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Abstract:

The accurate control of CNC machine axis requires
relatively expensive direct measurement sensors. In this
paper, artificial neural network based position error esti-
mators are comparatively evaluated as a part of a low-cost
(but high performance) manufacturing system. Such sche-
mes are very effective when the system is not subjected to
external loads as well as widely changing operating condi-
tions such as ambient temperature.
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1. Introduction

Precision axis motion control is vital for CNC machine
tools as the resulting performance affects the dimensio-
nal tolerance, form, and the surface accuracy of the
manufactured goods. When the characteristic travel-span
(“stroke”) of the machine is relatively long (>> 0.5 m);
the use of direct measurement techniques employing
traditional sensors (such as potentiometers, LVDTs, li-
near scales, laser interferometers) leads to both bulky
and relatively expensive solutions.

The main motivation of this paper is to propose
feasible estimation schemes based on artificial neural
networks that utilize the secondary information sources
located on the actuator side of the machine so that the
position of the carriage could be estimated to the desired
accuracy for “not-so-demanding” applications like CNC
laser/plasma cutters, filament winding machines, and
rapid prototyping machines.

The organization of the paper is as follows: The pro-
ceeding article gives background information on neural
networks and their corresponding use as estimators in
manufacturing industry. The following section introdu-
ces the experimental setup along with number accom-
panying tests to investigate the error sources of a generic
machine axis. Section 4 focuses on suitable neural net-
work architectures and their training using the collected
data. The next article illustrates the estimation perfor-
mance of the neural networks. Finally, the key points of
the paper are briefly discussed.

2. Background
The position errors for most CNC machinery are said to
be quasi-static [1]. A large portion of such errors are
attributed to
e Manufacturing (form, dimension, tolerance) errors of
machine elements,
Misalignment/installation errors of parts in assembly,
Structural errorsinduced by static forces,
Thermal expansions of machine parts and workpiece.
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When the afore-mentioned errors are repeatable in spa-
tial and temporal domain, they can be estimated and
reduced (if not totally eliminated) through passive error
compensation techniques [2]. Unfortunately, developing
analytical models for inherently nonlinear error sources
in a machine turns out to be a tremendously challenging
task. Furthermore, even with the processing power of mo-
dern computers, online error estimation using sophisti-
cated models is proven to be very difficult.

The researchers in this field mostly turn their atten-
tion to empirical techniques for model construction. Sin-
ce Artificial Neural Networks (ANN) are known to be uni-
versal approximators, they appear to be natural choice for
error prediction in production machinery [1, 3-5, 7, 8].

For instance, the dilation caused by the local heating
while machining is considered in [3]. The change in
workpiece dimensions is estimated by neural networks
and the tool path is corrected accordingly. While [4] em-
ploys a Radial Basis Function (RBF) network estimate the
machining errors. In [5] the compensation required for
the next part on a CNC machine tool is studied by a neuro-
fuzzy network and tested for cylindrical parts. Likewise,
[6] investigates the error sources in bar turning. In [7]
the thermally induced errors are estimated by RBF. In
reference [8] the relationship between cutting force and
the deflection of machine structure is modeled by RBF, to
predict the dimensional deviation of the finished part.

3. Experimental setup

As shown in Fig 1, the setup of this study is speci-
fically designed to represent the axis of a generic machi-
ne where a DC servomotor with a built-in gearbox drives
the carriage via a timing belt. Due to the elements used
system, there exist several hard- and soft-nonlinearities
associated with the elements including backlash (gear-
box + timing belt), time delay (timing belt), friction
(bearings), viscoelastic behavior of the belt, and more.
Thus, estimating the position of the carriage using indi-
rect measurement techniques is proven to be quite chal-
lenging and requires extensive modeling efforts, if univer-
sal approximators like neural networks are not employed.

Note that for modeling and verification purposes,
a high-resolution linear scale is present in this setup.
Thus, the displacement (position) errors introduced by
the transmission system are represented as the difference
between position measurements of the primary encoder
and those of the high-resolution linear scale.
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Figure 1. Experimental setup and its schematic.

3.1  Experiments

Within the scope of this study, several tests are
conducted. First of all, the repeatability of the motion
must be studied as a prerequisite to train various ANNs.
In all tests considered, the motor's velocity is accurately
controlled along a trapezoidal path as shown in Figure 2
where the resulting (position) tracking error in Figure 3
(that essentially go to zero at the steady state) can be
assumed low for allintensive purposes.

Under the above-mentioned conditions, the positio-
ning error patterns for twelve different (overlaid) trajec-
tories are illustrated in Figure 4. As can be verified fre-
quency chart in Figure 5, the positioning errors, which
exhibit hysteresis character, are quite repeatable which
in turn encourages the development of ANN based esti-
mator models.

To reveal the basic nonlinear relationships, several
experiments are performed:

e Full bidirectional travel of the carriage with different
steady-state speeds and acceleration profiles,

e Intermittent bidirectional travel of the carriage with
different speed and acceleration profiles,

e Intermittent bidirectional travel of the carriage with
random speed and acceleration profiles.

The following section concentrates on the suitable neural

network architectures and their corresponding training

phase utilizing the acquired data.

e e iy e
i b
i
1 |

Figure 2. Velocity profile of the carriage.

Figure 4. Position errors for 12 cases.

Figure 5. Frequency of positioning errors.

4. Neural network architectures and training

To estimate the position of the carriage, three ANNs,
which are to receive inputs from the primary encoder, are
considered [9]:

e Feedforward Neural Network (FNN),
e Radial Basis Function Network (RBF),
e Recurrent Neural Network (RNN).

Table 1 summarizes the important attributes of these
ANNs. Data collected for the carriage velocity of 100
mm/s is first conditioned (low-pass filtered) to eliminate
the high-frequency harmonics introduced by the trans-
mission system (gearbox + timing belt). Figure 6(a)
illustrates the Bode plot of this low-pass filter while
Figure 6(b) shows the resulting data sequence composed
0f 1020 data points.

With conditioned training set, the above-mentioned
neural networks are trained utilizing Matlab Neural Net-
work toolbox. The training performances of these neural
networks are illustrated in Figure 7 while Table 2 summa-
rizes the key results. Note that in Table 2 data compre-
ssion ratio refers to data points in the training set versus
the free parameters of the network (aka “weights”). As
can be seen, the FNN yields the best approximation. Sur-
prisingly, the RBF demonstrates a rather poor approxima-
tion performance despite its large number of free weights.
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Figure 6. Training data where the carriage velocity is
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(b) Approximation error of FNN
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5. Generalization results and discussion

Next, the generalization capabilities of the networks
are assessed. The generalization test is conducted with
position error data for a carriage velocity of 80 mm/s. The
test data is fed to the trained NNs and the estimation
results are compared to original data.

The results are illustrated in Figs 8 thru 10. Despite
the apparent success of FNN in training phase, its genera-
lization performance is not that impressive if compared
to those of others. Hence, the RBF apparently yields bet-
ter generalization performance.
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(b) Generalization error.

Figure 8. Generalization capability of FNN when carriage
velocity is 80 mm/s.
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Figure 9. Generalization capability of RBF when carriage
velocity is 80 mm/s.

6. Conclusion

In this study, three types of ANNs (FNN, RBF, RNN) are
trained to approximate the quasi-static position error
pattern of a carriage driven by a timing belt. During the
experiments, extensive data is collected in a two-month
period under different operating conditions. The collec-
ted data is spatially and temporally repeatable in chara-
cter. Thus ANNs that are implemented to learn the error
patterns off-line can be used to estimate the errors in an
on-line manner. Consequently, a well-trained ANNs could
be employed as a part of a low cost but high performance
motion control paradigm.
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Figure 10. Generalization capability of RNN when carriage
velocity is 80 mm/s.
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