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Abstract: 
This paper is final overview of investigations on the ac-

curacy of basic the estimators of trapezoidal probability 
distribution samples of the measured data. For symmetri-
cal trapezoidal PDF of straight as well concaved sides, 
using Monte-Carlo method of simulation, the standard 
deviation (SD) of linear 1- and 2-component estimators 
are evaluated. Approaches for theirs evaluation are pro-
posed. It is established that in the ratio of upper and bot-
tom bases of trapezoidal PDF in the range from 1 to 0,35 
the mid-range value has smaller standard deviation (SD) 
than the mean value and median. It is find then for the 
whole family of the symmetric linear trapezoidal PDF 
more accurate than above single element estimators are 
two-component (2C) estimators as the linear form of the 
mean and mid-range values of the sample. Their coeffi-
cients are found, properties discussed and formulas of SD 
are given. The new simplified 2C-estimator of equal coef-
ficients is also proposed. These estimators successfully 
extend estimation of the measurand value as the sample 
mean and description of its accuracy by the uncertainty 
type A recommended by the international guides of un-
certainty evaluation in measurement GUM-2008 [1], EA-
4/02 [2] and by Handbook NASA [3]. Approaches of de-
scribed below investigations could be effectively applied 
also for other models of convoluted PDF-s.

Keywords: estimators of probability density function, 
trapezoidal PDF, mid-range, uncertainty evaluation 

1. Introduction 
Random components of measurement data can be in 

many cases more accurately modelled by non-Gaussian 
probability density distribution function (PDF) than by 
Normal distribution as the range of data random disper-
sion is commonly limited in reality. The mean value as 
the most effective measurand estimator of the n-element 
sample of Normal distribution is also used for other dis-
tributions. Its standard deviation (SD) is defined in GUM 
[1] as the uncertainty type A. 

For data processing it is very important to choose an 
effective estimator of the centre coordinate of PDF, i.e. 
estimator of the smallest SD, as not proper evaluation en-
tails incorrect assessment of the measurement accuracy. 

For samples modelled by Normal, Uniform and La-
place (double-exponential) PDF distributions, it is pre-
sented in the paper [4] of 15th IMEKO TC4 Symposium 
in Iasi Romania, how to regard the data autocorrelation 
and which estimator has the smallest standard deviation 

(SD) to be chosen as the better accurate for any of them. 
E. g. more effective estimator then mean value of meas-
urand of Uniform samples is mid-range and for Laplace 
sample – median, respectively. Using one of goodness-
of-fit tests (Kolmogorov–Smirnov, Chi-Square and other 
tests) we make decision about the estimation choice.

The main purpose of this work is the expansion of op-
portunities for choosing the best single or a few com-
ponent estimators of empirical data modelled by more 
complex non-Gaussian distributions than the above 
models. It is assumed that treated measurement data do 
not contain unknown systematic errors and are not self-
correlated. The estimator of the distribution parameter 
should meet also requirements of solvency, sufficiency, 
efficiency and be unbiased. First of all, efficiency of esti-
mators is researched.

2. Single component estimators
Let’s check up which one of single-component estima-

tors of PDF of particular samples: mean X , mid-range 
2Vq /  or median medX , satisfies the requirement of effi-

ciency, i.e. has the least-possible sum of the square dis-
persion, denotes a minimum standard deviation in com-
parison with other estimators. Similarly, it is possible to 
receive results for other basic non-Gaussian distributions. 
In columns 3–5 of Tab. 1 values of standard deviations of 
three estimators of a few basic distribution models of em-
pirical data (for demonstration of difference order only) 
are presented. 

Standard deviation of the best single component esti-
mator of the particular non-Gaussian distribution is sig-
nificantly less then of other estimators even if difference 
between their values, e.g. between midrange and mean, 
is small. This is the cause to search for estimators better 
then the sample mean.

3. The best single component estimators of 
trapeze distributions

3.1. Linear trapeze
 It is important to consider the problem of choice of 

an effective estimator for composition of simple dis-
tributions. In the measurement systems practically all 
analogue signals now are digitalised, and then uniform 
distributions are very common in these systems. So, 
with convolution of two different uniform distributions 
we get PDF as a symmetrical trapezoid of linear sides, 
from triangular to the uniform distribution as its bound-
ary cases. The effective single component estimators of 
the centre of the triangular and uniform distributions are 
the sample mean and the mid-range respectively – see 
again Table 1. 
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The aim of the following research is to find a position 
of border separating trapezoids of better mid-range or 
mean values. There are two ways to obtain the trapezoid 
in MC simulations : 
– to generate two uniform distributions and theirs  

sum [9]; 
– to use the inverse function method (derived in [9] for 

trapezoid). 
Both techniques were tested. Samples from population 

with trapezoidal distribution with β = a/b ratio of their 
shorter upper a and longer bottom b basis are simulated 
and stable results are obtained. Obviously (0;1)∈β  was 
taken. Fig. 1 shows how standard deviations of mean and 
mid-range are changed with a ratio β and number of ob-

servations n [11]. Median SD is significantly larger and 
is not shown on fig 1. 

Border value α of ratio β has been found for us also an-
alytically by young mathematician P. Endovitskyi from 
TU Kiev. He obtained 

      (1)

Novitzky and Zograph in their original book [6] show 
dependence of estimator (mid-range) efficiency on a type 
of distribution. Topographical classification of distribu-
tions is also offered and dependence of the estimator 
efficiency on the counter-kurtosis æ is presented. Vari-
ances of estimators are equal when æ =0,675. This value 
of æ corresponds to kurtosis E=1/æ2= -0,805. For Normal 
PDF E=3.

Dependence of kurtosis differences E-3 from Normal 
PDF on ratio of trapezium bases β are given on Fig. 2. 
Then we can find that E = -0,805 corresponds to β = 0,35.

3.2. Curvilinear trapeze
In Table 1 of GUM Supplement 1 [2] the curvilinear 

trapezoidal of concave sides is given. This PDF model 
has the symbol CTrap(a,b,d). It is proposed to be used 
when limits of upper a and lower b sides are inexactly 
given, i.e. a ± d and b ± d, where a, b and d, with d > 0 
and a +d < b − d, are specified. Histogram of these type 
simulated data is given on Fig. 3.

Fig. 4a, b shows how standard deviations of main es-
timators depend on the number n of observations in the 
sample and a ratio βc=(a2–a1–2d)/(b2–b1+2d) of curvilin-

Fig. 1. Efficiency of single component sample estimators 
of Trap(a,b) distributions [10]: a. Dependences of sam-
ple mean and midrange standard deviations S on ratio β 
of linear trapeze bases and of sample size n, b. cut-set of 
S surfaces for n=const.= 400

a)

b)

Fig. 2. Kurtosis differences (E -3) of trapezoid and Nor-
mal PDFs as function of ratio β of trapeze bases

Тable 1. Comparison of sufficiency of different estimators and expression of the standard uncertainty

Distribution
Standard deviations of sample estimators

The most effective 
estimator

Standard uncertainty 
of the most effective 

estimator meanS
 midrangeS medS

Normal 0,010 0,220 0,013 sample mean  /A xu S n=  [1]

Uniform 0,006 1,4·10-4 0,010 mid-range ( ) 2

1

12 +
+

− n

n

n

V

 [4]

Double-exponential 0,007 0,870 7·10-5 median  / 2xS n  [4]

Triangular  0,0040 0,0045 0,0049 sample mean  /xS n  [3] - [5]

Arcsine 0,067 5·10-5 0,146 mid-range  
4 25 /xS n⋅ π  [5]



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME  6,      N°  1       2012

Articles10

ear trapezoid basis. It is shown that median here is the 
best single component estimator if 0 < βc< 0,08; mean – if 
0,08 < βc< 0,5 and mid-range if 0,5 < βc< 1. But, it should 
be taken into account, that in practice, uncertainty of un-
certainty may be limited up to even 20 – 30 %, then:

(1 )( ) ( )
0,3 0,54

2 (1 ) 2
c

c

b a b a
d

β β
β

−− −= ⋅ = ⇒ =
+

      (2)

and could be decided that the mid-range may be applied 
as the most effective estimator to the border drawn in 
Fig. 4.

To increase accuracy of the measurement result other 
types of estimators, which contain a few components, 
may be also considered.

According to considered approaches, ratio of these 
components could be found by modelling and selection 

of best values, or by known analytical equations. These 
equations are derived by numeric methods too and they 
based on shape coefficients or parameters of the distribu-
tion model.

4.  Multi-component estimators of trapeze 
distribution

4.1. Three- and two-component estimators based 
on kurtosis E value 

Zakharov and Stephen in [7, 8] considered for non-
Gaussian symmetrical PDF the linear 3-component (3C) 
estimator of measurand value:

               (3)

as the efficient estimate of the expectation. Coefficients  
k1, k2  and k3  depend on the kurtosis E of the distribution 
of observation results. 

For linear trapezoids of ( 1,15; 0,2)E ∈ − −  only two 
such coefficients are enough [7]:

 1 1,05 1,22k E= − + ,  2 0,05 0,22k E= − − ,  3 0k =    (4)

Modelling shows that such proposed estimator is bi-
ased [10] and it is not consistent with requirements of the 
effective estimator. For unbiased estimator the sum of all 
three coefficients must be equal to 1. From MC investi-
gations [10, 11]

1 1,05 1,22k E= − + ,  , 3 0k =    (5)

Standard deviations of X , qV/2  and 2C estimator X̂
corrected due (2) for linear trapezes of different β are 
given in Fig. 5. 

 Fig. 3. Example of curvilinear trapezoid PDF

Fig.  4.  Efficiency  of  single  component  estimators  of 
CTrap(a,b,d) distribution: a) Dependences of SD on a 
ratio of bases β and on sample size n of the curvilinear 
trapezoidal PDF, b) visualization of crossing points for 
n=const=400

a)

 

b)
Fig. 5. Dependences of standard deviations for different 
statistics on a ratio of bases (linear trapeze)

(6)

In case of the curvilinear trapeze its kurtosis  
( 1, 2;0,2)E ∈ −  and following coefficients have been ob-

tained
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4.2. Two-component (2C)estimators of trapeze 
distributions based on ratio β of their bases 

We investigated broadly [11] a whole family of linear 
trapezoids and found the most effective unbiased two-
component estimator. It could be expressed by

1 1 /2(1 )eff VX k X k q= + −                    (7)

This estimator was analyzed by changing 1k  in (7) for
 different trapezoids from rectangular to triangular shapes 

and values of 1k  corresponding for { }min [ ]effS X and with 
negligible correlation of X and qV/2 (large n), were ob-
tained. Results with the uncertainty under 10% are as fol-
lows:

 

 ,       

(8)

Results are stable even when n is changed from 10 up 
to 10000 for trapezoids with different ratio of their bases.

Results of application (3) after converting k1, k2 coef-
ficients from E to βC are given in Fig. 6. One can see, 
that in a short interval [0;0,8]cβ ∈  the best estimator 
is median. That does not appear in approach proposed in 
[7] and [8]. 

Fig. 6. Dependences of standard deviations for different 
statistics on a ratio of bases (curvilinear trapeze)

Fig. 7. Dependences standard deviations of the different 
statistics’ on a ratio of bases

4.3.	 Simplified	2C-estimator	of	trapeze	distribu-
tions 

Let us analyze simplified 2C-estimator based on two 
equal components

 

 
2/5,05,0

~
VqXX += .                        (9)

The results of its MC modelling for linear trapezium 
are given also in Fig. 6. From these results one can see 
that simple 2C-estimator (9) is the best for a wide range 
of trapezoids ( 0 0,75β< < ). If trapezoid is considered 
as the convolution of two uniform distributions, the 
range for one of them is

 
2(1 2 )β+

 
times larger than for 

the other one. Values β > 0,75 correspond to the ratio of 
ranges over 8. It means that one of uniform distributions 
is dominant. For this range the mid-range is the best esti-
mator (see Fig. 8).

The results of investigations: how far formula (9) is 
applicable also for curvilinear trapezoid, are clear from 
Fig. 6. One can see that it is not the most effective esti-

mator for a full range. From analyzes of some cases of 
β > 0,54 it is recommend to use in practice two below for-
mulas of the best estimator:

/2

/2

1 1
, 0,54 0,8;

2 2
0,8.

V
eff

V

q X if
X

q if

β

β

 ⋅ + < <= 
 >    (10)

Application of (7) gives the dependence on β as in Fig. 7. 
The difference between analytical results and mod-

eling is less than 5%. And it is natural that the triangular 
distribution is not exactly like Normal PDF, but an inter-
mediate one, between Uniform and Normal. So its the 
best estimator consisting also of both components.

5. Uncertainty evaluation
5.1. Theoretical background

Because of correlation between minX  and maxX  con-
joint density function has to be found here. Standard de-
viation SD of two-component estimator (6) is 

2 2 2 2 2
1 1 /2 1 1 /2[ ] [ ] (1 ) [ ] 2 (1 ) [ ] [ ]ρ= = + − + −A eff V Vu S X k S X k S q k k S X S q

 

(11) 
where: [ ] xS

S X
n

=
; 

2 2
2

/2
(1 )

[ ]
16 ( 1)( 2)V

V n
S q

n n

β−= ⋅
+ + .

The recommendations on correlation coefficient val-
ues obtained by MC simulation are given in Table 2. 

  
Table 2. The values of correlation coefficients

n [100; 200) [200; 300) [300; 500) n → ∞

ρ 0,25 0,2 0,15 0ρ →

Variance of the best estimator Xeff should be minimum. 
Let’s try to find analytically its value of k1. 

For large n last component in (11) from correlation be-
tween X  and q

V/2
 is negligible. Then

( ) ( )222
1 1 /2eff VS X k S x k S q= ⋅ + − ⋅    (12)
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where: 
[ ] / ,xS X n= σ  xσ

 
is the SD of whole population.

Coefficient k1 could be find from 

2

1

[ ]
0

effS X

k

∂
=

∂

After calculations: 
2

/2
1 2 2

/2

[ ]

[ ] [ ]
V

V

S q
k

S x S q
=

+
,                    (13)

5.2. Particular cases
For triangular distribution (β =0) [5], [6]: 

2 2
/2

3 (4 )
[ ]

2V XS q
n

⋅ − π= σ , 

1
3 4

0 56
2 3 4

k
π

π
−= ≈

+ −
( ) ,

( )
.

It coincides with results of the earlier MC simulation.

For trapezoid with β = 0,35 we find that, 
and from (6):

2 2

1
2

0,5X Xk
n n

σ σ= = .

It coincides with (10).

For rectangular distribution (β =1):

2

1 2 2 2 2

3
3 32( 1)( 2)

, lim 0.
3 2 9 2 2 9 2

2( 1)( 2)

X

n
X X

n nn n
k

n n n n

n n n

→∞

σ
+ += = =

σ σ + + + ++
+ +

If n → ∞, k1 → 0.
 

For 30n = , 1 0,04k = and n=10: 
k1= 0, so these results are not very far from the above 
k1= 0 for n → ∞.

Dependences of SD on 1k  for boundary cases of trape-
zium shape (triangular and rectangular PDF) are shown 
in Fig 8.

It is natural that the triangular distribution is not ex-
actly like Normal PDF, but an intermediate one, between 
Uniform and Normal. So it’s the best estimator consist-
ing also of both components.

For simplified two-component estimator of (6) 
The standard uncertainty (equivalent to uA in GUM) is:

 
2 2

/2 /2

22 2 2

1
[ ] [ ] [ ] 2 [ ] [ ]

2

(1 )1 (1 )
2 .

2 16 ( 1)( 2) ( 1)( 2)

ρ

ββ ρ

= = + + =

−−= + ⋅ +
+ + + +

A eff V V

xx

u S X S X S q S X S q

S VS V n

n n n n n
(14) 

If 0ρ →

2 2
/2

1
[ ] [ ] [ ]

2A eff Vu S X S X S q= = +        (14a)

As standard deviation of the proposed estimator is used 
the standard uncertainty, we should give expressions for  
coverage factor k(P) to expanded uncertainty calculation.  

The equation for the large sample size is [11, 12]:

( )2
2

6
( ) 1 (1 ) (1 )

1
k P P β

β
= − − ⋅ −

+      
(15)

6. Numerical Example 
Considerations has to be illustrated below by the nu-

merical example of measurand value and uncertainty cal-
culations. Data values of the sample size n=200 obtained 
in simulated experiment are shown in Fig. 9. As no other 
information is available then should be presume that this 
observations are not autocorrelated and cleaned before 
from systematic errors. 

Let’s find the measurement result as the best estima-
tor of measurand value, its standard and expanded un-
certainties. The proper PDF model of this sample has to 
be chosen. 

 Sample observations are arranged into 15 groups 
(Fig. 10). 

Fig. 8. Dependences of standard deviations on 1k

Fig. 9. Values of sample observations. 

Fig. 10. Histogram of data relative frequencies 
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Hypothesis about compliance with three different the-
oretical distributions are verified by 2χ

 
test. 

Number of freedom is 11. Compliance with Uniform 
and Normal distributions is not fulfilled, but with linear 
trapezoidal distribution is accepted at significance level 
0,05, because:

2 2
11, 0,0517,3 19,7χ χ= < = .

The trapezoid PDF model of 5.38 and 1.79 bases are 
found. Its parameter β=1/3. As the best estimator of the 
measurand value is used (4). Values of distribution pa-
rameters are:

 22,873X = , /2 23,010Vq = , 22,942X =� .

Sample standard deviation: 

1,309XS = .

Standard deviation of the mean: 

[ ] / 0,0926xS X S n= = .

Standard deviation of the mid-range:

2

/2
(1 )

[ ] 0,089.
4 ( 1)( 2)V
V n

S q
n n

β⋅ −= ⋅ =
+ +

Standard uncertainty of the 2-component estimator is

2 2
/2 /2

1
[ ] [ ] 2 0,2 [ ] [ ] 0,0703.

2A V Vu S X S q S X S q= + + ⋅ ⋅ ⋅ =

2 2
/2 /2

1
[ ] [ ] 2 0,2 [ ] [ ] 0,0703.

2A V Vu S X S q S X S q= + + ⋅ ⋅ ⋅ =

The value of uncertainty for estimator (5) does not dif-
fer significantly from above. 

Distributions of /2Vq and X�  for trapeze pdf are un-
known but expected to be smoother than Normal one. For 
these estimators is taken the same coverage factor as for 
normal pdf, i.e.: K(P = 0,95) = 1,96.

For

 

coverage probability P expanded uncertainty is:

AuPKPU ⋅= )()(                        (16)

Results are put together in Table 3. 

Table 3. Representations of the measurement result and 
accuracy

 By standard uncertainty by expanded uncertainty

X
22,87; 0,09AX u= =

(22,87 0,19), 0,95X P= ± =

(22,68; 23,06), 0,95X P∈ =

/2Vq  23,01; 0,09AX u= =
(23,01 0,18), 0,95X P= ± =

(22,83; 23,19), 0,95X P∈ =

X� 22,94; 0,07AX u= =
(23,01 0,14), 0,95X P= ± =

(22,87; 23,15), 0,95X P∈ =

The most accurate is the last one – simplified 2C es-
timator X� . Values of each estimator are lying in the ex-
panded uncertainty ranges of two others.

7. Final conclusions

– It is very important to choose the most accurate, i.e. 
effective estimator at data processing for correct es-
timation of the measurand uncertainty corresponding 
to 

Au  (type A). 
– For samples of distributions modelled by trapezoid, 

the best single-component estimator depends on its 
shape. If it is nearer to rectangular (1≥ β ≥0,35) then 
the best effective estimator of measurand is the mid-
range. Below β=0,35 up to β=0 of the triangle distri-
bution, the sample mean is better.

– The 2-component estimator as the linear form of 
above two estimators is better than single ones for 
samples of trapezium PDF.

– For the broad range of trapezium shapes (0,75 ≥ β ≥0) 
the simplified form of this double component estima-
tor of equal both coefficients k1= k2 = 0,5 is proposed 
and may be used with sufficiently good accuracy ac-
ceptable in practice.

– For a number of sample observations n ≥ 10 all co-
efficients are practically independent from n. For 
smaller size n<10 individual modelling is needed for 
trapezium PDF.

– All conclusions are positively tested by MC simula-
tions and also by several numerical examples.

– Estimators of trapezoidal distributions given in this 
work could be applied not only in measurement prac-
tice and for extending of GUM, NIST and NASA rec-
ommendations [1] – [3], [9] but also in the statistics, 
when trapezoidal models are also used [8].

 One could forecast that way to obtain the best single-
components [13] and two-component measurand estima-
tors for samples modelled by convolution of other two 
distributions such as Uniform and Normal, Uniform and 
arcsine, etc. may be interesting [12], [13]. 
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