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§ STATE VARIABLES DIAGRAM METHOD FOR DETERMINATION OF
W POSITIVE REALIZATIONS OF 2D SYSTEMS WITH DELAYS
5
Tadeusz Kaczorek
Abstract: 2. Conception of construction

Realization problem for positive single-input single-
output systems with delays in state vector and inputs
described by the 2D general model is addressed. Sufficient
condition for the existence of a positive realization are
established and a procedure for finding a positive realiza-
tion for a given proper transfer function is proposed. The
procedure is illustrated by a numerical example.

Keywords: positive realization, existence, procedure, 2D
general model, delay

1. Introduction

The most popular models of two-dimensional
(2D) linear systems are the models introduced by Roesser
[22], Fornasini-Marchesini [4,5] and Kurek [22]. The
models have been extended for positive systems in [10,
24, 13, 9]. An overview of 2D linear system theory is
given in [1, 2, 7, 8] and some recent result in positive
systems has been given in the monographs [3,9] and in
paper [12,24]. Reachability and minimum energy control
of positive 2D systems with one delay in states have been
considered in [13] and the upper bound for the
reachability index of the positive 2D general model has
been analyzedin [11].

The notion of internally positive 2D system (model)
with delays in states and in inputs has been introduced
and necessary and sufficient conditions for the internal
positivity, reachability, controllability, observability and
the minimum energy control problem have been
establishedin [18].

The realization problem for 1D positive discrete-time
and continuous-time systems with delays has been
analyzed in [14-17, 19, 20]. The realization problem for
2D standard systems has been investigated in many
papers and books [4, 5, 6, 7, 8] and for 2D positive
systems with output delaysin [9].

In this paper sufficient conditions will be established
for the existence of a positive realization for 2D linear
systems with delays and a procedure will be proposed for
finding a positive realization for a given proper transfer
function.

To the best knowledge of the author the problem for
positive 2D systems with delays in state and in inputs
have not been considered yet.

Let R be the set of nxm real matrices with
nonnegative entries and R, = R”. The set of integers
nonnegative will be denoted by Z, and the nxm identity
matrix by I.

Consider the 2D single-input singleoutput system
(model) with delays in state and in input

X(i+l’j+l):zz (A/;lx(i_k’j_l)+ B/(/u(i_k’j_l)) (1a)
,("]ED“I”Z
y(i./)=Cx(i, j)+Du(i,j), i,jeZ, (1b)

where x(1,j)eR’, u(ij)eR', y(ij)e R are the state vector,
input and output, respectively and, A,R™, BER,
kleD,  CeR",DeR

mng!

D, ={kleZ : —1<k<n, —1<I<n, k+I1>-2}
Definition 1. The system (1) is called (internally)
positive if for all boundary conditions

x(i—k,—l)e R, x(—k,j—l)e R,

k=0,1,.,n; [=0,1,.n,; i,jeZ,

and every input sequence u(i,j)eR,, i,j €D, , we have
x(ij)eR andy(ij)eR forijeZ,.

Theorem 1 [18]. The system (1) is (internally) posi-
tiveifand only if

A, eR™, B,eR!, kleD, , CeR™

+ 9 my ° +

DeR, (3)

The transfer function of (1) is given by
(4)

-1
T(Zl,zz)=C [nZIZZ_ZZ Ak121k22]:| (zz Bk]ZIkZz[]+D

k1€D,,, k<D,

Definition 2. Matrices (3) are called a positive
realization of a given transfer function 7(z,z,) if they
satisfy the equality (4).

The realization problem can be stated as follows.
Given a proper transfer function 7(z,,z,), find a positive
realization (3) of 7(z,,z,).

In this paper sufficient conditions for the existence of
a positive realization of a given T(z,,z,) will be establish-
ed and a procedure for finding of a positive realization
(3) of T(z,,z,) will be proposed.
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3. Problem solution
From (4) we have

D=1mT(z,z,) (5)
since
-1
llm Izz,— zz Ak,z’kzgl =0 (6)
kIED
The strictly proper part of 7(z,,z,) is given by
n(3, z)
=T — D = 7

Tvp(zl’zz) (ZUZZ) d(zlﬁzz) (7)
where

(8)

n(zl,zz)=CAdj |:I,;Z|Zz_zz A,z l’k l:|[zz B,z kz’}

//////////

d(zl,zz)=de{lnz]zz—zz Aklzlkzzl} (9)

kl<D,,,,

Therefore, the positive realization problem has been
reduced to finding the matrices

A, eR”, B, eR", kleD,

mny 2

and CeR"> (10)
for a given strictly proper transfer function (7).

Let a givenirreducible transfer function have the form

N M

22 buziz

T(Z]’ZZ): ] k:m:N M (11)

k+1< N+M

Using (5) for (11) we obtain

D = lim T(Zl,zz):ENM

(13a)
b, =b, +ayb k=01,...,N; [=0,1,...M, k+I<N+M

=0 10 e (14)

where z=z" and w=2z,".

Let Yand U be the 2D Ztransforms of y(7,j) and u(7,j).
Taking into account that 7, (z,W):YU and using (14) we
may write

N M
k1 k1
bN—k,M—lz wU + Zz ay o Z2 WY

k=0 1=0
k+1>0

M‘s

N
r=2,
U

T
So

>

.

and
M M M
Y= ZbNny,wlU + ZaNny,w]Y + Z(ZbelyMJW]U +

I=1 =1 1=0

M M
+Zaw LW Y+z[ZbV72’M7,w’U+Zal\_2_M7/w’Y+K + (15)
1=0

=0 =0

M M
+ Z(z bU,M—/W[U + Z aOM,w[YJK J]

=0 1=0

From (15) it follows the state variable diagram shown
in Fig. 1 for N = 6 and M = 4. The number of horizontal
delay elements (denoted by z) is equal to N and the
number of vertical delay elements (denoted by w) is equal
toM.

Casel: N=nn,M=n,(orN=n, M=nn,)
Case2: N=nn,, M=nn,.

First the essence of the proposed method will be
presented forN=6and M=4.

Case 1. W choose n = 3, n, = 2 and n, = 4. As the state

how (12) variables x,(7,j), x,(1,j) and x,(7,j) we choose the outputs
‘ of the second, fourth and sixth horizontal delay
and N L elements. Using the state variable diagram shown in Fig.
22 byniz 1we may write the followi ions:
B g y write the following equations:
Tsp (ZI’ZZ):T(Z]’ZZ)_bNM = HIMHM (13)
Zl Zi ZZ aAIZI 2
k=0 1=0
k+I<N+M
x (i + L+ =ayx (i + )+ apx, (i )+ apx, (i =)+ ay,x (i = 2)+ 4y (1,7 =3)+ agx; (=1, j + 1)+ agx, (=1, )+ (16)

+agx, (1—1,]—1)4—(1”1)63 (l—l,]—2)+aoﬂx3 (l—],]—3)+b|4u(l,j+])+b|3u(l,])+b12u(l, —1)+bnu(z, 2—- ])+
+bu (i, j=3)+byu (i1, j+ 1)+ byu (=1, j )+ bpu (i =1, j—1)Hbyu (i=1, j=2)+bygu (i1, j=3)

X, (141, j+ 1) =agx, (i, j+ 1)+ ayxy (1) + asx, (0 =)+ ayx, (1, = 2)+ ayox; (i, =3)+ ayx, (=1, j+ 1) +ayx, (i1, )+
+ayxy (i=1 =)+ ayx, (=1, j=2)+ ayx, (i=1, j=3)+x (=1, j+ 1)+ byu (i, j+ 1)+ byu (i, j )+ byyu (i, j—1)+
+byu (i, j=2)+byu (i, j=3)+ by (i =1, j+1)+ by (i =1, j )+ bypu (i =1, j= 1)+ byu (i =1, j =2 )+ byyu (i -1, j =3)

X (41 j+ D) =agx, (i+1, )+ agx, (i+1 =1+ agx, (i+1,j=2)+agwx, (i+1,j=3)+x, (i=1, j+ 1)+ agx, (i, j+ 1)+ agx; (i, j )+
Fagxy (i, j = 1)+ asx; (i, = 2)+ asyxs (i, =3)+ ayx, (=1 j+ 1)+ ax, (=1 j )+ apx, (=1, j=1)+a,x, (-1, -2)+
tax, (i—17-3)+bgu(i+1, j)+bou(i+1 j—1)y+bgu(i+1, j=2)+bgu(i+1, j=3)+byu (i, j+ 1)+ byu (i, j )+
b (i, j—1)+bsu (i, j =2 )+ bygu (i, j=3)+ by (i=1, j+ 1)+ bgu (i =1, j )+ byu (i =1, j = 1)+ bu(i—1,j —2)+bu(i-1,j-3)
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|
The equation (16) can be written in the form
x(i+1j+1)=A o x((+1,j)+ A x(i+1j—1)+ A ,x(i+1,j=2)+ A, x(i+1,j=3)+ Ay_x (i, j + 1)+ Ay ox (i, ) )+ Ay, x (i, j = 1)+ (17)
+ Ay ,x (i, j=2)+ Aysx (i, =3)+ A _x (=1, j+ 1)+ A gx (i =1, )+ A x (i =1, j = 1)+ A ,x(i—1,2 =)+ 4 3x (i =1,/ =3)+
+B L u(i+1,j)+B i+l j—1)+B u(i+1,j=2)+B u(i+1, j=3)+B,_u(i,j+1)+B,u(i, j)+ By u(i,j—1)+
+Byu(i,i—2)+Bysu(i, j—=3)+ B _u(i-1,j+1)+Bgu(i—1,j)+Bu(i—1,j-1)+Bu(i-1,j-2)+Bu(i-1,;-3)
where
] ) (18)
0 0 00 O 00 O 0 0
A ,,=|0 0 , A ;=10 0 0|, A,=|0 0 O] A ,=00
10 0 ag] 0 0 a, 0 0 gq 0 0 a
[0 0 a,] 0 0 a] [0 0 a, 0 0 a,
Ay =10 0 ay|, Ayp=|0 0 a;|, A, =0 0 a,|, A,=|0 0 a,]|
10 0 a, | 0 0 ag 10 0 a 0 0 a
[0 0 a,] 0 0 a,] [0 0 a 0 0 a,
A;=10 0 ayl|, A_ =1 0 a,|, A =|0 0 ay|, A;=|0 0 a,|,
10 0 ay | 01 a, 10 0 a, 0 0 a,
[0 0 a,] 0 0 a, 0 [0 ] 0
A,={0 0 a,|, A;=l0 0 a,|, B,;=[0]|, B, =0}, B,,=[0],
70 0 a, 0 0 a bgs b, i by,
O b14 b13 blZ bll blO
B,,=0 B, =|b,| Bo,o by |, Bo,l =|by | B, = by |, Bo,3 =[by |
7b(\0 i b54 b53 bSZ 7b5] B b50
b04 b03 bOZ b()] bOO
B, =by,| Bl‘o =|by | BL] =1by |, Bl,z =|b, |, B1,3 =| by,
_b44 i b43 by, b, b.m
From the output equation
y(i7)=x(./) (19)
we have
c=[0 0 1] (20)
In a similar way in general case we obtain matrices
A,eR™" of the form
. ] . (21)
0K 00 0K 00 0K 00
A MO MM MO MM K A MO MM
TI0 K 00 M0 K 000 S N I GV I}
0 K 0 Dy -1 0 K 0 Ay -2 0K 0 'y 0
[0 K 0 Ay -1, | 0 K 0 Ay tny-1 [0 K 0 10
0 K 0 a 0 K 0 a 0K 0 a
AO L= 2m—1l,n, 00 _ 2m—1,ny—1 ,K ,An’n27| _ 2m-1,0
MO MM MO MM MO MM
0K 0 Dy, 1., 0 K 0 Dy —1,ny-1 0K 0 Ay 10
00 K q, 0K 0 q,,
01 K a,, 0K 0 a,,
m-l-1 = o s A0 " K
v MM O M " MO MM
0 K 1 Aty my 0 K 0 Aty 1
0 0 K a
01 K aqa,,
K,A, L, .=
1 MM O M
0 K 0 @iy
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and the matrices B, € R" of the form

o 0 [0 (22)
M M M
B, = 0 » B, = 0 K ’B—l.ngfl = 0
L gy 1 | b;m,,nrz _brml,(]
I =Ly 1 b»rlfl.nzfl [ bn,fl,O ]
b”ufn bn—nf bnf
B071= e 5 BOO: 2.1,21’K,B0n71= e
M ' M o M
| Onm—tny | 1,1 | P10 |
bﬂ,nz brxnrl [ by
ny.ny ny =1 .0
n-l-1 = M I Bnrl,O = M K ’Bu,fl.,nzfl = M
b(nfl Yoy b(n—l Yy -1 ;b(»rfl 0
The matrix C has the form
C=[0 K 0 1]ER]X" (23)

Theorem 2. There exists a positive realization (3) of the
transfer function (11) for N = nn, and M = n, if the
coefficients a, and b, are nonnegative

a,>0 and b,>0 for k=0,1,..N;[=0,1,...M  (24)

Proof. From (12) it follows that b,,> 0 implies DeR.. If
the conditions (24) are satisfied then from (13a) we have
b2 0 for k=0,1,...,N; |=0,1,...,M, k+l<N+M and this
implies the nonnegativity of the matrices (22). The
condition a,> 0 k=0, 1,..., N; |=0, 1,..., M implies the
nonnegativity of the matrices (21). From (23) we have
CeR™.

If the conditions (24) are met, then a positive realization
(3) of the transfer function (11) for N=nn,and M=n, can
be found by the use the following procedure.

Procedure 1.

Step 1: Knowing the degrees N and M of the denominator
d(z,,z,) of (11) choose n, n, and n, such that nn,=Nand n,
=M.

Step 2: Using (5) and (7) find D and the strictly proper
transfer function (7).

Step 3: Using (21), (22) and (23) find the matrices A,, B,
fork=-1,0,...,n-1;(=0,1,...,n,-1and C.

Remark 1. Note that the role of the variables z and w (z,
and z,) in the above considerations can be interchanged.

Example 1. Find a positive realization (3) of the transfer
function

42, 32 2
22z + 2,25 + 2,2, + z; +1

T(zl,zz): Z

2 5,22 _ —_.
D2 TLL L T T T TG

(25)

The transfer function (25) satisfies condition (24).
Using Procedure 1 we obtain.

Articles

Step 1. In his case N=4 and M=2 and we choose n=2 and
n=n,=2
Step 2. Using (5) and (7) we obtain

D= lim T(zl,zz):Z (26)

and
(27)

5202 +2202, +32,2, +32} + 22, +3

ij (Zl,zz):T(zl,zz)—D:

a2 532 2 _ _ 2.
22, T L T T T T

Multiplying the numerator and denominator of (27)
by z;' z}we obtain

52422 w32 w+322w + 2z w3z’ (28)

T (z,w)=
v (2w) 1-2z-z*w—2'w—z2"w* —z*'w—z*w?

Step 3. Taking into account that

Aoy = Aoy = ) = lyy = Ay,

boo =by, =b,=3, b, :bm =2, b32 =5

=1, a,=2

(remaining coefficients are zero)

and using (21), (22) and (23) we obtain (zero matrices
are omitted):

0 0 0
A(H: a,, _ A, - 0 a, _ 0 1 , (29)
0 ay, 0 2 0 a 0 0
A = 0 a, 3
o ay -
0 01
o) S Pl B
@y, 01 b, 5 by, 0
b, 2 b, 3
B, = "= , B, = * = > C=[0 1]
' by, 2 ’ by, 3

The desired positive realization of (25) is given by
(26) and (29) and the 2D systems is described by

equations
y

+ g | x(il,j1)+{g}u(i,j+l)+

0

sl ooy e o)

- o (=)
SN

1
x(i+1,j1)+[g Jx(il,j)Jr

—

+

fg}“("’j){ﬂ“(i‘l’f'){ﬂu(i—l,j_l)

y(i,)=[0 1]x(@i,j)+2u(i,j)

Case 2. First we shall considered the proposed method for
N=6and M= 4. We choosen=2andn, =3, n,=2and we
assume that

(30b)

A ) =4, =0, 0<k<2

31
by v, =bi 4 =0, 0<I<1 (31)

Under this assumption we can modify the state vari-
ables diagram to the equivalent one shown in Fig. 2.
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Using the state variables diagram we may write the
following equations

32
X (L 1) =agx, (=2, j=1)+ayx, (i=2,j )+ apx, (-2, j+ )+ a,x, (=1, j-1)+a,x, (-1, j)+a,x, (i-1,j+1)+ (32)

+ayx, (i, j =)+ ayx, (i, )+ apx, (i, j+ )+ ayx, (i +1, j =)+ ayx, (i+1, )+ bogu (i =2, j=1)+ by (i =2, j )+ by (i =2, j+1)+
+bgu(i=1, =) +bu(i=1, j)+bu(i=1, j+ 1) +byu (i, j = 1)+ by (i, j )+ boyte (i, j+ 1)+ bygu (i +1, j=1)+byu (i +1, )

x, (i1, j+ 1) =agx, (i+1, )+ agx, (i+1, j =)+ ag,x, (i, j+ 1)+ agx, (i, j )+ as,x, (i, j =)+ a,x, (i1, j+ ) +aux, (i1, )+
+anx, (i-1, j—1)+ayx, (i=2, j+1)+ayx, (i-2, j)+ay,x, (=2, j—1)+x, (=2, j = 1)+bgu(i+1, j )+ bu(i+1,j 1)+
b (i, 1)+ by (i, )+ boyu (i, j = 1)+ byu (i =1, j+1)+bgu (i =1, j )+ byu (i =1, j =)+ byu (i—2, j+1)+
+bgu(i=2,j)+byu(i-2,/-1)

The equations (32) can be written in the form

x(i+1Lj+1)=A x(i+1, j)+ A x(i+ 1 =1+ A, x (i, j+1)+ A ox (i, )+ Ag,x (i, j =)+ A, _x(i=1, j+1)+ (33)
+ A x (=L )+ A x (-1 —1)+A, x(i=2,j+1)+A,x(i=2,/)+ A, x(i-2,j—1)+B_ u(i+1, )+
+B_u(i+1,j—1)+B_u(i,j+1)+B (i, j)+Bou(i, j—1)+B,_u(i-1,j+1)+B u(i-1,/)+
+Bu(i-1,j-1)+B, u(i-2,j-1)+B,u(i-2,/)+B,u(i-2,j-1)

A _ _0 a}l A _ 0 a30 A _ 0 a22 A _ 0 a21 (34)
-0 ’ -1 ’ 0.-1 4 0,0 — >
_0 aﬁ} 0 a62 0 a54 0 a53

0 a 0 a 0 a 0 a
A"“{o } A"“{o } A""{ } A"‘{ }
as; Ay 0 a, 0 a,

b. b. b b. b,
B-u —L:O:|a B, —L:z:|a B, _|:b2]} BO,l —{;0}’ B, _{b12:|,
62 54 53 52 44
b, b b b b
[0 w2 ]
43 42 34 33 32

From the output equation

y(i7)=x(i.)) (35)
we have
c=[ 1] (36)

In general case the assumption (31) takes the form

Ay g = =0

0<k<n -1, 0</<n,-1
bN—k,I = bk.M—I =0 " " (37)

In a similar way in general case we obtain the
matrices A, € R™" of the forms

0.0 a,,/, 0 ..0 a,., 0 ... 0 a,, (38)
A = 0 ... 0 Ay 2yl A = 0 .. 0 Dy 2(ny-1) A _ 0 2y
-1,0 — : .. . : > -1 — | . . . . drry PR lm-1 T . .. : . s
_0 e 0ay, ] 0 (U — ] 0 .. Do, (n-1)n,
anpl,rlZ 0 0 an,—l‘nzfl 0 ... 0 an, -0
A = 0 ... 0 Ay 1,2m, - 0 ... 0 Ay 12,1 A 0 0 Dyp—1m,y
e P . > Ao =L L . seees B >
_0 0 D1, | 0 ... 0 D —1my 1| 0 .. D1, (n-1ymy
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|
0 0 a,,, 0 ... 0 ay, 0 0 g,
0 .0 ny,2n, 0 .0 ny.2ny—1 0 nyny
An‘71.71 . . > Anrl,[] = . . Y
0 ... 0 a, .., 0 .. 0 a, ), 0 o b, iy,
and the matrices B, € R" of the form
(39)
=1 bn, =2 0
b b o
Bf].'O _ 2/11..2»7271 i Bil’] _ 2n1.2.(n271) ) ..,Bil.n L= 2 .,, 2 .
L “nmyny -1 | any iy =2 | nny (n=1)n,
bnrl.nz 1,1 11,0
b, by 2 byim
B, - 2, .1,2;12 . By, = 2, ].42712 1 i “’sz? _ 201y ’
L “nm=Lnn, | nm=lnm, =1 | nm=1,(n=1)n,
0.1 0., byg
b
. 2n oy 2y o
Bn,-l,-l = . P Bn,-l,o = ’ sees By iy T .
(n=1)my s, b(nfl)nl Jnny—1 b(nfl)ﬂ‘ (n=1)m,
The matrix C has the form
C=[0 ... 0 1]eR}” (40)

Theorem 3. If the conditions (37) are satisfied then there
exists a positive realization of the form (38)-(40) if the
coefficients a, and b, of the transfer function (14) are
nonnegative.

The proof is similar to the one of Theorem 2.

If the conditions of Theorem 3 are met then a positive
realization (3) of the transfer function (14) can be found
by the use of the following procedure.

Procedure 2.

Step1: Knowing the degrees N and M of the
denominator d(z,,z,) of (11) choose n, n,, n,
such that nn,=Nand nn,=M.

Step2: Itisthesameasin Procedure 1.

Step3: Using (38)-(40) find the matrices A, and B,
fork=-1,0,...,n-1;(=-1,0,...,n-1and C.

Remark 2. For different choice of the state variables we
obtain different forms of the matrices A, and B,

Example 2. Find a positive realization of the form (38)-
(40) of the transfer function (25).

Itis easy to verify that the transfer function (25) satisfies
the conditions of Theorem 3.

Using Procedure 2 we obtain.

Step1. Inthiscasewechoosen=2,n,=2andn,=1.
Step2. The matrix D is given by (26) and the strictly
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O]
proper transfer function has the form (27)
((28)).
Step3. Using (38)-(40) we obtain (zero matrices are
omitted)

0 a, 0 1 0 a, 0 1 0 a, 0 1 (41)

Afl.(): 0 = > Ar)fl: = > A1,71: = >
a,, 00 0 a, 0 2 0 a, 00
0 a,] [0 1 by [3 A
= = = = B = =

Ao {0 azj L J’ B [béu} {0}’ o L’:sj L}

b, 2 3
B, _ =| "|= B, = = =fo 1
el Lo moef ) e

The desired positive realization of (25) is given by
(26) and (41) and the 2D systems is described by the

-1,
bOO
b21

equations
oo, o], o1, . (o1, . [37 ., . T[3], . (42)
x(z+1,]+1)—{0 O}C(H—Lj)-{o 2:|x(l,j+1)+|:0 0:|X(l—1,]+1)+|:1 1:|x(l—1,j)+{0:|u(l+1,j)+|:5:|u(l,j+1)+
2 3
+{O:|u(z—1,]+1)+{2}u(1—1,])
v, j)=[0 1]x(i,j)+2u(i,j)
4. Concluding remarks tions and Open Problems, D. reidel Publishing Co., 1985.

A new method for finding a positive realization of [3] Farina L. and Rinaldi S., Positive Linear Systems; Theory
a given 2D transfer function has been proposed. Two and Applications, New York: J. Wiley, 2000.
cases of choices of the order of realizations have been [4] Fornasini E. and Marchesini G., “State-space realization
considered. In the first case there always exists a positive theory of two-dimensional filters”, IEEE Trans. Autom.
realizations of a given transfer functions of the form (11) Contr., vol. AC-21, 1976, pp. 484-491.
if its coefficients are nonnegative (Theorem 2). In the [5] Fornasini E. and Marchesini G., “Double indexed dynami-
second case (N = nn,, M = nn,) there exists a positive cal systems”, Math. Sys. Theory, 1978, no. 12, pp. 59-72.
realizations of (11) if additionally the conditions (37) are [6] Gatkowski K., “Elementary operation approach to state
satisfied (Theorem 3). Procedures for finding positive 2D space realization of 2D systems”, IEEE Trans. On Circuit
realizations have been proposed and illustrated by nume- and Systems, vol. 44,1997, pp. 120-129.
rical examples. [7] Gatkowski K., State space realizations of linear 2D
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