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Abstract:

This Paper presents a methodology for estimating the
parameters of stochastic differential equation (SDE) driven
by fractional Brownian motion (fBm). The main idea is
connected with simulated maximum likelihood. To develop
the methodology, two important questions, namely how to
generate fBm sample paths with different values of the
Hurst parameter and how to estimate Hurst parameter are
studied. An Effectiveness of the methodology is analyzed
through Monte Carlo simulations.
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1. Introduction

Any natural phenomena can be modeled by SDEs
driven by stochastic processes of different nature.
Indeed, SDEs find application in many disciplines
including telecommunication, engineering, economics
and finance, biology, physics and medicine. Although
the analysis of SDE has received attention over a long
period, the estimation of their parameters when the
process differs from white noise and is observed at
discrete instants only, until recently, received less
attention [1] - [4].

1.1. Some properties of fractional brownian
motion
The fBm of Hurst parameter H € ]0,1[ is a Gaussian,
mean-zero and H -self-similar process with B,;=0 and
stationary increments. It can be defined as B"={B/,t e
[¢,,t,]} with covariance function of the form

Cov( j’,B,”):%(sz”Hz” —|t—s|2H),0§S<t (1)

The trajectories of are almost surely continuous and
not differentiable.

Moreover forany ¢ >0 E[(B,H )2} = |t|2H. IfH=1/2, B"
is the usual white noise denoted by B={B,,t € [t,,1,]}.

The fBm is widely used in different fields of science as
far as there is a possibility to present long-range and
short range dependent processes. However, there are
some difficulties connected with the fact that fBm is not
a semi martingale and the paths of fBm are of unbounded
variation. Thus the usual Lebesgue-Stieltjes integration
and Ito stochastic calculus cannot be applied. This com-
plicates the development of new pathwise integration
method with respect to fBm, the numerical schemes for

SDE driven by fBm and especially if one is interested in
simulation, where mathematical model contains fBm [5].

1.2. Semiparametric estimator of hurst
parameter

The problem of Hurst parameter estimation has been
widely studied, cf. [6 9]. Our approach is based on self-
similarity property of stochastic process Y={Y,, ¢ € [t,,
t;]}. If we denote arbitrary selected empirical densities
by fAl(Y,l) and fl(Y,k), then self-similarity can be descri-
bed as

L@ )=E7(,)- (2)

We denote spectral density f,(A;) for frequencies
A=02m)/T, 0 <j < [T/2]. The exact values of spectral
densities can be written as

fen(W)=CA™,0<5<[T)2] (3)

where C, H are still unknown constant, whose values
need to be determined.

So that, in order to estimate H we use the idea perio-
dogram of time series Y={Y,,t€ [t,,t,]}.
The covariance coefficient of given time series are

-1
v, = ﬁTZ(YM ~Y )Y, -Y) h=0,1,..,T-1, (4)

k=h

_ 1 <&
whereY =——>» Y.
T+1;‘ !
Fourier frequencies are
-1
F(T)=y,+2) v, cos(hh,). (5)
h=1

Now taking into account (2) — (5) we can introduce
the functional.

©(C.H)=3[Ch ~ f(.T)] —5—>min (6)
J
Its optimization gives estimate H of Hurst parameter /.
1.3. Task formulation
We have a stochastic process Y={Y,, t € [t,, t;]}
defined on probability space (Q, F, P) and presented by

following model

dY=a(t,Y,, y)dt+b(1, Y,, y)dB/, 7)
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wherea(t, Y,, v), andb(t, Y,, v) are drift and diffusion B+ m)-E(Y)

functions, these both functions satisfy the conditions of E[f(r)|=f(r)= E{} —f(Y)= (14)
existence and uniqueness theorem;  is an unknown

vector of parameters, which has to be estimated; B’ is
fBm with Hurst parameter H.

2. The identification methodology

2.1. Propositions

One of the possible approaches of SDEs numerical
solution is Monte Carlo method. We will use the idea of
this method in order to find estimates of SDE (7),
rewriting likelihood functions as

0’“’) ZIHp( i+l t+1| i H ) (8)

L, (r)=-1np (%,

 =arg min,, L*w (). (9)

The main problem here is how to find estimates
f)(YM, t., 1Y, t; ), as far as we have only one obser-
vation at any time moment ¢, and want to approximate
the probability density function in time ¢, (i=1,2,...T).
The solution of the equation (8) presents a family of
MeA sample paths Y(¢) (i=1,2,...T, j=1,2,..M), thus
if we suppose that the estimate of parameter vector \ of
SDE (8) is known, then p(Y(1,)e{Y(t)})=1
(j=1,2,...M). Now on the basis of values Y'(r) the
possibility of the density function estimation for Y(t,)
appears. We can represent (8) as

T
Bagw)-Sn (i), (o)

where (Y, ¢;; ) is probability density function at time ¢,
(for convenience we omitz and ).

The probability density function f(Y) is connected
with the probability function F(Y) as follows

i(V)=F(). (11)

We use this fact in order to find estimates f(Y). The
empirical estimate of probability function is

F(r)= %

where 1is set belonging indicator.

L', (¥)=—Inf

ZA::'I{Y./ <v}, j=1,2,.,M, (12)

Using relation (11), f(Y) can be presented
f(¥)=lim(F(Y +h)- F(Y)/h) which estimate is

f(r)= 21{Y<YJ<Y+h}

F(Y + h) F(y )
where 4 means the bandwidth, / is absolutely positive
constant.

In follows reasoning we will use two operators:
operator of mathematical expectation E[-]: and operator
of variance D[-]:. F(Y) is the unbiased estimate of F(Y),

i.e. E[F(Y)] F(Y) thus
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:m;ﬂydﬂ <Y+hj-f(Y)

for h =0 and M —o it is the unbiased estimate too,
moreover the variance

D[?(Y)}—DL;}’;ZM;1{Y< Yf<Y+h}}— (15)
- Mlh2 D[1{Y< Y/ < Y+h}}:%}];)+0[ij

is striving to zero for M —eo and Mh —>e. It is clear that
quality of the estimate f(Y) depends on values M and A
selection. In order M —oo, it is enough to increase of Y
sample paths, thus we will consider problem of / para-
meter selection.

Let's calculate mathematical expectation of mean
squared error of estimate f(Y)

e (1(r))= [E[£, ()~ ()] dy = (16)
=E[[F7(r)-2F, () ()2 ()]ar.

As far as i —0 and Mh —o, using kernel function
[10], expression (16) can be approximated as

A 1 I/
mst ()=~ + - (o

where | [K||* and (u,(K))* are some constants depen-
ding on kernel function K; f'(Y) is second derivative of
function f(Y).

N

(17)

The minimization of (17) with respect to / gives
following results

1/
K
hoﬂl :[L - "2 "2 ZJ , (18)
M), (na (K))
where "f ”(YjE is the only unknown term.
The final solution of (18) depends only on the kernel
function solution. For the simplicity we will use for

SDE (8) parametric identification Epanichnikov kernel
function [11]:

K(u):%(l—uz)l(wﬁl) , (19)
whereu=(Y-Y)/h.

Substituting (19) into (18) we get
h” =096 ,M ", (20)

where isstandard deviation of the sample

Y (=12,...M).
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2.2. Algorithm observation of white noise and
Now function (10) can be estimated by the algorithm: . [F@HDsin( )
c" = T(H 112 . (27)
1. Using numerical method for SDE solution generate M (H +1/2)

realizations of the process for#,(j=1,2,..., T), getting
sequence of Y'(¢), (j=1,2,..., M).

2. For M observation Y (1)), (j=1,2,..., M), of random
value Y () estimate values of probability density
function f(Y'(¢,))

?€Y(ti)):‘fmli{l—{W] ]1{Y(tl.)— (21)

j=1
—h<Y' ()<Y (t)+h},

3. Steps 1) and 2) have to be repeat for all 7" and
substitute results into (10).

As far as h —0, but h#0, then estimates (21) are
biased, thus EJ;ln? €& ))] ~Inf ¥ (,))# 0, thus final
estimate of (10) has to be corrected at any point¢; as

A e ()]
Inf (¥ (1)) =1n (B F € ()] )- %D[f—
where (E[f €Y (ti ))D

E[ffY(tl. ))] = iifm () (23)

mz m=1

(22

and

D[ (1)) = ﬁZ(f &) Ef€@))]) - @4

Numerical solution of (3.1) can be completed by Euler
scheme, where pseudorandom numbers have to be
generated by some suitable algorithm. We will discuss
one of algorithms in next section.

3. Simulation results

3.1. Pseudorandom numbers generator

Mandelbrot and van Ness presented fBm by its
stochastic representation with respect to ordinary
Brownian motion [5]

el [(EO R O T

f H-1/2
+ 1| (t=s B(s) |, s<t,
o m)|
where I'(-) represents the Gamma function.
The idea of stochastic representation method is to

approximate this integral by Riemann type sums to
simulate the process B" (1=0,1,..., T):

B" :CH(ZU: [(t_k)H—l/Z_(_k)Hfl}Bl (k)+ (26)

+§(t-k)”"“ B, (k)j,

where B, and B, are vectors of d+1and T+1 (d#T) are

The illustration of this generation method for
T=1000and H={0.2:0.5:0.7} is oresented in Fia.1.
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Figure 1. Sample paths of fBm with different Hurst
parameters values simulated by Mandelbrot and van Ness
method.

3.2. Numerical example
In order to check properties of simulated maximum
likelihood estimation approach we will complete some
numerical experiments using Monte Carlo simulations. All
the experiments consist from:
1) B" = {B,”,te [to,tT]} sample paths generation
using Mandelbrot and van Ness method;
2) Hurst parameter estimation by semiparametric
method;
3) SDE sample paths generation by Euler numerical
scheme:

Yo=Y, +a(tY,w)A, +b(t.Y,w)AB', (28)

where A, =[t, —t,]/T, AB" = B!

141 _BtH;
4) SDE parameters estimation by simulated likelihood
method.

During experiments we examine only linear version of
SDE (7) as far as in fBm case Lebesgue-Stieltjes
integration and Ito stochastic calculus cannot be
applied, creation numerical schemes with better
convergence is not so convenient. Using subscripts to
denote the time index, the test equations are

dY, =y Ydt +y,YdB/, (A)
dY =Ydt+yldB", (B)
dy, = %wa,dt +y,YdB/", (©)
dy = LYtdt +y,YdB", (D)
day, =\|J:Ytdt+2\l+2Y, dB/" . (E)
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Estimation of the drift and diffusion parameters of
equations (A) — (E) is conducted for different values of
Hurst parameter H=1{0.2;0,5;0.9}. Time interval [t,, t,]
is divided on T=1000 subintervals, where t,=0 and
t,=1. For SDE sample paths Y, (j=1,...,1000) generation
is used the initial value Y,=0.5 and true parameters
v,=1.0 and y,=0.5. Final estimate of (5) is to be
corrected at any instant, where m,=250. The derivative-
free simplex method [12] is used to estimate y,andy, in
(2b) using start values of W,=1.3 and ,=0.4, initial
value Y;=0.1. The mean and standard deviation of para-
meters y, and s, estimates are reported in Table I.

Analysis of obtained results shows that for all test
equations with H=0.3 the absolute error of y, and s, in
some cases exceeds even 15%. The relatively small values
ofs,, ands,, demonstrate significant right-hand side bias
of estimates mean values. Study of white noise case for
all test equations illustrates that the absolute error does
not exceed 2.5%, as well as the low values of s, and s,
allow to conclude that mean values 1?1, and \Ayz do not have
significant bias. In the case of long-range depended
process, where H=0.8, for all equations the absolute
error for \?fl is negligible, but for \?lzin some cases exceeds
10% and has left-side bias.

Table 1. Results of Monte Carlo simulation.

4. Concluding remarks

In this paper, we proposed the methodology of para-
meter estimation in SDE driven by fBm. The underlying
idea of this methodology is based on the SDE maximum
likelihood function simulation. For this purpose we used
wavelet-based generation methods of fBm sample paths
and semiparametric method of Hurst parameter esti-
mation. Numerical study demonstrated the effectiveness
of the methodology despite on the high values of abso-
lute error for some SDE parameters estimates. To improve
the methodology, we may consider using different
schemes of SDE numerical solution of higher order of
convergence.
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SDE Hurst Estimate of mean value Estimate of standard deviation
parameter, H \?]1 1%2 Sy S,
0.3 1.1189 0.5624 0.1335 0.0524
(A) 0.5 1.0152 0.5192 0.0313 0.0299
0.8 0.9975 0.4193 0.0219 0.0687
0.3 - 0.5589 - 0.0611
(B) 0.5 - 0.5142 - 0.0315
0.8 - 0.5009 - 0.0701
0.3 1.2552 0.5853 0.1447 0.0471
©) 0.5 1.0102 0.5133 0.0401 0.0301
0.8 0.9877 0.4452 0.0219 0.0687
0.3 0.9106 0.5055 0.3103 0.0346
(D) 0.5 1.0118 0.5006 0.0397 0.0225
0.8 0.9975 0.4193 0.0219 0.0687
0.3 1.2418 0.5309 0.1455 0.0149
(E) 0.5 1.0298 0.5069 0.0455 0.0125
0.8 1.0031 0.4524 0.0305 0.0591
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