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Abstract: 
In this paper, we use non-invariant Fourier descriptors to 
derive transformation variables which allow us to opti-
mally localize and reorient robot-generated maps based 
on the map shapes in order to determine, in an automated 
way, the accuracy of the generated maps. Our method 
uses only 4 simple calculations for alignment, therefore 
is extremely fast and gives a very good optimization for 
data maps that contain consistent, high frequency noise.  
A drawback to this method is occlusions in the map which 
affect the low frequency Fourier descriptors and cause lo-
calization and orientation errors.  Preprocessing and opti-
mization can help minimize these drawbacks.  This appli-
cation can be easily adapted to other areas such as image 
comparison or fault detection.

Keywords: Fourier descriptors, robot mapping, SLAM, 
map comparison, image comparison 

1. Introduction
Simultaneous localization and mapping (SLAM) pro-

vides an effective way of helping robots localize them-
selves within a known environment or during an ongo-
ing mapping operation [1]-[3].  One way of determining 
how well generated maps (a.k.a. “data maps”) reflect 
the area they map is to compare them to a model map 
by digitally superimposing the data map with the model 
map in such an orientation that the optimal amount of 
black pixels gets covered.  In this paper, we present a 
new technique for automating this type of alignment.  

Until now, map alignment has been done by manually 
manipulating the maps such that superimpositioning of 
the maps gives the best visual match.  Validating maps 
this way is painstaking and time consuming [4] therefore 
it would be advantageous to automate the process.  To do 
so, some problems must first be overcome.  One problem 
is that simply maximizing the number of black pixels cov-
ered (in this paper, both data and model maps are assumed 
to be black and white images – the map lined in black 
against a white background) does not guarantee that the 
map has been oriented optimally.  Another issue to con-
sider is that when a map is automatically generated such 
as that done by mapping robots, no specific orientation or 
reference point gets defined which in turn presents a lack 
of a common reference point from which the software 
would be able to relate maps to one another.  Instead, we 
propose that the shape of the map’s boundary is enough to 
quantify the map’s orientation, position, and scale, which 
provides us with a way to relate maps to one another and 
allows us to calculate the differences between them.  

The technique we use to quantify map shapes is done 
in the frequency domain using Fourier Descriptors [5].  
Fourier descriptors have been used extensively in shape-
based image recognition [5]-[12].  They allow a simple 
method of image normalization [12] and, when doing so, 
if the Euclidean distance between the Fourier descrip-
tors of the two image borders falls within a given value, 
the images are considered the same.  In this research 
however, we pre-assume that the maps themselves are 
already the “same” regardless of the quality of the data 
map and, rather than normalize the images, we adapt the 
normalization techniques in order to determine the val-
ues of the transformation variables needed to reorient 
the images for superimposition.  At that point we can go 
about measuring how accurate the data maps are – not 
how similar they are to the model map. 

2. Fourier descriptors
The concept of Fourier descriptors were first intro-

duced by Zahn and Roskies [5] in 1972 and are simply 
the result of taking the discrete Fourier transform (DFT) 
[13] of a closed boundary.  Zahn and Roskies [5] used 
the Cartesian version of the DFT but the method we 
use is based on the complex interpretation as used by 
Granlund [6].  This is done by first expressing the points 
on the boundary as two parametric equations:  

    ( )  ,   0,  1,  2,   , 1nx n x n N= = … −          (2.1)

    ( )  ,  0,  1,  2,   , 1.= = … −ny n y n N          (2.2)

Now, if we consider the points to lie in the complex 
plane, we can combine the two parametric equations 
above into a single equation:

  ( ) ( ) ( )  for 0,  1,  2,...,  -1.= + =s n x n iy n n N      (2.3)

Using a parametric description in this way allows 
us to reduce the dimensionality of the boundary with-
out loss of information.  Using a complex interpretation 
also simplifies some of the math needed to solve for the 
transformation variables.  Once the data is expressed 
in this form, we can use the complex version of the 1D 
DFT on (2.3):
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The complex coefficients a(u) are the Fourier de-
scriptors of the boundary and are exactly the same as 
the Fourier coefficients produced by a DFT, with the 



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  6,      N°  1       2012

Articles16

only stipulation being that the DFT be done on a closed 
boundary.  The dual of (2.4) is: 
     

 
1

2 /

0

1
( ) ( )  for 0,  1,  2,...,  -1,π

−

=

= =∑
N

i un N

u

s n a u e n N
N

    
(2.5)

which can be used to regenerate the original sequence of 
points.

3. FD-based map alignment 
In image processing, a variety of transformations  

exist that transform an image from one form to another 
[14], [15]. Since image boundaries are part of the im-
ages themselves, transformations of an image cause the 
boundaries to be transformed the same way.  Conversely, 
using the same transformation values that were used to 
transform a border, when applied to the image body, will 
cause the image to be transformed in the same way as 
well.  In this paper we will be realigning the data map to 
match the model map by first finding the transformation 
values that allow us to align their borders.  Once these 
transformation values are found, we can use the same 
transformation values that we used to align the borders 
to align the maps themselves.  

Certain transformations on a boundary produce known 
relationships on their respective Fourier descriptors [14], 
[15].  Table I includes four of these: rotation (θ), scaling 
(α), translation (Δxy), and start point (n0).  Spatially, the 
point from which boundary point trace begins is irrel-
evant; eventually the border will be completely recreated 
once the trace returns to that first point at the end of the 
trace cycle.  However, in the frequency domain, since 
the sinusoids that make up the border are all dependent 
on the point that they are referenced from, starting from 
a different point will cause a phase shift in the sinusoids.    
Therefore, for boundary-related transformations, the first 
point that the trace begins from (i.e. the “start point”) 
is critical to a correct border reconstruction, thus we 
also include it in this paper.  Notably, non-uniform af-
fine transformations (i.e. “shear”) also have a chance of 
occurring during the mapping process but they would 
likely only occur due to severe problems with the hard-
ware and/or software thus we have omitted them from 
this discussion.  

Any transformation from one location/orientation to 
another can be minimized to a combination of one of 
each of the transformations listed in Table I.  The amount 
of each transformation is dependent on the transforma-
tion sequence taken [reference analytic, image process-
ing, robotics], but in this paper we set the sequence to 
be: rotation→scaling→start point→translation.  Our rea-
soning for using this sequence is that it gives us an easy 
way to determine the respective transformation values 
for a transformed image.  Combining each of the trans-
formation equations in Table I in the above sequence we 
get,

        
02 /( ) ( ) ( ).πθα δ−= + ∆� i un Ni

xya u e e a u N u      (3.1)

where  are the FDs of the transformed boundary. 
By exploiting the relationships in Table I, we can al-

gebraically manipulate the FDs of a map boundary and 
a transformed version of itself in such a way that we can 
find the values of the transformation variables of (3.1) 
using the equations summarized in (3.2)-(3.5).  
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where a indicates the FDs of the original border,  the FDs 
of the transformed border,  Δx=Re(Δxy), Δy=Im(Δxy), 
and k, m, p, q, and u are FD indices. Choosing which 
FDs to use in the equations can be done almost com-
pletely arbitrarily; however, derivation of the equations 
required that:

q=2p; p, q ≠ 0
α is real & positive
k ≠m; k, m ≠ 0.

While data maps and model maps refer to the same 
physical area, they are technically different, particularly 
from the software’s point of view.  In order to be able to 
relate the maps in software, we stipulate that data maps 
are copies of the model maps that have been transformed 
by some unknown amount and have been infused with 
noise.  In the case that the data map were a perfect copy 
of the model map with the inclusion of random, high fre-
quency noise, the FDs of the borders of both maps would 
be the same for all the FDs except the highest order FDs.  
It follows that we could determine the transformation 
values between the data and model map borders using 
only the lower-ordered FDs.  This makes sense because, 

Table I. Spatial-Frequency Transformation Relationship

Type Spatial Domain
(boundary)

Frequency Domain
(Fourier Descriptors)

 Identity ( )is n ( )ia u

 Rotation ( ) ( ) i
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Transformation types: rotation (θ), scaling (α), change 
in the starting point (n0), and translation (Δxy).  
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as indicated above, the lower-ordered FDs capture the 
location, orientation, and shape.  Higher-ordered FDs 
capture things like noise.  So, in this paper, rather than 
choosing the FD indices mostly arbitrarily, we select the 
first four FDs, FD(0)-FD(3) instead. Our reasoning for 
choosing is based in the geometric interpretation of the 
FDs.  References [7] and [16] gives some insight into 
this reasoning.

Given that we can calculate the transformation val-
ues from the FDs of a transformed boundary, and given 
the relationships between transformations on FDs and on 
the boundaries themselves, we can transform the border 
back to its original location by:
 

02 /1
( ) ( ( ) ) .π θ

α
−= − ∆� i nn N i

xys n s n N e e              (3.6)

Since we are comparing the maps themselves and 
not the borders, we can ignore the start point part of the 
equation and use simply the inverse transform,
 

1
( ) ( ( ) ) ,θ

α
−= − ∆� i

xys n s n N e                 (3.7)

and use the non-complex version,
 

Re[ ( )], Im[ ( )],= =� � � �x s n y s n                   (3.8)

in order to recreate the whole map.

4. Map comparison automation
In Fig. 1 we outline the steps taken during map com-

parison.  The potential exists for there to be breaks in 
continuity in the model boundary as well as “islands” 
such as objects within the map so preprocessing the 
model and test maps entails making sure that the map 
outline has no breaks.  We could automate the closing of 
gaps, however, considering that we only needed a few 
maps for validation, we found it was sufficient to fill 
in any gaps by hand.  Islands are eliminated by using 

only the outermost boundary of the map and ignoring all 
others.

We use the Moore boundary tracking algorithm [18] as 
described by [14] for finding the boundary of the model 
map and test maps.  In practice, we should only have to 
do this with the model map since our sensor of choice, 
the laser scanner, by its very nature, gives us a discre-
tized version of the boundary for the map.  Below we 
summarize the Moore tracking algorithm. 
1. Start in the upper left-hand corner of the map.  Scan 

the map from left to right, top to bottom until you 
reach the first black pixel in the map.  Denote the lo-
cation of that pixel as the start point, b0.

2. Define c0 as the “west” neighbor of b0 (the pixel to 
the immediate left of b0).  Starting at c0, examine the 
neighbors of b0 while moving in a clockwise direc-
tion.  Record the position of the first non-zero pixel 
as b1 and register this location as the second point on 
the boundary.  Let c1 be the point immediately pre-
ceding b1 in the sequence.  Store b1and b0 for later 
reference. If no neighbor is found, the pixel is a sin-
gular “pixel island”.  

3. Let b = b1, c = c1.
4. Starting at c, examine the neighbors of b in a clock-

wise direction, like above until the first black pixel is 
found.  Label the location for this pixel as b and the 
pixel just before it in the search sequence as c.  

5. Register b as the next point on the boundary and use 
this as the next evaluation pixel. 

6. Repeat steps 4 and 5 until b=b0 and the next bound-
ary point found is b1

Unsupervised automation of border extraction does 
not guarantee that the first black pixel you find will be 
on the border you want to compare.  Objects within or 
outside the map outline itself such as simple noise or 
a map legend could theoretically cause the software to 
find an unintended boundary.  To minimize this potential 
problem, we found that finding all the borders in the map 
and choosing the border that contains the largest area to 
be that which worked best.  This method may or may not 
solve all problems, but worked fine in our limited case. 

Once the border is found, the remaining steps are 
mostly straightforward.  Finding the Fourier descriptors 
of the maps, extracting the transformation variables, and 
performing the inverse transform on the test maps are 
as described in the previous sections.  It is important to 
reiterate that we are not “inverse-transforming” the test 
map border, instead we are reorienting the whole data 
map using the extracted transform variables in order to 
compare all portions of the maps. 

5. Results
Validation of our approach was done in two steps.  In 

the first step, we transformed the boundary of the model 
map shown in Fig. 2 using known transformation values.  
Each type of transformation was applied individually as 
well as a rotation→ scaling→ start point→ translation 
transformation.  The different transformations are super-
imposed with the model boundary in Fig. 3. Since we 
know by how much each of the transformed boundaries 
were transformed, when we extract the variables from 
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Figure 1.  Procedure used in map comparison automa-
tion
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the transformed boundaries, the resultant extracted vari-
ables should be the same as the original transformation.   
The results, shown in Table II, verify that there is no er-
ror from the extracted variables using this “fixed” data 
method.  We confirmed this visually by superimposing 
the inverse-transformed data boundary with the model 
boundary as shown in Fig. 4, showing that the bounda-
ries match overall.  Fig. 5 gives a zoom-in of the upper 
left-hand corner of Fig. 4, verifying that the boundaries 
match at the smallest scale as well.  

The second step in validating our method involved ap-
plying our method to hand-generated, “raw” data. The 
data was acquired by hand-tracing a scanned image of 
the model map.  Doing so ensured a reasonably well 
matching data map with enough regular noise to simu-
late a robot-produced closed-loop data map.  During the 
scanning phase, the image was simultaneously given a 
random orientation and was scaled down to 75 percent 
(reference) of its original size.  The hand-traced map and 
its pre-processed boundary are shown in Fig. 6 and the 
hand-traced boundary superimposed with the model map 
is shown in Fig. 7.

Since the data map is a different size (smaller in this 
case) than the model map, Moore-tracing the boundary 
will give a different amount of data points, therefore it 
is necessary to resample either the model boundary or 
the data boundary so that the number of data points are 
the same.  We chose to resample the model map since 
it was larger than the data map.  Resampling the data 
map would have entailed splitting the distance between 
neighboring pixels which can be done easily mathemati-
cally, but is not so easy to imagine visually.  We used 
a “quick and dirty” resampling method to resample the 
border as given in (7.1):
 

[ ] [ ] ( - )( [ 1] - [ ])α= + +� � � � �s n s n n n s n s n              (5.1)
where
     
                      

( ( ))
,  floor( ),
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α α= =

�
�size s n
n n

size s n

and  is after being resampled.  
This gives a regular sampling period with only the 

distance from the last point to the first point not nec-
essarily matching the sampling distance.  This method 
was sufficient for our purposes.

Following the algorithm outlined in Fig. 1, we did 
an inverse transformation using the transformation 
variables extracted from the hand-traced test data.  The 
results are shown in Fig. 8 which shows a very good 

Figure 2.  Model map (top) and its boundary (bottom)

Table II.  Individual and complete transformation validation error results Error after Inverse Transform

Transformation Type Transformation Amount α n0 θ Δxy

Scaling α =2.2 n0 = 00 θ = 2.2 Δxy = 0 0.00+0.00i 0.00+0.00i 0.00+0.00i 0.00+0.00i

Shifted Start Point α =0 n0 = 4575 θ = 0 Δxy = 0 0.00+0.00i 0.00-0.00i 0.00+0.00i 0.00+0.00i

Rotation α =0 n0 = 00 θ = 1.14 Δxy = 0 0.00+0.00i 0.00+0.00i 0.00+0.00i 0.00+0.00i

Translation α =0 n0 = 0 θ = 0 Δxy = 440+560i 0.00+0.00i 0.00+0.00i 0.00+0.00i 0.00+0.00i

Rot.-Scaling-S.P.-Translation α =2.2 n0 = 4575 θ = 1.14 Δxy = 440+560i 0.00+0.00i 0.00-0.00i 0.00+0.00i 0.00+0.00i

 

match between the hand-generated data boundary and 
the model map boundary.  There is, of course, some 
deviation as shown in the close up in Fig. 9, but this 
is simply due to the original freehand-generated er-
ror.  This type of error will be present in any real-world 
environment.   

Even though we could clearly see that the map bor-
ders match, our goal was to compare the actual maps.  
Therefore, we applied the transformation variables ex-
tracted from the border of the hand-traced map to the 
actual data map and superimposed the data map on top 
of the model map as shown in Fig. 10.  As expected, we 
see that, like the border comparison above, the data map 
(red pixels) and the model map (black pixels) match 
well with errors only due to tracing as shown in Fig. 
11.  All image transformations and variable extractions 
were done using Matlab.  The Fourier descriptors them-
selves were generated using the DIPUM 1.1.3 package 
for Matlab.

6. Discussion
As shown in the results above, this method has the 

potential to work very well.  The maps we used were 
convenient in that the data maps were, in essence, ex-
actly the same map as the model map with differences 
only in regular, high frequency noise which has little 
effect on the transformation variables themselves.  In 
reality, a robot mapping a building has to deal with 
open or closed doors, obstacles, etc, which, in turn, if 
taken by themselves, would affect the low frequency 
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 Figure 3.  Original boundary (in bold) and the boundary 
after undergoing various transformations

Figure 4.  Model map boundary (bold, hyphenated) and 
the data boundary after being inverse-transformed (solid 
line)

Figure 5.  The top-left corner of Figure 4 zoomed to show 
that there is no discernible variation from the original 
boundary and the inversed-transformed boundary

Figure 6.  Hand-tracing of model map (above) and its 
border (below)

Figure 7.  Boundary of hand-traced map in its raw state 
superimposed over the model map boundary

Figure 8.  The data map boundary (solid) after undergo-
ing an inverse transformation and superimposed against 
the model map boundary (bold, hyphenated)

 Figure 9.  The top-left corner of Figure 8 zoomed in to 
show the slight deviation from the model boundary due to 
the error given by drawing by hand

Figure 10.  The data map inverse-transformed (red) from 
the transformation variables extracted from the hand-
traced border shown in Figure 6

Figure 11.  The top-left corner of Figure 10 zoomed in to 
show the slight deviation from the model boundary due to 
the error given by tracing the map by freehand
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descriptors and would most certainly cause the center 
of mass of the map border to be off, and, almost as cer-
tainly, cause the orientation to be off as well.  This is-
sue can be minimized in practice because in order to 
compare a data map with a model map (manually or 
automatically), we already have to preprocess both the 
data map and model map to some degree.  During that 
preprocessing, it is easy to ensure that no extra rooms 
exist due to opened doors, etc.

An issue also exists with the derivation of the trans-
formation variables.  We use only the first four Fourier 
descriptors to determine the transformation variables.  
Doing so greatly reduces the number of computations to 
roughly 4N where N is the number of boundary points.  
This method is much faster than a regular Fourier trans-
form or even the Fast Fourier Transform however it 
only allows the capture of information in the very low-
est frequencies.  It does capture general shape and ori-
entation, but it does not consider information from the 
higher frequencies.  Thus, a better method might be to 
calculate a few values of orientation, scaling, etc, based 
on more, or even all, Fourier descriptors and take the 
Euclidean distance which gives the best matching val-
ue.  We have considered this, but our primary objective 
with this paper is to show that this approach will give 
very good results using even the simplest approach.  
Furthermore, it gives a good balance between speed 
and accuracy.  Any optimization beyond this needs to 
consider preprocessing, the number of boundary points 
(i.e. the sampling frequency), the number of Fourier de-
scriptors used to calculate the transformation variables, 
the number of calculations involved, and the number of 
maps to be compared, among other things and should 
be addressed as a topic by itself.   

As mentioned above, any noise in this approach 
should be regular and high in frequency.  Figure 9 
presents a good example of such noise as well as the 
addition of low frequency noise.  Although the high 
frequency noise is relatively low in amplitude with re-
spect to the size of the map, the noise is clearly seen in 
the “roughness” of the data points superimposed about 
the model map.  The key is that regardless whether the 
noise is high in amplitude or not, the algorithm will al-
ways average the high frequency noise out through the 
low frequency-based transformation calculations.  

Lastly, it is important to mention that in this paper 
we assume that the data maps and the model maps are 
maps of the same location.  If, for some reason (e.g. 
by mistake), the data map and the model map are maps 
of two different places, our method will still force the 
maps to be localized and orientated in the optimal po-
sition for comparison, even though if it the result is 
nonsensical.  So while this method will align two maps 
regardless if they are different or not, it will not tell us 
if the maps are actually the same.  In order to do so, 
we could take the Euclidean distance between the nor-
malized Fourier descriptors of the data map and model 
map where the smaller the error would indicate the bet-
ter the match.  The details for similarity matching are 
outside the scope of this paper, but many of the other 
references listed in this paper such as [5]-[12] discuss 
this topic in depth. 

7. Conclusion and Future Work 
In this paper we extracted transformation variables 

based on information derived from the shape of model 
and data map boundaries then used those variables to 
align the data and model maps so that the data map can 
be checked for accuracy.  This method is very fast as 
it only needs four simple calculations to determine the 
values of the transformation variables in the most basic 
alignment approach. Optimization needs to be addressed 
for accuracy-constrained applications, but overall, the 
methods we developed here are very useful for automat-
ing map comparison.  While we limited the scope of 
our discussion to map alignment, it is easy to realize the 
many different areas that this can be applied to such as 
image comparison, defect detection, or object tracking, 
to name a few.  In future work, we will apply these meth-
ods in a piecewise sense to perform robot localization 
and mapping. 
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