
Abstract:

1. Introduction
Rolling bearing degradation can be very detrimental

in certain situations. Its progressive character raises the
question of the determination of the right moment to
perform their replacement, at the cost of stopping machi-
nes. If it is possible to detect incipient bearing damage
and to identify all their evolution stages, one can estima-
te the reliability curve of the bearing and its remaining
life and thus optimize maintenance schedule.

The use of vibrations for rolling bearing monitoring is
explainable by the degradation process. Indeed, bearing
degradation generally results in a subsurface or a surface
fatigue of one of the races. Thus fatigue crack can occur
and propagate until a large pit or spall occurs in the sur-
face [1], [2]. This will generate repetitive impacts during
the rotation of rolling elements (ball or roller) over the
race. These shocks excite defective frequencies, which
depend on the number of rolling elements, the rotational
speed and the geometry of the bearing. These frequen-
cies are given by the following expressions:

Outer race defect frequency:

(1)

(2)

(3)

Where is the number of balls or rollers, is the

This paper presents a procedure for early detection of
rolling bearing damages on the basis of vibration measure-
ments. First, an envelope analysis is performed on band-
pass filtered signals. For each frequency range, a feature
indicator is defined as sum of spectral lines. These features
are passed through a principal component model to gene-
rate a single variable, which allows tracking change in the
bearing health. Thresholds and rules for early detection are
learned thanks to decision trees.
Experimental results demonstrate that this procedure ena-
bles early detection of bearing defects.
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Inner race defect frequency:

Ball (roller) defect frequency:

n fr

relative rotational frequency between inner and outer
races, is the ball (roller) diameter, is the pitch
diameter and the contact angle.

Consequently, vibration analysis is well indicated for
monitoring and diagnosis tasks of bearing. Tandon and
Choudhury [3] have presented an exhaustive review of
methods for bearing monitoring and diagnostic of rolling
bearings on the basis of vibration analysis.

For incipient damage, bearing defective frequencies
are usually buried under noise and other frequency com-
ponents in spectral representation. Denoising methods
can be applied to improve damage detection.

According to industrial standards, the fatal size of
spall is fixed at 6.25 mm² (0.01 in²) [4]. When a defect of
the fatal size is detected, emergency stop, which likely
involves expensive disturbances, must occur. Therefore,
it is important to detect defects at their early phase.

In this work, we apply a procedure, which uses enve-
lope analysis of band-pass filtered signals and decision
trees to automate the detection of incipient defects.
Features extracted from signals are processed by princi-
pal component analysis to define a residue, which accu-
rately reveals the alteration of the bearing health. In
section 2, envelope analysis is introduced. Section 3 pre-
sents the principles of principal component analysis, as
well as its application in fault detection. In section 4, we
present decision trees and their use in fault diagnostic.
Experimental validation of these concepts and obtained
results are discussed along the section 5.

Vibration signals raised on degraded bearings contain
repetitive shocks, which excite high frequency resonan-
ces. A direct frequency analysis does not always give
access to interesting information when the energy con-
tent of the signal, in consequence of these resonances,
is located in these high frequencies. However, these re-
petition frequencies can be easily highlighted in the en-
velope signal.

Classically, the signal is first band pass-filtered
around the frequency range where a significant broad-
band increase has been detected [5]. From the filtered
signal, which must contains only the repetitive impulses;
one performs envelope detection or amplitude demodu-
lation, which gives the outline of the signal. Usual me-
thods process by squaring and low pass filtering or by
Hilbert transforms.

This method proceeds by squaring the signal before
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2. Envelope analysis

2.1. Squaring and low pass-filtering
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low pass-filtering it. Squaring the signal effectively
demodulates the input by using itself as the carrier wave.
If necessary, one can correct the scale by using a gain of
2 on the signal. Since only the lower half of the signal
energy is to be kept, this gain boosts the final energy to
match its original energy. The square root of the signal is
finally taken to reverse the scaling distortion from
squaring the signal.

This method is easy to use, but one has to make
judicious choice of cutoff frequency of the low pass-
filter.

This approach creates the analytic signal from the
input signal. The analytic signal is a complex signal. Its
real part is the original real signal and its imaginary part
is composed by the Hilbert Transform of the signal.

(4)

The envelope of the original signal is obtained as the
magnitude of the analytic signal.

In a similar way to the squaring and low pass-filtering
method, we have proposed the use of a root mean square
detector to obtain envelope signal. This procedure is very
simple to implement and to apply and proceeds as
follows:

Let be the vibration signal. One defines a sequence
of vectors using a sliding window of judicious length and
form. This window is applied with an overlap of 50%.
Then, the root mean square value calculated on each of
these vectors is assigned to the time position correspon-
ding to its beginning. The time series made up of these
root mean square values will represent on a certain scale
the envelope (Figure 1).

Envelope analysis is the FFT frequency spectrum of
the modulating signal (the envelope of the original
signal). In this work, this step is performed after filtering
the envelope signal around the bearing frequency in
order to emphasize the effect of bearing damage over
other spectral lines. Thus low pass filtering is carried out
in two steps: application of the sliding window then
filtering around the bearing frequency. Figure 2 illustra-
tes this process of envelope detection.

2.2. Hilbert transform

2.3. The use of a root mean square detector

y(t) = x(t) + jH(x(t))

xn

Fig. 1. Envelope detection by root mean square detector.

Fig. 2. Envelope analysis scheme.

3. Principal component analysis
Principal component analysis (PCA) is a way of trans-

forming a set of data by finding, in the feature space, an
orthogonal base, which dimension is determined by prin-
cipal directions. PCA allows first to go from a set of vec-
tors stored in matrix to , a set of
vectors . Components of vectors are the
original variables and those of the factors or factor
scores. The new variables will avoid any redundancy in the
loaded information. Then, one will only retain in com-
ponents that correspond to an informational criteria [6].

PCA goes about this transformation linearly. Factors
are built as linear combination of variables. In this linear
context, the non-redundancy condition of factors is sim-
ply the condition of non-correlation of factors. Spectral
decomposition is thus applied to the covariance matrix
of . The main idea behind PCA is that high information
corresponds to high variance. To transform matrix into
into must be chosen in such manner that
has largest variances. will thus be the orthogonal
matrix used in spectral decomposition of . Columns in
matrix eigenvectors of . Directions of largest variance
are parallel to eigenvectors

As in practice is not known, one uses the sample
variance (covariance) matrix , which is defined as:

(5)

Vectors are such that their components are not
correlated and they are characterized by the fact that high
information is stored in a few components. Thus, only
a reduced number of components can be considered to
describe the data set. One will keep components with high
variance, i.e. corresponding to largest eigenvalues. This
means that principal components that contribute less
than a given fraction (threshold) to the total variation in
the data set are eliminated. This criterion can be written:

(6)

where represent eigenvalues of .

After this, let assume that one has kept the first
factors; the transform matrix will be instead of .
These yields

(7)

PCA as a means of fault detection has already been
intensively studied. But its application has mainly con-
cerned the field of chemical process monitoring, where
the number of sensors is generally significant [7], [8].

For detection of mechanical damage on the basis of
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3.1. Damage detection with PCA
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4. Decision trees

5. Experimental validation

A decision tree is a hierarchical representation used
to determine the classification of an object (observation)
by testing the values of some of its attributes (variables).
In a decision tree, final nodes are decision or classifica-
tion nodes, they are called sheets. Intermediate nodes
are nodes of test on the properties of the objects. The
construction process of decision trees is recursive.

In fault detection and identification [9], [10], [11],
two questions arise for the tree structure building: which
attribute to choose, and which value of that attribute will
constitute the decision threshold for segmentation at a
test node? The principle is to select, at each node, the
variable, which presents the greatest information gain,
called purity. The concept of purity just induces the fact
that sets should contain only data of most similar type,
ideally of only one single class membership [12]. Instead
of purity, one calculates a measure of impurity given by
the Shannon statistical entropy:

(11)

where s the proportion of data concerned by an attri-
bute or a particular value of that attribute. The attribute,
which presents the best gain, i.e. minimal entropy, will
be selected as the root of the tree or as a test node. The
process will be thus carried out in a hierarchical way until
the final nodes are reached, i.e. nodes, which contains
objects belonging to the same class. The most used algo-
rithm to build decision tree is the C4.5 algorithm [13].

A decision tree can be used to learn the structure of
monitoring data, and thus establish rules and thresholds
to detect bearing damage at an early stage. The only re-
quirement is the extraction of sensitive feature by means
of adequate signal processing.

In order to apply this detection procedure, several sizes
of faults were induced on the inner race of a FAG NU206
roller bearing. The test rig consists of a shaft supported by
two roller bearings housed in a carter (Figure 4). During
tests, the shaft is driven at three different speeds: 2000
rpm, 1500 rpm and 1000 rpm. Three different radial loads
are applied to the shaft and bearing with the help of a hy-
draulic jack. The test bearing is not lubricated. Three acce-
lerometers are used to measure vibration in horizontal,
vertical and axial directions. Vibration data are collected
with a sampling rate of 50 kHz. Table 1 gives the size of
induced faults as well as the number of signals collected at
each measurement point. In all, 353 signals are collected.

Healthy
Very slight fault
Slight fault
Advanced fault
Severe fault

Pi

5.1. Experimental setup

Table 1. Size of induced faults.

vibration measurement, this technique has been rarely
used probably because the number of variables to be su-
pervised is not generally large. However, it can be very in-
teresting to make use of this technique for detection of
mechanical defects in combination with machine learning
methods. The basic concept of the use of PCA for detec-
tion is summarized hereafter.

In multisensor context, or if several features are ex-
tracted from vibration signals, it is interesting to make
use of PCA for damage detection. Let be a data matrix
representing normal (healthy) operation conditions. We
can transform by PCA to get . Retaining significant
components in , we obtain . Back transform of to
original variables gives

(8)

Since it was retained only significant components in
the constitution of the transform matrix , data in are
obtained with only significant variances, i.e. insignifi-
cant noise effects have been removed (9). The difference

between the two matrices will be insignificant.
Let now suppose that a set of new operation condi-

tions is given in a data matrix . One transforms by
application of the transform matrix built on healthy data,
then its back transform in the space of original variables
will give a data matrix . The residual matrix is compu-
ted as

(9)

This matrix indicates the deviation from the healthy
state. For a vector corresponding to a residual vector
the deviation is given by

(10)

This number indicates how much an operation condi-
tion is far from the healthy one, and constitutes an ideal
feature for detection. The detection process is illustrated
in the Figure 3.
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Fig. 3. Damage detection with PCA.
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Fig. 4. The test rig.

Fig. 5. Evolution of the residue with bearing damage.

Fig. 6. Choice of significant components by scree test.

5.2. Data preparation and feature extraction
Signals are band-pass filtered in 5 frequency ranges

with a Butterworth filter: 1000, 1000-3000, 3000-5000,
5000-10000 and 10000 Hz. An envelope signal is ex-
tracted from each filtered signal by a root mean square
detector with exponential sliding windows. Windows are
used with an overlap of 50%. Window's length is chosen
to be of 100 points, which allows an under-sampling of
100 and thus a frequency range, which goes up to 500 Hz.

The envelope signal is then filtered around the BPFI
before a frequency spectrum is computed. To characterize
a filtered signal, sums of spectral lines are considered.
These sums were normalized by the load and the square of
speed, and then fused by concatenation in a 15-dimen-
sion vector (3 directions x 5 frequency ranges), which re-
presents the operation condition.

A PCA transform matrix was constructed from vectors
representing healthy bearings, i.e. the 16 first one (level
0 and level 1). The transformation and back transforma-
tion of the other vectors gave a residue whose evolution
is represented in the Figure 5. Significant components
are retained on the basis of a scree test (Figure 6). This
residue, denoted RFILT, will constitute the feature for the
need of detection.

�

�

Assuming that the evolution of bearing damage is
continuous, early detection will be related to very low
size of defect. As at level 1 the damage is very small,
early detection will concern the transition from level 1 to
level 2. With the aim of automating the task of detection,
we propose the use of decision tree. The advantage in
this choice is that the structure learned by a decision tree
can easily be traduced in rules, and from rules one can
define decision thresholds.

Figure 7 shows the decision tree learned from data.
One can observe that the thresholds for the transition
from level 1 to level 2 is located at RFILT=0.055102. This
decision tree has allowed early detection with an error
rate of 0.2%. The learning evaluation is made by cross
validation. The confusion matrix (Figure 8) shows that
levels 0 and 1 are well separated from the other levels
excepted one object of level 1 which is recognized as non
defect-free one.

This demonstrates that the methodology proposed in
this work allows early detection of bearing degradation.
Another fact observed from the confusion matrix is that
level 0 and level 1 are not very different since the deci-
sion tree failed to separate them accurately.

5.3. Results and discussion

Fig. 7. Decision tree.

Fig. 8. Confusion matrix for early fault detection with deci-
sion tree.
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For each new operation condition, data will be pro-
cessed as represented in Figure 9.

This paper addressed the important issue of early
detection of bearing fault, which can allow an optimal
organization of maintenance interventions. Principal
component analysis was used to construct a single de-
tection feature from which a decision tree learned rules
and thresholds for an early detection. Envelope analysis
was used to emphasize the effect of bearing damage over
other spectral lines in the frequency domain. The results
obtained in this study show that it can be possible to
detect incipient defects of bearing by the using the
decision trees with the proviso that a suitable signal
processing have been is carried out.
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Fig. 9. Data processing.

6. Conclusions
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