracy, lower
mass/inertia properties, and higher structural rigidity
(i.e. stiffness-to-mass ratio) [3].

These features are induced by their specific kinematic
structure, which resists the error accumulation in kine-
matic chains and allows convenient actuators location
close to the manipulator base. This makes them attrac-
tive for innovative robotic systems, but practical utiliza-
tion of the potential benefits requires development of
efficient stiffness analysis techniques, which satisfy the
computational speed and accuracy requirements of rele-
vant design procedures.

Generally, the stiffness analysis evaluates the effect
of the applied external torques and forces on the com-
pliant displacements of the end-effector. Numerically,
this property is defined through the “stiffness matrix” ,
which gives the relation between the translational/rota-
tional displacement and the static force/torque causing
this transition. As follows from mechanics, is 6×6 se
midefinite non-negative matrix, where structure may be
non-diagonal to represent the coupling between the
translation and rotation [4], [5]. Similar to other mani-
pulator properties (kinematical, for instance), the stiff-
ness essentially depends on the force/torque direction
and on the manipulator configuration [6].

The paper presents a new stiffness modelling method
for multi-chain parallel robotic manipulators with flexible
links and compliant actuating joints. In contrast to other
works, the method involves a FEA-based link stiffness eva-
luation and employs a new solution strategy of the kineto-
static equations, which allows computing the stiffness ma-
trix for singular postures and to take into account influence
of the external forces. The advantages of the developed
technique are confirmed by application examples, which
deal with stiffness analysis of a parallel manipulator of the
Orthoglide family.

Keywords: parallel robotic manipulators, stiffness ana-
lysis, kinetostatic modelling, loaded mode, Orthoglide
robot.
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Several approaches exist for the computation of the
stiffness matrix, such as the Finite Element Analysis
(FEA), the matrix structural analysis (MSA), and the vir-
tual joint method (VJM). The FEA method is proved to be
the most accurate and reliable, since the links/joints are
modeled with its true dimension and shape. Its accuracy
is limited by the discretisation step only. However,
because of high computational expenses required for the
repeated re-meshing, this method is usually applied at
the final design stage.

The MSA method incorporates the main ideas of the
FEA but operates with rather large flexible elements
(beams, arcs, cables, etc.). This obviously yields reduc-
tion of the computational expenses and, in some cases,
allows even obtaining an analytical stiffness matrix. This
method gives a reasonable trade-off between the accu-
racy and computational time, provided that link approxi-
mation by a beam element is realistic. Because it invol
ves rather high-dimensional matrix operations, it is not
attractive for the parametric stiffness analysis.

Finally, the VJM method, which is also referred to as
the “lumped modelling”, is based on the expansion of the
traditional rigid model by adding virtual joints, which
describe the elastic deformations of the manipulator
components (links, joints and actuators). This approach
originates from the work of Gosselin [7], who evaluated
parallel manipulator stiffness taking into account only
the actuators compliance. At present, there are a number
of variations and simplifications of the VJM method,
which differ in modelling assumptions and numerical
techniques. Generally, the lumped modelling provides
acceptable accuracy in short computational time. How
ever, it is very hypothetic and operates with simplified
stiffness models that are composed of one-dimensional
springs that do not take into account the coupling bet
ween the rotational and translational deflections. Recent
modification of this method allows to extend it to the
over-constrained manipulator and to apply it at any
workspace point, including the singular ones [8].

It should be stressed that the standard stiffness ana-
lysis focuses on the unloaded structures, for which there
were proposed several efficient semi-analytical techni-
ques [9]-[11]. However, for the loaded working modes,
the stiffness analysis is still an open problem. Besides,
with respect to this case, several authors introduced
a concept of the asymmetric Cartesian stiffness matrix
[12 14], but this concept was recently revised by
Kövecses and Angeles [5].

This paper presents a new stiffness modelling method
for the loaded parallel manipulators, which is based on
a multidimensional lumped-parameter model that repla-
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ces the link flexibility by localized 6-dof virtual springs
that describe both the linear/rotational deflections and
the coupling between them. The spring stiffness parame-
ters are evaluated using FEA modelling to ensure higher
accuracy. In addition, it employs a new solution strategy
of the kinetostatic equations, which allows computing
the stiffness matrix for the overconstrained architec-
tures, including the singular manipulator postures. This
gives almost the same accuracy as FEA but with essen-
tially lower computational effort because it eliminates
the model re-meshing through the workspace.

Let us consider a general -dof parallel manipulator,
which consists of a mobile platform connected to a fixed
base by identical kinematics chains. Each chain inclu-
des an actuated joint “Ac” (prismatic or rotational) fol-
lowed by a “Foot” and a “Leg” with a number of passive
joints “Ps” inside (Fig. 1). Generally, certain geometrical
conditions are assumed to be satisfied with respect to the
passive joints to eliminate the undesired platform rota-
tions and to achieve stability of desired motions. Typical
examples of such architectures include 3-PUU transla-
tional parallel kinematic machine [15], Delta parallel ro-
bot [16], Orthoglide parallel manipulator that imple-
ments the 3-PRPaR architecture with parallelogram-type
legs and translational active joints [17]. Here R, P, U and
Pa denote the revolute, prismatic, universal and paral-
lelogram joints, respectively.

To evaluate the manipulator stiffness, let us apply
a modification of the virtual joint method (VJM), which is
based on the lump modelling approach [7]. According to
this approach, the original rigid model should be exten
ded by adding the virtual joints (localized springs),
which describe elastic deformations of the links. Besides,
virtual springs are included in the actuating joints to take
into account stiffness of the control loop. Under such
assumptions, each kinematic chain of the manipulator
can be described by a serial structure, which includes
sequentially:
(a) a rigid link between the manipulator base and the ith

actuating joint (part of the base platform) described
by the constant homogenous transformation matrix

;
(b) a 1-d.o.f. actuating joint with supplementary virtual

spring, which is described by the homogenous matrix
function where is the actuated coordi-
nate and is the virtual spring coordinate;

2. Problem of stiffness modelling
2.1. Manipulator Architecture

2.2. Basic Assumptions

n

n

Fig. 1. Schematic diagram of a general n-dof parallel mani-
pulator (Ac – actuated joint, Ps – passive joints).

-

(c) a rigid “Foot” linking the actuating joint and the leg,
which is described by the constant homogenous
transformation matrix ;

(d) a 6-d.o.f. virtual joint defining three translational and
three rotational foot-springs, which are described
by the homogenous matrix function ,
where and correspond to the
elementary translations and rotations respectively;

(e) a 2-d.o.f. passive U-joint at the beginning of the leg
allowing two independent rotations with angles

, which is described by the homogenous
matrix function ;

(f) a rigid “Leg” linking the foot to the movable platform,
which is described by the constant homogenous ma-
trix transformation ;

(g) a 6-d.o.f. virtual joint defining three translational
and three rotational leg-springs, which are described
by the homogenous matrix function ,
where and correspond to
the elementary translations and rotations, respec-
tively;

(h) a 2-d.o.f. passive U-joint at the end of the leg
allowing two independent rotations with angles

, which is described by the homogenous
matrix function ;

(i) a rigid link from the manipulator leg the end-effector
(part of the movable platform) described by the ho-
mogenous matrix transformation .

The expression defining the end-effector location
subject to variations of all coordinates of a single kine-
matic chain may be written as follows

(1)

where matrix function is either an elementary
rotation or translation, matrix functions and

are compositions of two successive rotations,
and the spring matrix is composed of six elemen-
tary transformations.

In general, the stiffness model describes the resis-
tance of an elastic body or a mechanism to deformations
caused by an external force or torque [18]. For relatively
small deformations, this property is defined through the
''stiffness matrix” , which defines the linear relation

(2)

between the six-dimensional translational/rotational dis-
placements , and
the static forces/torques
causing this transition. Here, the vector

includes all passive joint coordinates, the vector
collects all virtual joint coordi-

nates, is the number of passive joins, is the number of
virtual joints. Usually, the manipulator is assembled with-
out internal preloading and the vector is equal to zero.

However, for the loaded mode, similar relation is

2.3. Problem statement

K
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(6)

where is the aggregated vector
of the virtual joint reactions,

is the aggregated spring stiffness matrix of the size
m×m, and is the spring stiffness matrix of the corres-
ponding link. Similarly, one can define the aggregated
vector of the passive joint reactions

but, at the equilibrium, all its components must be
equal to zero

(7)

Further, let us apply the principle of virtual work assu-
ming that the joints are given small, arbitrary virtual dis-
placements in the equilibrium neighbourhood. Then,
the virtual work of the external force applied to the end-
effector along the corresponding displacement

is equal to the sum
. For the internal forces, the virtual work includes only

one component , since the passive joints do not
produce the force/torque reactions (the minus sign takes
into account the adopted directions for the virtual spring
forces/torques). Therefore, since in the static equilibrium
the total virtual work is equal to zero for any virtual dis-
placement, the equilibrium conditions may be written as

(8)

This gives additional expressions describing the
force/ torque propagation from the joints to the end-
effector.

Hence, the complete kinetostatic model consists of
four matrix equations (5)…(8) where either or are
treated as known, and the remaining variables are consi-
dered as unknowns. Since the matrix is non-singular
(it describes the stiffness of the virtual sprigs), the
variables can be expressed using equations (5)
...(8). This yields substitution allo-
wing reducing the kinetostatic model to system of two
matrix equations with unknowns and , which can be
written in the matrix form as

(9)

where the sub-matrix describes the
spring compliance relative to the end-effector, and the
sub-matrix takes into account the passive joint influ-
ence on the end-effector motions. Therefore, for a sepa-
rate kinematic chain, the desired stiffness matrix
defining the motion-to-force mapping

, (10)

can be computed by the direct inversion of (6+n)×(6+n)
matrix in the left-hand side of (10) and extracting from it
the 6×6 sub-matrix with indices corresponding to .

Let us assume that, due to the external force , the
manipulator is elocated from the initial (unloaded)

F

F

F

F

K

F

via

3.2. Static equilibrium for the loaded
configuration

defined in the neighbourhood of the static equilibrium,
which corresponds to another configuration of the ma-
nipulator that is caused by external forces\torques

. Respectively, in this case, the stiffness model descri-
bes the relation between the increments of the force

and the position

(3)

where and denote the loaded
position of the manipulator, and are the devia-
tions of the passive joint and virtual spring coordinates.

Let us also define the geometry of the manipulator in
the Cartesian space as

, (4)

where the function is defined by the transforma-
tion (1), and the vector describes the three-
dimensional position and orientation

of the end-effector with respect to the
Cartesian axes.

Hence, the problem is to find the static equilibrium
of the considered manipulator and to linearise relevant
force/position relations.

3. Stiffness model for the loaded mode
To derive the desired stiffness model, let us divide the

problem into three sequential subtasks that are solved for
each kinematic chain separately: (i) computing the stiff-
ness matrix for the unloaded mode, (ii) finding the static
equilibrium for the loaded configuration, and (iii) obtain-
ing the stiffness model for the loaded mode. At the final
stage, these results for separate kinematic chains are ag-
gregated, in order to obtain the stiffness of the entire
manipulator.

Let us define the unloaded configuration as
, where is computed the inverse

kinematic and is equal to zero (since there are no
preloads in the springs). Let us also assume that the
external force relocates the manipulator to the position

, which for small displacements
may be expressed as

(5)

where and

are the kinematic Jacobians with respect to the coordi-
nates , , which may be computed from (1) analytically
or semi-analytically, using the factorisation technique
proposed in [11].

For the kinetostatic model, which describes the force-
and-motion relation, it is necessary to introduce addi-
tional equations that define the virtual joint reactions to
the corresponding spring deformations. For analytical
convenience, all relevant expressions may be collected in
a single matrix equation

3.1. Stiffness model in the neighbourhood
of unloaded configuration

via
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position to a new position ,
which satisfies the condition of the mechanical equili-
brium. If the displacement is rather small, the
new configuration can be computed easily, using
results from the previous subsection. However, in general
case, the stiffness model is highly non-linear and compu-
ting requires some additional efforts. Besides, for
computational reasons, let us consider the dual problem
that deals with determining the external force and the
manipulator configuration that correspond to the
output position .

For the considered problem, the basic equations can
be written as

, (11)

where the first equation defines the manipulator geo-
metry and the remaining ones are derived from statics. It
is evident that there is no general method for analytical
solution of this system and it is required to apply nume-
rical techniques.

To derive the numerical algorithm, let us linearise the
kinematic equation in the neighbourhood of the

(12)

and rewrite the static equations as

(13)

This leads to a linear algebraic system of equations with
respect to

(14)

which gives the following iterative scheme

(15)

where the starting point can be chosen using the non-
loaded configuration, i.e. .

As follows from computational experiments, for typi-
cal values of deformations the proposed iterative algo-
rithm possesses rather good convergence (3-5) iterations
are usually enough). However, in the case of buckling or
in the area of multiple equilibriums, the problem of con-
vergence becomes rather critical and highly depends on
the initial guess. Further enhancement of this algorithm

F

t

may be based on the full-scale Newton-Raphson techni-
que (i.e. linearisation of the static equations in addition
to the kinematic one); this obviously increases computa-
tional expenses but potentially improves convergence.

In the neighbourhood of the loaded configuration,
the stiffness model is defined with respect to the force
and position increments , , which are assumed to be
small (see equation (3)). To derive this model, let us con-
sider two equilibriums corresponding to the manipulator
variables and
respectively.

For these settings, the kinematic equation is reduced
to

, (16)

while the statics yields two set of equations

(17)

and

(18)

where and are the differentials of the
Jacobians due to changes in . After relevant trans-
formation and neglecting high-order small terms, equa-
tions (17), (18) may be rewritten as

(19)

where , are the Hessian matrices of the
scalar function :

(20)

This allows to apply substitution for and to obtain sys-
tem of two matrix equations with unknowns and

, (21)

which generalizes (9) for the case of the loaded
equilibrium.

Here .

Therefore, for a separate kinematic chain, the desired
stiffness matrix defining the displacement-to-force
mapping (3) can be computed by direct inversion of the

3.3. Stiffness model for the loaded configuration
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matrix in the left-hand side of (21) and extracting from it
the left-upper 6×6 sub-matrix. Finally, when the stiffness
matrices for all kinematic chains are computed, the stiff-
ness of the entire multi chain manipulator can be found

by simple summation . This follows from the

superposition principle, since the total external force cor-
responding to the end-effector displacement (the
same for all kinematic chains) can be expressed as

where . It should be stressed that
usually the matrices are not invertible but for the en-
tire manipulator, the stiffness matrix is
positive definite and invertible for all non-singular
postures.

The actuator compliance, describing by the scalar pa-
rameter and by 6×6 matrix , depends on both the
servomechanism mechanics and the control algorithm.
Since most modern actuators implement the digital PID
control, the main contribution to the compliance is pro-
duces by the mechanical transmissions. The latter are
usually located outside the feedback-control loop and
consist of screws, gears, shafts, belts, etc., whose flexibi-
lity is comparable with the flexibility of the manipulator
links. Because of the complicated mechanical structure
of the servomechanisms, these parameters are usually
evaluated from static load experiments, by applying the
linear regression to the experimental data.

Following a general methodology, the compliance of
a manipulator link (foot or leg) is described by 6×6 sym-
metrical positive definite matrices , correspon-
ding to 6-d.o.f. springs with relevant coupling between
translational and rotational deformations. This distin-
guishes our approach from other lumped-based techni-
ques, where the coupling is neglected and only a subset
of deformations is taken into account (presented by a set
of 1-d.o.f. springs).

The simplest way to obtain these matrices is to ap-
proximate the link by a beam element for which the non-
zero elements of the compliance matrix may be expressed
analytically. However, for certain link geometries, the
accuracy of a single-beam approximation can be insuf-
ficient. In this case the link can be approximated by a
serial chain of the beams, whose compliance is evaluated
by applying the same method (i.e. considering the kine-
matic chain with 6-d.o.f. virtual springs, but without
passive joints). This leads to the resulting compliance
matrix , where and incorpo-
rate the Jacobian and the compliance matrices for all
virtual springs.

For complex link geometries, the most reliable results
can be obtained from the FEA modelling. To apply this ap-
proach, let us introduce an auxiliary 3D object, a „pseu-
do-rigid” body, which is used as a reference for the com-

4. Evaluating the model parameters

4.1. Actuator compliance

4.2. Link compliance

4.3. FEA-based evaluation of model parameters

pliance evaluation. Besides, the link origin must be fixed
relative to the global coordinate system. Then, sequen-
tially and separately applying forces and tor-
ques to the reference object, it is possible
to evaluate corresponding linear and angular displace-
ments, which allow computing the stiffness matrix co-
lumns. The main difficulty here is to obtain accurate dis-
placement values by using proper FEA-discretization
(“mesh size”). As follows from our study, the single-beam
approximation of the Orthoglide links gives accuracy of
about 50%, and the four-beam approximation improves it
up to 30% only (compared to the FEA-based method that
is proved pro-ducing very accurate results).

It worth mentioning that here, in contrast to the
straightforward FEA- modelling, which requires re-com-
puting for each manipulator posture, it is needed only
a single evaluation of the link stiffness. The latter essen-
tially improves the computational speed.

To demonstrate efficiency of the proposed methodo-
logy, let us apply it to the comparative stiffness analysis
of two 3-d.o.f. translational mechanisms, which employ
Orthoglide architecture. CAD models of these mecha-
nisms are presented in Fig. 2.

5. Application examples

Fig. 2. Kinematics of two 3-dof translational mechanisms
employing the Orthoglide architecture.
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First, let us derive the stiffness model for the sim-
plified Orthoglide mechanics (3-PUU), where the legs are
comprised of equivalent limbs with U-joints at the ends.
Accordingly, to retain major compliance properties, the
limb geometry corresponds to the parallelogram bars
with doubled cross-section area. The geometrical models
of separate kinematic chains can be described by the ex-
pression (1), where the product components are defined

the standard translational/rotational operators. Be-
cause for the rigid manipulator the end-effector moves
with only translational motions, the nominal values of
the passive joint coordinates are subject to the specific
constrains , which are implicitly in-
corporated in the direct/inverse kinematics.

For the second architecture (3-PRPrP) it is necessary
to derive first the stiffness matrix of the parallelogram.
Using the adopted notations, the parallelogram equiva-
lent model may be written as

(22)

where, compared to the above case, the third passive jo-
int is eliminated (it is implicitly assumed that ).
On the other hand, the original parallelogram may be
split into two serial kinematic chains (the “upper” and
“lower” ones). Hence, the parallelogram compliance ma-
trix may be also derived using the proposed technique
that yields an analytical expression [11].

via

Using this model and applying the proposed tech-
nique, there were computed the compliance matrices for
both architectures and for three typical manipulator pos-
tures , or (see Tables 1 and 2). As follows from
the comparison, the parallelograms allow increasing the
rotational stiffness roughly in 10 times.

The second conclusion is related to the stiffness com-
parison for the unloaded and loaded modes. It was assu-
med that the loading (Table 3) leads to the translational
deflection of 0.5 mm in all Cartesian directions but the
platform orientation remains the same. The obtained
results confirm influence of the loading on the manipula-
tor stiffness. In particular, some elements of the stiffness
matrix may increase up to 45%, depending on the wor-
king point ( , or ). Also, the 3-PUU manipulator
is more sensitive to the external loading than its coun-
terpart 3-PRPaR. This justifies application of 3-PRPaR
architecture for high-speed machining.

The paper proposes a new systematic method for com-
puting the stiffness matrix of multi-chain parallel robo-
tic manipulators in the presence of the external loading
applied to the end-platform. It is based on multidimen-
sional lumped model of the flexible links, whose para-
meters are evaluated via the FEA modelling and describe
both the translational/rotational compliances and the
coupling between them. In contrast to previous works,

Q Q Q

Q Q Q

0 1 2

0 1 2

6. Conclusions
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Table 1. Translational and rotational stiffness of the 3-PUU manipulator (unloaded and loaded modes).
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the method employs a new solution strategy of the kine-
tostatic equations and allows computing the stiffness
matrices for any given manipulator posture, including
the singular ones.

The efficiency of the proposed method was demons-
trated through application examples, which deal with
comparative stiffness analysis of two parallel manipula-
tors of the Orthoglide family. Relevant simulation results
have confirmed essential advantages of the parallelog-
ram-based architecture and validated adopted design of
the Orthoglide prototype. In future work, the method will
be extended to other parallel architectures composed of
several identical kinematic chains and for other types of
external loading.
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Table 2. Translational and rotational stiffness of the 3-PRPaR manipulator (unloaded and loaded modes).

Table 3. Wrenches for the loaded mode (t = ( 0.5, 0.5, 0.5, 0, 0, 0) ).
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