
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 6, N° 1 2012

Articles 15

Automated Map Comparison using Non-invariant
Fourier Descriptors

Robert Ouellette, Kotaro Hirasawa

Submitted 5th April 2011; accepted 5th July 2011

Abstract:
In this paper, we use non-invariant Fourier descriptors to
derive transformation variables which allow us to opti-
mally localize and reorient robot-generated maps based
on the map shapes in order to determine, in an automated
way, the accuracy of the generated maps. Our method
uses only 4 simple calculations for alignment, therefore
is extremely fast and gives a very good optimization for
data maps that contain consistent, high frequency noise.
A drawback to this method is occlusions in the map which
affect the low frequency Fourier descriptors and cause lo-
calization and orientation errors. Preprocessing and opti-
mization can help minimize these drawbacks. This appli-
cation can be easily adapted to other areas such as image
comparison or fault detection.

Keywords: Fourier descriptors, robot mapping, SLAM,
map comparison, image comparison

1. Introduction
Simultaneous localization and mapping (SLAM) pro-

vides an effective way of helping robots localize them-
selves within a known environment or during an ongo-
ing mapping operation [1]-[3]. One way of determining
how well generated maps (a.k.a. “data maps”) reflect
the area they map is to compare them to a model map
by digitally superimposing the data map with the model
map in such an orientation that the optimal amount of
black pixels gets covered. In this paper, we present a
new technique for automating this type of alignment.

Until now, map alignment has been done by manually
manipulating the maps such that superimpositioning of
the maps gives the best visual match. Validating maps
this way is painstaking and time consuming [4] therefore
it would be advantageous to automate the process. To do
so, some problems must first be overcome. One problem
is that simply maximizing the number of black pixels cov-
ered (in this paper, both data and model maps are assumed
to be black and white images – the map lined in black
against a white background) does not guarantee that the
map has been oriented optimally. Another issue to con-
sider is that when a map is automatically generated such
as that done by mapping robots, no specific orientation or
reference point gets defined which in turn presents a lack
of a common reference point from which the software
would be able to relate maps to one another. Instead, we
propose that the shape of the map’s boundary is enough to
quantify the map’s orientation, position, and scale, which
provides us with a way to relate maps to one another and
allows us to calculate the differences between them.

The technique we use to quantify map shapes is done
in the frequency domain using Fourier Descriptors [5].
Fourier descriptors have been used extensively in shape-
based image recognition [5]-[12]. They allow a simple
method of image normalization [12] and, when doing so,
if the Euclidean distance between the Fourier descrip-
tors of the two image borders falls within a given value,
the images are considered the same. In this research
however, we pre-assume that the maps themselves are
already the “same” regardless of the quality of the data
map and, rather than normalize the images, we adapt the
normalization techniques in order to determine the val-
ues of the transformation variables needed to reorient
the images for superimposition. At that point we can go
about measuring how accurate the data maps are – not
how similar they are to the model map.

2. Fourier descriptors
The concept of Fourier descriptors were first intro-

duced by Zahn and Roskies [5] in 1972 and are simply
the result of taking the discrete Fourier transform (DFT)
[13] of a closed boundary. Zahn and Roskies [5] used
the Cartesian version of the DFT but the method we
use is based on the complex interpretation as used by
Granlund [6]. This is done by first expressing the points
on the boundary as two parametric equations:

 () , 0, 1, 2, , 1nx n x n N= = … − (2.1)

 () , 0, 1, 2, , 1.= = … −ny n y n N (2.2)

Now, if we consider the points to lie in the complex
plane, we can combine the two parametric equations
above into a single equation:

 () () () for 0, 1, 2,..., -1.= + =s n x n iy n n N (2.3)

Using a parametric description in this way allows
us to reduce the dimensionality of the boundary with-
out loss of information. Using a complex interpretation
also simplifies some of the math needed to solve for the
transformation variables. Once the data is expressed
in this form, we can use the complex version of the 1D
DFT on (2.3):

1
2 /

0

() () for 0, 1, 2,..., -1,π
−

−

=

= =∑
N

i un N

n

a u s n e u N

(2.4)

The complex coefficients a(u) are the Fourier de-
scriptors of the boundary and are exactly the same as
the Fourier coefficients produced by a DFT, with the

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 6, N° 1 2012

Articles16

only stipulation being that the DFT be done on a closed
boundary. The dual of (2.4) is:
 	

1

2 /

0

1
() () for 0, 1, 2,..., -1,π

−

=

= =∑
N

i un N

u

s n a u e n N
N

(2.5)

which can be used to regenerate the original sequence of
points.

3. FD-based map alignment
In image processing, a variety of transformations

exist that transform an image from one form to another
[14], [15]. Since image boundaries are part of the im-
ages themselves, transformations of an image cause the
boundaries to be transformed the same way. Conversely,
using the same transformation values that were used to
transform a border, when applied to the image body, will
cause the image to be transformed in the same way as
well. In this paper we will be realigning the data map to
match the model map by first finding the transformation
values that allow us to align their borders. Once these
transformation values are found, we can use the same
transformation values that we used to align the borders
to align the maps themselves.

Certain transformations on a boundary produce known
relationships on their respective Fourier descriptors [14],
[15]. Table I includes four of these: rotation (θ), scaling
(α), translation (Δxy), and start point (n0). Spatially, the
point from which boundary point trace begins is irrel-
evant; eventually the border will be completely recreated
once the trace returns to that first point at the end of the
trace cycle. However, in the frequency domain, since
the sinusoids that make up the border are all dependent
on the point that they are referenced from, starting from
a different point will cause a phase shift in the sinusoids.
Therefore, for boundary-related transformations, the first
point that the trace begins from (i.e. the “start point”)
is critical to a correct border reconstruction, thus we
also include it in this paper. Notably, non-uniform af-
fine transformations (i.e. “shear”) also have a chance of
occurring during the mapping process but they would
likely only occur due to severe problems with the hard-
ware and/or software thus we have omitted them from
this discussion.

Any transformation from one location/orientation to
another can be minimized to a combination of one of
each of the transformations listed in Table I. The amount
of each transformation is dependent on the transforma-
tion sequence taken [reference analytic, image process-
ing, robotics], but in this paper we set the sequence to
be: rotation→scaling→start point→translation. Our rea-
soning for using this sequence is that it gives us an easy
way to determine the respective transformation values
for a transformed image. Combining each of the trans-
formation equations in Table I in the above sequence we
get,

02 /() () ().πθα δ−= + ∆� i un Ni

xya u e e a u N u (3.1)

where are the FDs of the transformed boundary.
By exploiting the relationships in Table I, we can al-

gebraically manipulate the FDs of a map boundary and
a transformed version of itself in such a way that we can
find the values of the transformation variables of (3.1)
using the equations summarized in (3.2)-(3.5).

2

2

[a()] () | () |
ln

[()] a()|a()|
θ

 
=   

� �
�

p a q a p
i

a p q p
 (3.2)

	
| () |

| () |
α =

�a u

a u
 (3.3)

	
0

() ()
ln

2 () () ()π
 −=  −  
�
�

iN a k a m
n

m k a m a k
 (3.4)

	
1

((0) (0))θα∆ = −� i
xy a e a

N
 (3.5)

where a indicates the FDs of the original border, the FDs
of the transformed border, Δx=Re(Δxy), Δy=Im(Δxy),
and k, m, p, q, and u are FD indices. Choosing which
FDs to use in the equations can be done almost com-
pletely arbitrarily; however, derivation of the equations
required that:

q=2p; p, q ≠ 0
α is real & positive
k ≠m; k, m ≠ 0.

While data maps and model maps refer to the same
physical area, they are technically different, particularly
from the software’s point of view. In order to be able to
relate the maps in software, we stipulate that data maps
are copies of the model maps that have been transformed
by some unknown amount and have been infused with
noise. In the case that the data map were a perfect copy
of the model map with the inclusion of random, high fre-
quency noise, the FDs of the borders of both maps would
be the same for all the FDs except the highest order FDs.
It follows that we could determine the transformation
values between the data and model map borders using
only the lower-ordered FDs. This makes sense because,

Table I. Spatial-Frequency Transformation Relationship

Type Spatial Domain
(boundary)

Frequency Domain
(Fourier Descriptors)

 Identity ()is n ()ia u

 Rotation () () i

rs u s n e θ= () () i

ra u a u e θ=

 Scaling () ()ss n s nα= () ()sa u a uα=

 Start point 0() ()sps n s n n= − 02 /() () i un N

spa u a u e π−=

 Translation () ()t xys n s n= + ∆
†

() () ()t xya u a u N uδ= + ∆
 ‡

Transformation types: rotation (θ), scaling (α), change
in the starting point (n0), and translation (Δxy).

†
 ∆ = ∆ + ∆

xy
x i y

 ‡
()

0, 0

1, 0
δ =

≠
 =

u
u

u

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 6, N° 1 2012

Articles 17

as indicated above, the lower-ordered FDs capture the
location, orientation, and shape. Higher-ordered FDs
capture things like noise. So, in this paper, rather than
choosing the FD indices mostly arbitrarily, we select the
first four FDs, FD(0)-FD(3) instead. Our reasoning for
choosing is based in the geometric interpretation of the
FDs. References [7] and [16] gives some insight into
this reasoning.

Given that we can calculate the transformation val-
ues from the FDs of a transformed boundary, and given
the relationships between transformations on FDs and on
the boundaries themselves, we can transform the border
back to its original location by:
	

02 /1
() (()) .π θ

α
−= − ∆� i nn N i

xys n s n N e e (3.6)

Since we are comparing the maps themselves and
not the borders, we can ignore the start point part of the
equation and use simply the inverse transform,
	

1
() (()) ,θ

α
−= − ∆� i

xys n s n N e (3.7)

and use the non-complex version,
	

Re[()], Im[()],= =� � � �x s n y s n (3.8)

in order to recreate the whole map.

4. Map comparison automation
In Fig. 1 we outline the steps taken during map com-

parison. The potential exists for there to be breaks in
continuity in the model boundary as well as “islands”
such as objects within the map so preprocessing the
model and test maps entails making sure that the map
outline has no breaks. We could automate the closing of
gaps, however, considering that we only needed a few
maps for validation, we found it was sufficient to fill
in any gaps by hand. Islands are eliminated by using

only the outermost boundary of the map and ignoring all
others.

We use the Moore boundary tracking algorithm [18] as
described by [14] for finding the boundary of the model
map and test maps. In practice, we should only have to
do this with the model map since our sensor of choice,
the laser scanner, by its very nature, gives us a discre-
tized version of the boundary for the map. Below we
summarize the Moore tracking algorithm.
1.	 Start in the upper left-hand corner of the map. Scan

the map from left to right, top to bottom until you
reach the first black pixel in the map. Denote the lo-
cation of that pixel as the start point, b0.

2.	 Define c0 as the “west” neighbor of b0 (the pixel to
the immediate left of b0). Starting at c0, examine the
neighbors of b0 while moving in a clockwise direc-
tion. Record the position of the first non-zero pixel
as b1 and register this location as the second point on
the boundary. Let c1 be the point immediately pre-
ceding b1 in the sequence. Store b1and b0 for later
reference. If no neighbor is found, the pixel is a sin-
gular “pixel island”.

3.	 Let b = b1, c = c1.
4.	 Starting at c, examine the neighbors of b in a clock-

wise direction, like above until the first black pixel is
found. Label the location for this pixel as b and the
pixel just before it in the search sequence as c.

5.	 Register b as the next point on the boundary and use
this as the next evaluation pixel.

6.	 Repeat steps 4 and 5 until b=b0 and the next bound-
ary point found is b1

Unsupervised automation of border extraction does
not guarantee that the first black pixel you find will be
on the border you want to compare. Objects within or
outside the map outline itself such as simple noise or
a map legend could theoretically cause the software to
find an unintended boundary. To minimize this potential
problem, we found that finding all the borders in the map
and choosing the border that contains the largest area to
be that which worked best. This method may or may not
solve all problems, but worked fine in our limited case.

Once the border is found, the remaining steps are
mostly straightforward. Finding the Fourier descriptors
of the maps, extracting the transformation variables, and
performing the inverse transform on the test maps are
as described in the previous sections. It is important to
reiterate that we are not “inverse-transforming” the test
map border, instead we are reorienting the whole data
map using the extracted transform variables in order to
compare all portions of the maps.

5. Results
Validation of our approach was done in two steps. In

the first step, we transformed the boundary of the model
map shown in Fig. 2 using known transformation values.
Each type of transformation was applied individually as
well as a rotation→ scaling→ start point→ translation
transformation. The different transformations are super-
imposed with the model boundary in Fig. 3. Since we
know by how much each of the transformed boundaries
were transformed, when we extract the variables from

Determine transformation variables

“Inverse transform” the test map

Superimpose test and model maps

Do pixel-wise comparison

preprocess

extract
boundary

find FDs M
od

el
 M

ap
 (1

x)

preprocess

extract
boundary

find FDs

All Test M
aps

Figure 1. Procedure used in map comparison automa-
tion

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 6, N° 1 2012

Articles18

the transformed boundaries, the resultant extracted vari-
ables should be the same as the original transformation. 	
The results, shown in Table II, verify that there is no er-
ror from the extracted variables using this “fixed” data
method. We confirmed this visually by superimposing
the inverse-transformed data boundary with the model
boundary as shown in Fig. 4, showing that the bounda-
ries match overall. Fig. 5 gives a zoom-in of the upper
left-hand corner of Fig. 4, verifying that the boundaries
match at the smallest scale as well.

The second step in validating our method involved ap-
plying our method to hand-generated, “raw” data. The
data was acquired by hand-tracing a scanned image of
the model map. Doing so ensured a reasonably well
matching data map with enough regular noise to simu-
late a robot-produced closed-loop data map. During the
scanning phase, the image was simultaneously given a
random orientation and was scaled down to 75 percent
(reference) of its original size. The hand-traced map and
its pre-processed boundary are shown in Fig. 6 and the
hand-traced boundary superimposed with the model map
is shown in Fig. 7.

Since the data map is a different size (smaller in this
case) than the model map, Moore-tracing the boundary
will give a different amount of data points, therefore it
is necessary to resample either the model boundary or
the data boundary so that the number of data points are
the same. We chose to resample the model map since
it was larger than the data map. Resampling the data
map would have entailed splitting the distance between
neighboring pixels which can be done easily mathemati-
cally, but is not so easy to imagine visually. We used
a “quick and dirty” resampling method to resample the
border as given in (7.1):
	

[] [] (-)([1] - [])α= + +� � � � �s n s n n n s n s n (5.1)
where

(())
, floor(),

(())
α α= =

�
�size s n
n n

size s n

and is after being resampled.
This gives a regular sampling period with only the

distance from the last point to the first point not nec-
essarily matching the sampling distance. This method
was sufficient for our purposes.

Following the algorithm outlined in Fig. 1, we did
an inverse transformation using the transformation
variables extracted from the hand-traced test data. The
results are shown in Fig. 8 which shows a very good

Figure 2. Model map (top) and its boundary (bottom)

Table II. Individual and complete transformation validation error results Error after Inverse Transform

Transformation Type Transformation Amount α n0 θ Δxy

Scaling α =2.2	 n0 = 00	 θ = 2.2	 Δxy = 0 0.00+0.00i 0.00+0.00i 0.00+0.00i 0.00+0.00i

Shifted Start Point α =0	 n0 = 4575	 θ = 0	 Δxy = 0 0.00+0.00i 0.00-0.00i 0.00+0.00i 0.00+0.00i

Rotation α =0	 n0 = 00	 θ = 1.14	 Δxy = 0 0.00+0.00i 0.00+0.00i 0.00+0.00i 0.00+0.00i

Translation α =0	 n0 = 0	 θ = 0	 Δxy = 440+560i 0.00+0.00i 0.00+0.00i 0.00+0.00i 0.00+0.00i

Rot.-Scaling-S.P.-Translation α =2.2	 n0 = 4575	 θ = 1.14	 Δxy = 440+560i 0.00+0.00i 0.00-0.00i 0.00+0.00i 0.00+0.00i

	

match between the hand-generated data boundary and
the model map boundary. There is, of course, some
deviation as shown in the close up in Fig. 9, but this
is simply due to the original freehand-generated er-
ror. This type of error will be present in any real-world
environment.

Even though we could clearly see that the map bor-
ders match, our goal was to compare the actual maps.
Therefore, we applied the transformation variables ex-
tracted from the border of the hand-traced map to the
actual data map and superimposed the data map on top
of the model map as shown in Fig. 10. As expected, we
see that, like the border comparison above, the data map
(red pixels) and the model map (black pixels) match
well with errors only due to tracing as shown in Fig.
11. All image transformations and variable extractions
were done using Matlab. The Fourier descriptors them-
selves were generated using the DIPUM 1.1.3 package
for Matlab.

6. Discussion
As shown in the results above, this method has the

potential to work very well. The maps we used were
convenient in that the data maps were, in essence, ex-
actly the same map as the model map with differences
only in regular, high frequency noise which has little
effect on the transformation variables themselves. In
reality, a robot mapping a building has to deal with
open or closed doors, obstacles, etc, which, in turn, if
taken by themselves, would affect the low frequency

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 6, N° 1 2012

Articles 19

 Figure 3. Original boundary (in bold) and the boundary
after undergoing various transformations

Figure 4. Model map boundary (bold, hyphenated) and
the data boundary after being inverse-transformed (solid
line)

Figure 5. The top-left corner of Figure 4 zoomed to show
that there is no discernible variation from the original
boundary and the inversed-transformed boundary

Figure 6. Hand-tracing of model map (above) and its
border (below)

Figure 7. Boundary of hand-traced map in its raw state
superimposed over the model map boundary

Figure 8. The data map boundary (solid) after undergo-
ing an inverse transformation and superimposed against
the model map boundary (bold, hyphenated)

 Figure 9. The top-left corner of Figure 8 zoomed in to
show the slight deviation from the model boundary due to
the error given by drawing by hand

Figure 10. The data map inverse-transformed (red) from
the transformation variables extracted from the hand-
traced border shown in Figure 6

Figure 11. The top-left corner of Figure 10 zoomed in to
show the slight deviation from the model boundary due to
the error given by tracing the map by freehand

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 6, N° 1 2012

Articles20

descriptors and would most certainly cause the center
of mass of the map border to be off, and, almost as cer-
tainly, cause the orientation to be off as well. This is-
sue can be minimized in practice because in order to
compare a data map with a model map (manually or
automatically), we already have to preprocess both the
data map and model map to some degree. During that
preprocessing, it is easy to ensure that no extra rooms
exist due to opened doors, etc.

An issue also exists with the derivation of the trans-
formation variables. We use only the first four Fourier
descriptors to determine the transformation variables.
Doing so greatly reduces the number of computations to
roughly 4N where N is the number of boundary points.
This method is much faster than a regular Fourier trans-
form or even the Fast Fourier Transform however it
only allows the capture of information in the very low-
est frequencies. It does capture general shape and ori-
entation, but it does not consider information from the
higher frequencies. Thus, a better method might be to
calculate a few values of orientation, scaling, etc, based
on more, or even all, Fourier descriptors and take the
Euclidean distance which gives the best matching val-
ue. We have considered this, but our primary objective
with this paper is to show that this approach will give
very good results using even the simplest approach.
Furthermore, it gives a good balance between speed
and accuracy. Any optimization beyond this needs to
consider preprocessing, the number of boundary points
(i.e. the sampling frequency), the number of Fourier de-
scriptors used to calculate the transformation variables,
the number of calculations involved, and the number of
maps to be compared, among other things and should
be addressed as a topic by itself.

As mentioned above, any noise in this approach
should be regular and high in frequency. Figure 9
presents a good example of such noise as well as the
addition of low frequency noise. Although the high
frequency noise is relatively low in amplitude with re-
spect to the size of the map, the noise is clearly seen in
the “roughness” of the data points superimposed about
the model map. The key is that regardless whether the
noise is high in amplitude or not, the algorithm will al-
ways average the high frequency noise out through the
low frequency-based transformation calculations.

Lastly, it is important to mention that in this paper
we assume that the data maps and the model maps are
maps of the same location. If, for some reason (e.g.
by mistake), the data map and the model map are maps
of two different places, our method will still force the
maps to be localized and orientated in the optimal po-
sition for comparison, even though if it the result is
nonsensical. So while this method will align two maps
regardless if they are different or not, it will not tell us
if the maps are actually the same. In order to do so,
we could take the Euclidean distance between the nor-
malized Fourier descriptors of the data map and model
map where the smaller the error would indicate the bet-
ter the match. The details for similarity matching are
outside the scope of this paper, but many of the other
references listed in this paper such as [5]-[12] discuss
this topic in depth.

7. Conclusion and Future Work
In this paper we extracted transformation variables

based on information derived from the shape of model
and data map boundaries then used those variables to
align the data and model maps so that the data map can
be checked for accuracy. This method is very fast as
it only needs four simple calculations to determine the
values of the transformation variables in the most basic
alignment approach. Optimization needs to be addressed
for accuracy-constrained applications, but overall, the
methods we developed here are very useful for automat-
ing map comparison. While we limited the scope of
our discussion to map alignment, it is easy to realize the
many different areas that this can be applied to such as
image comparison, defect detection, or object tracking,
to name a few. In future work, we will apply these meth-
ods in a piecewise sense to perform robot localization
and mapping.

Authors:

R. P. Ouellette* is a robotics consultant at Open
Thoughts Research. He has held positions in embedded
hardware & software, signal processing and robotics re-
search in various companies such as Raytheon, GMD-
Japan (now Fraunhofer FhG), The Foxboro Company,
among others. He has a BS in Engineering Physics from
the University of Maine, an MS in Electrical & Computer
Engineering from Kyushu Institute of Technology,
and is currently pursuing his PhD in Robotics at
Waseda University. (phone: +81-90-1191-1514;
e-mail: rpo@ openthoughts.com).

Kotaro Hirasawa received the B.S. and M.S. de-
grees from the Kyushu University, Japan, in 1964 and
1966, respectively. From 1966 to 1992, he worked at
Hitachi Ltd. at the Hitachi Research Laboratory. From
December 1992 to August 2002, he was a Professor
at the Graduate School of Information Science and
Electrical Engineering of Kyushu University. Since
September 2002, he has been a Professor at the Graduate
School of Information, Production and Systems, Waseda
University. Dr. Hirasawa is a member of the Society
of Instrument and Control Engineers, the Institute of
Electrical Engineers of Japan and IEEE.

*Corresponding author.

References
1.	 A. Eliazar, R. Parr, “DP-SLAM: Fast, robust simul-

taneous localization and mapping without predeter-
mined landmarks”. In: Proc. 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI’03).

2.	 A. Nüchter, H. Surmann, K. Lingemann,
J. Hertzberg, S. Thrun, “6D SLAM with an
Application in autonomous mine mapping”. In:
Proc. of the IEEE International Conference on
Robotics and Automation, New Orleans, USA,
April 2004, pp. 1998-2003.

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 6, N° 1 2012

Articles 21

3.	 W.Y. Jeong, K.M. Lee, “Visual SLAM with Line and
Corner Features”. In: Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct.
2006, pp. 2570-2575.

4.	 R. Ouellette, K. Hirasawa, “A comparison of SLAM
Implementations for Indoor Mobile Robots”.
In: Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’2007), Oct.
2007, pp. 1479-1484.

5.	 C. T. Zahn, R. Z. Roskies, “Fourier Descriptors
for Plane Closed Curves”, IEEE Transactions on
Computers, vol. 21, 1972, pp. 269-281.

6.	 G. H. Granlund, “Fourier Preprocessing for Hand
Print Character Recognition”, IEEE Transactions on
Computers, vol. 21, 1972, pp. 195-201.

7.	 O. Bertrand, R. Queval, H. Maitre, “Shape
Interpolation using Fourier Descriptors with
Application to Animation Graphics”, Signal
Processing, vol. 4, 1982, pp. 53-58.

8.	 D. S. Zhang, G. Lu. “A Comparative Study on Shape
Retrieval Using Fourier Descriptors with Different
Shape Signatures”. In: Proc. of the International
Conference on Intelligent Multimedia and Distance
Education (ICIMADE’01), Fargo, ND, USA, June
1-3, 2001, pp.1-9.

9.	 L. Keyes, A.C. Winstanley, “Fourier Descriptors
as a General Classification Tool for Topographic
Shapes”. In: Proc. of the Irish Machine Vision and
Image Processing Conference (IMVIP ‘99), Dublin
City University, 1999, pp. 193-203.

10.	 Y. Rui, A. C. She, T. Huang, “A Modified Fourier

Descriptor for Shape Matching in MARS”.
In: S. K. Chang (ed.), Image Databases and
Multimedia Search, Series of Software Engineering
and Knowledge Engineering, World Scientific
Publishing, 1998, pp. 165-180.

11.	 D.J. Lee, S. Antani, L. Rodney Long, “Similarity
Measurement Using Polygon Curve Representation
and Fourier Descriptors for Shape-based Vertebral
Image Retrieval”, Journal of Visual Communication
and Image Representation, vol. 15, no. 3, Sept.
2004, pp. 285-302.

12.	 C. S. Lin, C. L. Hwang, “New Forms of Shape
Invariants from Elliptic Fourier Descriptors”,
Pattern Recognition, vol. 20, no. 5, 1987,
pp. 535-545.

13.	 J. W. Cooley, J. W. Tukey, “An algorithm for the ma-
chine calculation of complex Fourier series”, Math.
Comput., 19, 1965, pp. 297-301.

14.	 R. C. Gonzalez, R. E. Woods, Digital Image
Processing, 3rd ed., Pearson Education, Inc., 2008.

15.	 A. K. Jain, Fundamentals of Digital Image
Processing, Pearson Education, Inc., 1989.

16.	 B. Jahne, Digital Image Processing, 6th ed., Springer,
2005.

17.	 A. Oppenheim, R. Schafer, J. Buck, Discrete-time
Signal Processing, 2nd ed., Prentice Hall, 1998.

18.	 G. A Moore, “Automatic Scanning and Computer
Processes for the Quantitative Analysis of
Micrographs and Equivalent Subjects”. In: C. G.
Cheng et al. (ed.), Pictorial Pattern Recognition,
1968, pp. 275-326.

