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Abstract:

The SARS-CoV-2 pandemic has heightened the need for
advanced and automated disinfection methods to ensure
workplace safety and hygiene. This study presents the
design and implementation of a robotic vehicle capable
of autonomously disinfecting high-risk areas in diverse
work environments based on human activity levels. The
system integrates a machine vision module using YOLOv5
for real-time human detection, a Decision Support System
to assess contamination risks, an autonomous navigation
module for path planning, and a user-friendly interface
for operator control. By leveraging real-time data, the
robot precisely applies disinfectant to identified high-risk
zones, dynamically adjusting the spray volume based on
the level of contamination. The system was validated in
a real-world workplace setting, demonstrating its ability
to autonomously perform targeted disinfection, offering
a scalable solution to support workplace hygiene.
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1. Introduction

The supply of workplace hygiene services has
become a significant challenge, especially since the
outbreak and subsequent spread of Severe Acute Res-
piratory Syndrome Coronavirus (SARS-CoV-2). The
pandemic profoundly affected daily life, with a sub-
stantial portion of the global population report-
ing disruptions to personal, professional, and eco-
nomic activities due to lockdown restrictions [1].Pub-
lic places and workplaces are recognized as poten-
tial hotspots for microbial transmission, emphasiz-
ing the importance of proactive hygiene measures [2,
3]. Although the immediate threat of SARS-CoV-2
has diminished, the pandemic has heightened aware-
ness of workplace hygiene, prompting employers to
adopt long-term protective measures to maintain
cleanliness and reduce the spread of infectious dis-
eases [4]. Recent studies highlight that even in the
post-pandemic period, post COVID-19 conditions con-
tinue to pose serious health risks, particularly among
vulnerable populations such as older adults and those
with preexisting conditions, emphasizing the need for
sustained hygiene and infection control measures [5].
It is therefore essential that automated solutions are
implemented to maintain hygiene standards, reduce
manual labor and ensure public safety.

However, the pandemic has led to a paradigm
shift in how workplace hygiene is approached. Con-
sequently, autonomous vehicles have become promi-
nent in controlling contamination in public places,
healthcare facilities and workplaces. Their capacity
to carry out unmanned contactless operations has
proven crucial to environmental disinfection, partic-
ularly across the National Health Service (NHS) sup-
ply chains. Recent studies have demonstrated the
feasibility of cost-effective autonomous vehicles for
real-world applications, showing their potential to
optimize navigation and obstacle avoidance while
maintaining low implementation costs [6]. These vehi-
cles have also significantly reduced labor costs, while
safeguarding workers from exposure to pathogens
and hazardous disinfectant chemicals [7].

Historically, robotic systems have been integrated
into rehabilitation and patient care, reducing the bur-
den on healthcare workers. For example, assistive
robots are widely used in rehabilitation settings, such
as nursing homes, to increase social interaction among
residents [8]. During the pandemic, robots were cru-
cial in helping healthcare workers in their daily activ-
ities and protecting them from infection [9]. Recently,
a preliminary study has highlighted the potential of
mobile robots to support nursing tasks in hospital
settings, demonstrating the ability to reduce con-
tamination risks and improve efficiency in supply
delivery and medication administration for patients
in isolation rooms [10]. In addition, mobile robots
have shown potential in home-care for the elderly
or bedridden individuals by supporting tasks such
as mobility, toileting, and bathing in the bed, signifi-
cantly reducing caregiver workload [11]. As a result,
the demand for decontamination robots in healthcare
facilities has increased dramatically, reaching a mar-
ket size estimated at 714.78 million USD in 2022 and
projected to reach 7,697.57 million USD by 2030 at
a compound annual growth rate (CAGR) of 32. 84%
from 2023 to 2030 [12].

In response to emerging trends for workplace
disinfection, the proposed research, funded by the
EIT Health Research Grant, introduces a customized
robotic vehicle designed to perform workplace dis-
infection protocols. The proposed system aims to
minimize the consumption of disinfectant fluids and
reduce the risk of contamination in areas prone to
virus transmission.
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The robotic system integrates several key compo-
nents, including a custom disinfection mechanism, a
machine vision module, and a Decision Support Sys-
tem (DSS) to automate the disinfection process based
on the probability of infection. In addition, a graphical
user interface (GUI) has been developed to assist the
operator in navigation and disinfection. This targeted
approach reduces the amount of disinfectants used,
improves overall hygiene, and ensures efficient and
effective disinfection of high-risk areas.

This study focuses not on evaluating the effec-
tiveness of the disinfectant solvent used but on the
robotic system’s technological development, assem-
bly, and programming. By demonstrating the success-
ful integration of the technological components, the
system presents a scalable solution for continuous and
preventive measures in indoor workspaces, aiming to
enhance anticontamination measures and workplace
safety.

2. Literature Review

Several solutions have been proposed to mitigate
the impact of the SARS-CoV- 2 pandemic, involving
autonomous robots equipped with disinfection mech-
anisms. These robots can disinfect premises, thereby
ensuring personal hygiene and reducing the reliance
on manual labor.

Chemical disinfection robots typically use disin-
fectants that diffuse into the atmosphere to disinfect
the air, surfaces of objects, and hard-to-reach areas.
For example, Zhao et al. [13] developed a robotic
system that efficiently disinfects areas contaminated
with pathogenic microorganisms by using a combi-
nation of Internet of Things (IoT) technologies and
chlorine dioxide disinfection through aerosol spray-
ing. The system was aimed at improving workplace
safety and reduce the need for manual labor. Simi-
larly, Chio et al. [14] introduced a mobile robot for
autonomous air and surface disinfection using the
aerosolized hydrogen peroxide disinfection method,
demonstrating high efficiency in an indoor office envi-
ronment. Furthermore, Le et al. [15] developed an
autonomous robot that uses the aerosolized hydrogen
peroxide disinfection method with a target detection
algorithm to disinfect the premises. The effectiveness
of this design was verified through air and surface
quality monitoring.

An alternative approach to robotic disinfection
involves short-wave ultraviolet C (UVC) lamps. UVC
light can effectively destroy the DNA/RNA of microor-
ganisms by impeding cellular activity and replication.
Robots equipped with UVC lamps have been shown
to prevent infectious diseases such as SARS-CoV-2,
influenza, and tuberculosis [16]. Hu et al. [17] intro-
duced a robot with UVC lamps to disinfect high-traffic
environments such as hospitals, schools, airports, and
transit systems.

This robot employed the Simultaneous Localiza-
tion and Mapping (SLAM) algorithm to create an occu-
pancy grid map of the environment and image recog-
nition to identify areas at risk of contamination. In
addition, Dogru and Marques [18] developed a trajec-
tory generation framework that formulates the disin-
fection path as a Euler Circuit, ensuring complete sur-
face coverage while minimizing travel distance. Their
work demonstrates the effectiveness of optimizing
robot movement to balance disinfection time, energy
consumption, and exposure consistency, which is cru-
cial for improving UV-C-based robotic disinfection sys-
tems. Similarly, Camacho et al. [19] proposed a robotic
platform for UVC disinfection of indoor environments.
The robot was capable of autonomous operation,
ensuring the maximum possible surface area without
direct supervision. Building on these approaches, Liu
et al. [20] introduced an advanced disinfection robot
scheduling and routing framework that integrates a
mixed-integer programming (MIP) model to optimize
task scheduling and minimize pathogen transmission
risks. Their approach dynamically adjusts disinfection
timing based on real-time environmental conditions
and human activity patterns, reducing unnecessary
energy consumption while maximizing decontamina-
tion efficiency.

However, despite the advantages of UVC disinfec-
tion, these robots face challenges when disinfecting
more complex environments with varying angles and
shadowed areas. Several UVC robots have incorpo-
rated optional spray attachments to address this issue
and enhance coverage in hard-to-reach areas [21]. Cao
etal. [22] developed a dual-function autonomous dis-
infection robot that integrates UVC light with hydro-
gen peroxide aerosol spraying, significantly improving
decontamination coverage. Their study demonstrated
that combining these methods increased disinfection
efficiency by 53.4 percent, effectively mitigating shad-
owing issues associated with UVC alone. Another sig-
nificant consideration is battery consumption, as UVC
robots must balance the energy usage required for
disinfection and system operation. Mantelli et al. [23]
presented an autonomous UVC robot that creates a
dynamic radiation map of the environment. The map
illustrates the energy applied to each area, allowing
the robot to optimize navigation. The robot moves
faster in areas with lower energy requirements, while
slowing down in areas requiring higher energy to
ensure adequate disinfection coverage.

In addition to general disinfection systems, robots
have also been developed to target specific objects
that may harbor pathogens. Ramalingam et al. [24]
proposed an automated door handle cleaning tech-
nique using the Toyota HSR mobile robot platform.
The robot uses a deep learning model trained to detect
door handles, enabling it to generate a set of coor-
dinates for targeted disinfection. The effectiveness
of the proposed framework was validated in indoor
public spaces, demonstrating its potential to improve
hygiene in areas of high contact.
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While numerous research teams have proposed
functional and advanced features of robotic disin-
fection systems, an integrated solution that focuses
on the real-time prioritization of high-risk areas and
minimises disinfection liquid consumption is lack-
ing. Zhao et al. (2021) proposed a semi-automatic
ClO, spraying robot that relies on remote control
and fixed waypoints, without adequately address-
ing autonomous navigation and risk-based analysis.
Chio et al. (2022) integrated aerosolized hydrogen-
peroxide spraying with SLAM for full-coverage path
planning, but their system cannot sufficiently adapt to
real-time human presence. Hu et al. (2020) employed
deep learning to segment UVC-critical zones. The
publication does not adequately address real-time
human detection and decision support for zone pri-
oritization. Dogru and Marques (2023) optimized
UV-C trajectories under kinodynamic constraints but
did not sufficiently address coverage efficiency in
dynamic, human-occupied settings. Camacho et al.
(2021) developed the ROS-based “COVIBOT,” which
autonomously maps and disinfects using UVC, but
the prioritization of high-risk areas is not sufficiently
articulated. Finally, Liu et al. introduced a mixed-
integer programming scheduler to minimize infection
risk, but their robot does not sufficiently showcase
onboard vision and real-time adaptability.

Previous disinfection robots have demonstrated
exceptional performance in individual components
however, there is potential for improvement in their
overall functionality. With the proposed robotic vehi-
cle, we enhance efficiency and effectiveness by inte-
grating real-time human detection, density-based risk
scoring, adaptive electrostatic spraying, and a Graph-
ical User Interface for the operators into an efficient
robotic system. The proposed system focuses on the
real-time prioritization of high-risk areas and min-
imises disinfection liquid consumption.The primary
contribution of the proposed research is the integra-
tion of multiple technological components to develop
a unified robotic system capable of real-time pri-
oritization of high-risk areas while simultaneously
minimizing the disinfection liquid consumption. The
proposed system leverages the ROS2 framework for
robot operation and the YOLOv5 object detection
model for real-time detection of individuals within the
workspace. A Decision Support System (DSS) is inte-
grated to assess the probability of infection based on
human presence, enabling precise disinfection of the
identified high-risk areas. Furthermore, the system
features a graphical user interface (GUI) to facilitate
robot control, enhance user-robot interaction, and a
custom disinfection mechanism for resource-efficient
disinfectant use. This end-to-end solution is a plug-
and-play autonomous robotic system that requires
only environment mapping and eliminates the need
for extensive parameterization.

3. System Architecture and Design

The disinfection robot is designed to identify and
autonomously disinfect high-risk workplace areas by
integrating navigation, human detection and disin-
fection mechanisms. This section provides a detailed
overview of the robot’s architecture, subsystems, and
modifications to optimize its performance for tar-
geted disinfection tasks. As shown in Fig. 1, the dis-
infection robot is based on the Turtlebot4, a widely
used open-source robotics platform for research and
educational applications. Several modifications were
made to adapt the Turtlebot4 for disinfection tasks.
Initially, a custom wooden frame was installed to
secure the spray canister containing the disinfectant
liquid, preventing it from falling during movement.
Additionally, the robot was equipped with a camera
and LIDAR sensors to facilitate autonomous naviga-
tion and real-time image recognition to identify and
disinfect high-risk areas.

The robot’s architecture comprises five subsys-
tems: the disinfection subsystem, the mobile appli-
cation subsystem, the machine vision subsystem, the
decision support system (DSS), and the navigation
subsystem. The disinfection subsystem manages the
electrostatic spraying mechanism, which disperses
disinfectant over identified high-risk areas. The spray
actuator is controlled by an Arduino Mega Micro-
controller Unit (MCU), ensuring that the appropriate
amount of disinfectant is applied based on the contam-
ination risk in each area. The mobile application fea-
tures a graphical user interface (GUI) that allows the
operator to monitor the robot’s status and operations
in real-time. The GUI displays key information such
as the environment map, battery status, and areas
with detected human activity, while allowing users to
control the robot’s navigation and disinfection process
as necessary.

The machine vision subsystem uses the RealSense
D435 stereo depth camera and the YOLOv5 object
detection model to detect and locate individuals
within the workspace. By providing 3D coordinates of
the detected individuals, the robot can identify areas
with a high human presence. The Decision Support
System (DSS) is critical in analyzing real-time human
positioning data to assess contamination risks. Based
on this analysis, the DSS sends commands to the
robot’s navigation and disinfection systems, prioritiz-
ing high-risk areas for disinfection and optimizing the
overall process. The Navigation Subsystem utilizes the
RP LIDAR sensor and the Robot Operating System 2
(ROS2) to enable the robot to move autonomously
through the environment. This subsystem uses the
SLAM algorithm to create a real-time occupancy grid
map of the workspace and ensures that the robot
follows optimal paths to reach the high-risk areas
identified by the DSS. The coordination of all these
subsystems is managed by the Central Control Unit
(CCI), which is powered by the Jetson Nano Xavier
NX, an embedded System-on-Module (SoM) equipped
with an integrated Graphics Processing Unit (GPU).
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Figure 1. The robot chassis consists of the robotic
vehicle base station and a high-top frame for mounting
the depth camera and the disinfection electrostatic
sprayer. A depth camera is mounted on top of the
frame, and a disinfection subsystem is mounted inside
the frame, culminating in the spray nozzle

Together, these subsystems work in unison,
enabling the robot to navigate autonomously, detect
the presence of humans, assess contamination
risks, and perform targeted disinfection, thereby
maintaining effective hygiene.

4. Methodology

The disinfection process involves several steps to
ensure thorough and efficient coverage. The process
begins with creating a detailed map of the target area
using the SLAM algorithm. Initially, an operator man-
ually navigates the robot through the environment
to capture spatial data and identify relevant areas,
obstacles, and pathways, which form the basis for all
subsequent navigation and disinfection activities. The
map is continuously updated to reflect the position of
static objects, such as furniture or walls, and dynamic
objects, including humans, animals, and other moving
obstacles.

Once the map is created, the robot navigates the
environment based on commands issued by the oper-
ator. Upon receiving a navigation command, the robot
moves through the workspace, continuously scanning
for human presence using machine vision.

During the process, the system processes human
positioning data to evaluate the contamination risk
levels in various areas. The risk levels are determined
based on the frequency of human presence detected
in each area, allowing for a more precise identifica-
tion of high-risk zones. These high-risk areas are visu-
ally highlighted on a real-time map displayed through
the web interface. The highlighted zones’ color and
size correspond to the risk level: green indicates low
presence, orange indicates medium presence, and red
indicates high presence. This real-time visualization
provides the operator with an overview of potential
contamination hotspots, aiding in evaluating the disin-
fection process. This method is similar to Ramalingam
etal. [24], who utilized deep learning to guide a mobile
robot for targeted disinfection, ensuring efficient san-
itation.

Following identifying high-risk areas, the robot
autonomously navigates to these zones and performs
targeted disinfection. Using an electrostatic sprayer,
the robot applies disinfectant proportionally to the
assessed risk level. In high-risk areas, the robot
reduces its speed to apply more disinfectant, whereas
inlow-risk areas, it moves at normal speed to conserve
resources. The disinfection process is considered suf-
ficient to ensure adequate disinfectant application
when the robot remains in each location for a pre-
defined duration, with longer durations in high-risk
regions and shorter durations in low-risk areas. This
adaptive approach aligns with Mantelli et al. [23], who
optimized UVC disinfection by dynamically adjusting
robot speed based on radiation energy mapping. The
robot returns to its charging station and remains idle,
waiting for the operator to execute the forthcoming
mission.

5. System Overview

As shown in Fig. 2, the disinfection robot com-
prises five subsystems, each playing a specific role
in the disinfection process and overall system archi-
tecture. The following subsections provide a detailed
analysis of the key technologies and mechanisms that
enable the robot to operate effectively.

5.1. Disinfection Subsystem

The disinfection subsystem is responsible for the
disinfection process. Its primary components are the
sprayer, a customized device for soluble tablets, and a
microcontroller. A review of the literature [25] on dis-
infection sprayers identified three market-ready solu-
tions: liquid sprayers, mist sprayers, and electrostatic
sprayers. The key factor distinguishing these sprayer
categories is the proportion of disinfectant applied to
a contaminated area.

After conducting a comparative analysis of the var-
ious sprayers and their respective features, electro-
static sprayers were determined to be the most suit-
able option due to their efficiency in applying disin-
fectants across a wide range of surfaces, making the
disinfection process more effective.
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Following extensive research into the electrostatic
sprayer market, the VP300ES electrostatic sprayer
from Victory Innovations. In parallel with sprayer
selection, a market survey was conducted to identify
a suitable disinfectant solvent tablet. The factors that
played a decisive role in the selection of the disinfec-
tant tablet were the following:

- Effectiveness of the disinfectant againsta wide range
of pathogens, including such as SARS-CoV-2, and the
time required to combat the pathogens.

- Versatility of use, considering potential applications
in healthcare settings, educational facilities, rooms,
entrances, and other high-touch areas.

- Compliance with European disinfection protocols
and regulations.

- Safety and protection of staff and room occupants.

- Cost effectiveness.

Based on these considerations, the research team
chose Dustbane Products Ltd’s Unitab dissolving
tablets due to their effectiveness against various
pathogens, including SARS-CoV-2. To integrate these
components onto the robot, a custom mechanism
was developed to combine the electrostatic sprayer
with the dual tablet drop mechanism. This mecha-
nism is connected to a circuit that includes the ESP32
MCU, the electrostatic sprayer, and the tablet drop-
ping mechanism, which are connected to the Central
Control Interface (CCI) via a serial connection. Upon
receiving a command from the CCI, the mechanism is
activated to spray disinfectant or drop a tablet into the
liquid container.

5.2. Mobile Application Subsystem

To provide an interface with the end user, a graphi-
cal user interface (GUI) was developed to visualize the
disinfection process and real-time data of the robot’s
operations.

Machine Vision Navigation Mobile
Sub-System System Application Sub-
@ Human Detection © Navigation System
% Obstacle (=] Operation
Avoidance Control

Decision Support Disinfection Sub-

System System

¥ Data Analysis =8 Chemical Data Flow

° Optimization Sprayer Control Control Signal Flow

Figure 2. The diagram illustrates the system architecture
of the autonomous disinfection robot. The system
comprises the machine vision subsystem for human
detection, the navigation subsystem for robot
navigation and obstacle avoidance, the disinfection
subsystem for disinfection tasks, the decision support
system for data analysis and optimization, and the
mobile application subsystem for user interaction and
operation. The arrows indicate the data flow (blue) and
control flow (yellow) between the components

Disinfection Robot

Initialize AGV
Position
Initialize AGV
Orientation

Move AGV

Enable
Disinfection
Start
Disinfection

Drop Tablet

Go to Docking
Station
Battery: 68%

Figure 3. The disinfection robot system displays the
environment, the AGV'’s position, and options for
disinfection and navigation

The GUI displays critical information, including
the workplace map, the robot’s battery status, posi-
tion, and orientation, the disinfection status and the
most frequently visited human locations. This data
is collected through sensors mounted on the robot,
such as LiDAR, inertial measurement unit (IMU), and
encoders.

The GUI features several functional buttons de-
signed to manage the robot’s operations, as shown
in Fig. 3. The “Initialize AGV Position” button allows
users to assign the robot’s position on the map.
In contrast, the “Initialize AGV Orientation” button
adjusts the robot’s orientation. The “Move AGV” but-
ton enables the selection of a point on the map, direct-
ing the robot to navigate towards a desired location.
For disinfection tasks, the “Enable Disinfection” but-
ton initiates the disinfection procedure of identified
high-risk areas.

The “Drop Tablet” also releases a dissolving tablet
into the liquid container. Finally, the “Go to Docking
Station” button directs the robot back to its desig-
nated home location for charging, ensuring it is ready
for future tasks. The system is designed to operate
with a high degree of autonomy, with the operator
assuming a supervisory role primarily for initial setup
and monitoring. The operator issues navigation com-
mands and the robot navigates autonomously from a
starting point to a specified location. When the DSS
identifies high-risk areas, the operator issues the dis-
infection command, and the robot navigates to the
specified location to perform the disinfection task.

5.3. Machine Vision Subsystem

Object detection is a crucial task in computer
vision, focusing on identifying instances of visual
objects such as people, animals, or cars within dig-
ital images. The recent surge in the development
of deep learning algorithms has significantly pro-
pelled the advancement of object detection, result-
ing in remarkable breakthroughs and widespread
adoption in applications such as autonomous driv-
ing, machine vision, and video surveillance [26]. For
instance, Al-driven surveillance systems have suc-
cessfully implemented deep learning-based tracking
methods to enhance real-time monitoring and secu-
rity, allowing for accurate detection and reidentifica-
tion of individuals across different camera views [27].
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Deep learning-based computer vision has also
been widely used in COVID-19 prevention, such as
real-time face mask detection systems that moni-
tor compliance with public health guidelines [28].
These systems leverage convolutional neural net-
works (CNNs) to classify masked and unmasked indi-
viduals in public spaces accurately. Similarly, this
study employs a machine vision subsystem for detect-
ing individuals and determining their locations in an
indoor environment. The system integrates an Intel
RealSense D435 stereo depth camera and the YOLOv5
(You Only Look Once) object detection model [29],
providing precise and efficient detection and localiza-
tion.

YOLOV5 is a lightweight, real-time object detection
model developed by Ultralytics in 2020. It is known
for its accuracy, speed, and low computational cost.
YOLOV5 uses convolutional neural networks (CNNs)
to predict class probabilities of objects detected within
images. The model requires only a single forward
propagation for object detection, simultaneously pre-
dicting different class probabilities and the bounding
boxes that encompass objects. Recent studies have
demonstrated the effectiveness of YOLO-based models
in real-time object detection for assistive technolo-
gies, including their application in visual assistants for
the visually impaired [30], highlighting the versatility
of YOLOVS5 for efficient object detection in real-time
environments. The architecture of YOLOvV5 consists
of three components: the backbone, neck, and head,
as illustrated in Fig. 4. The backbone is responsi-
ble for extracting essential features from the input
images. YOLOv5 uses the CSPDarknet53 backbone to
enhance computational efficiency through a bottle-
neck Cross-Stage Partial Networks (CSP) technique.
The neck serves as an intermediary that combines fea-
tures from different layers to improve object detection
at various scales. Finally, the head generates output
predictions using an anchor-based detection strategy
and the SiLU activation function to enhance learn-
ing efficiency. YOLOv5 has different versions (Nano,
Small, Medium, Large, Extra-Large) to accommodate
different computational needs, making it ideal for
real-time applications. In this study, the YOLOv5 Nano
variant was utilized.

The YOLOv5n model was trained throughout 100
epochs on a dataset comprising 4,407 images, encom-
passing 11,000 instances of the “person” category.
The training was conducted with the primary objec-
tives of precision, recall, and mean average preci-
sion (mAP@0.5) at the 1071-image validation split.
By epoch 100, the model had converged to precision
= 0.837, recall = 0.707, mAP@0.5 = 0.795, F1 score
= 0.77, which occurs at a confidence threshold of
approximately 0.31, while requiring only 4.1 GFLOPs
per inference and maintaining real-time frame rates
on the Jetson Nano.

Its confidence-threshold behavior is characterized
using precision-recall and F1-confidence curves: the
PR curve confirms the mAP@0.5 of 0.795, with a peak
precision of 1.00 at a threshold of 0.94 and a peak
recall of 0.91 ata near-zero threshold, and the F1 curve
peaks at 0.77 using a threshold of 0.31. Together, these
results demonstrate robust human detection in real
time.

The plotsillustrated in Fig. 5 showcase how human
detection performance varies with the confidence
threshold, the model’s internal probability (0-1) that
a bounding box contains a person. When the thresh-
old is very low (e.g, near 0.0), almost every box
under consideration is accepted, resulting in high
recall (=0.91) but this leads to many false positives;
in higher thresholds the detector becomes more selec-
tive, reducing the recall score and improving precision
until it reaches 100% around a cutoff value of 0.94.
The precision-recall curve (mAP@0.5 = 0.795) sum-
marizes this tradeoff across all thresholds, and the F1
confidence curve further shows that an intermediate
cutoff value of 0.31 maximizes the balance between
precision and recall (F1 = 0.77). In practice, these
results indicate that using a 31% confidence threshold
yields the most reliable real-time detection results,
capturing most of true positives while limiting false
alarms.

In tandem with YOLOVS5, the Intel RealSense D435
stereo depth camera extracts detected individuals’ 3D
coordinates. RGB-D sensors have been widely applied
for human motion tracking and posture classification,
providing robust spatial awareness for intelligent sys-
tems [31]. The RealSense D435 uses two synchro-
nized infrared cameras to capture stereoscopic images
and a structured light infrared projector to create a
depth map of a scene. The stereoscopic depth cam-
era uses projection to convert 3D points to 2D pixel
positions and deprojection converts 2D pixel locations
with specified depth into 3D coordinates. Therefore,
when YOLOv5 detects individuals and places them
in a bounding box, it calculates the center point of
the bounding box, and the distance between detected
individuals and the camera, as illustrated in Fig. 6.
This point is then deprojected to obtain the 3D coor-
dinates of the individuals detected within the image.
The 3D coordinates are transformed from the cam-
era’s coordinate system to the robot’s map coordi-
nate system. This transformation ensures that the
robot’s occupancy grid map accurately reflects the
positions of detected humans, allowing the robot to
navigate to high-risk areas based on human pres-
ence autonomously. By continuously monitoring and
updating the occupancy map based on human pres-
ence, the system ensures that disinfection efforts are
focused on the busiest areas, optimizing disinfectant
use and improving overall hygiene.



Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 19, N°3 2025

I Concat

I
I
I
I
|

|—|—-[': Corfcat }—{_Bcsp
! |
I
I
I

BCSP : Concat BCSP__—+—1—{ convixi

|

|

: (Upsample ] Conv3x3 52 :

| Convixl :
|
|
|

I
: ( l'r'I ple ] [(Conv3x3s2] :
I
: ( Con¥1x1 —{ CoTcat ] :
I
(_spp ]—:—.—-[ BCSP | (__BCSP i Convixl ]
S — S — £ .3 N ———— 4
(a) (b) (c)

Figure 4. YOLOVS5 architecture overview: (a) Backbone
with CSP bottleneck (BCSP) and SPP modules for feature
extraction, (b) Neck with PANet structure for feature
fusion, and (c) Head with Conv1x1 layers for final object
detection
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Figure 5. Evaluation of the fine-tuned YOLOv5 Nano
human detector algorithm/methodology across various
confidence thresholds: (a) Recall-Confidence curve,
showing maximum recall of 0.91 at thresholds near
0.00. (b) Precision—Confidence curve, with peak
precision of 1.00 at a 0.94 threshold. (c)
Precision—Recall curve, yielding mAP@0.5 0.795. (d)
F1-Confidence curve, with the highest F1 value of 0.77
at a 0.31 threshold

5.4. Decision Support System

To monitor and optimize the disinfection process,
a Decision Support System (DSS) was developed to
prioritize the sanitation of the work area. The DSS
is designed to communicate and exchange informa-
tion with the machine vision and navigation subsys-
tems. Specifically, the DSS receives input data from
the vision subsystem to determine the presence of
individuals in the area and sends information about
high-risk zones to the navigation subsystem.

The primary goal of analyzing the input data is to
identify high-risk areas in the workplace and direct
the robot to those areas. The input data consists of x-y
coordinates describing the position of individuals in
each region during the system’s operational period.

Figure 6. This figure illustrates the detection of
individuals in an indoor environment using YOLOV5 and
the RealSense stereo depth camera. The bounding
boxes highlight each detected person, and the distance
from the camera is also annotated. The visual output
demonstrates the system’s capacity to estimate
individuals’ distances in real time

After finetuning and integrating the human detec-
tion algorithm/methodology, the DSS employs Den-
sity-Based Spatial Clustering of Applications with
Noise (DBSCAN), using a neighborhood radious of €
= 0.5 meters and a minimum cluster size of minPts
= 20 to group nearby detections into spatial clusters.
The fuzzy approximation algorithm [32] clusters the
identified location points based on density, and high-
lights areas with a high concentration of individuals.

Once the input data is clustered, individuals
observed positions are visualized as spheres in the
mobile application subsystem. The size and thresh-
old of the spheres reflect the frequency of individuals
observed in each area. Thresholds are set based on the
frequency of individuals observed; if the number of
points counted exceeds the set threshold, the area is
classified as high risk. High-risk areas are easily iden-
tifiable to the user through more prominent spheres in
the graphical interface. The clusters are divided into
groups of different colors with adjustable threshold
distances and radius for each proposed disinfection
area.

5.5. Navigation Subsystem

The navigation subsystem generates a map of the
surrounding environment, localizes the robot within
that map, plans paths, and navigates to target loca-
tions for disinfection. The initial stage involves cre-
ating a detailed environment map using the SLAM
algorithm [33]. This algorithm allows the robot to con-
struct a map by utilizing data from LIDAR or camera
sensors while maintaining awareness of its current
position. The SLAM algorithm is used with 0.05 m res-
olution, a 5-second map update interval, and enabled
loop closure over a 3-meter search radious.

This application utilizes a LIDAR sensor to collect
environmental data during exploration by emitting a
light beam in a 360-degree sweep.
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The distance to an obstacle is calculated based on
the time the light beam takes to reach the obstacle and
return to the sensor. The collected data is then pro-
cessed to create an occupancy grid map representing
the environment, including walls, obstacles, and open
spaces. After generating the environment map, the
Adaptive Monte Carlo Localization (AMCL) algorithm
is employed to localize the robot within the map [34].
AMCL uses a particle filter to estimate the robot’s posi-
tion and orientation, which is continuously updated
based on sensor data from the LIDAR and encoders.
The AMCL localization is using with 500-2000 par-
ticles and is resampling on every scan to maximize
pose fidelity. AMCL operates at a frequency of 20 Hz,
with a maximum linear velocity of 0.26 meters per
second, a maximum angular velocity of 1.0 radians per
second, and goal tolerances of 0.25 meters locally and
0.5 meters globally.

Once the map is created and the robot is localized,
path planning and navigation are the next steps. The
robot must navigate from its current position to iden-
tify high-risk areas for disinfection, which involves
a two-step approach: global path planning and local
path planning. For global path planning, the A* algo-
rithm is used. A* is a widely recognized algorithm
that determines the shortest route from the current
robot’s position to a target area, considering dis-
tance and obstacle avoidance to generate an optimal
path [35]. The Timed Elastic Band (TEB) algorithm is
used for local path planning. TEB dynamically adjusts
the robot’s trajectory to account for moving obstacles
and environmental changes [36], continuously refin-
ing the robot’s trajectory to ensure effective obstacle
avoidance during navigation [37].

In the absence of an external ground-truth sys-
tem, the validation of the mapping and localization
quality was achieved through a direct comparison of
the SLAM-generated occupancy grid with the known
floor plan and sensor-derived scans. Specifically, the
ROS-oriented map was overlaid onto the facility’s
CAD layout and LiDAR point clouds, revealing that all
walls, doors, and fixed obstacles aligned within one
grid cell (about 0.05 m) of their surveyed positions.
Furthermore, the repeated execution of “go-to-pose”
commands to stored waypoints resulted in successful
navigation without any recorded collisions, thereby
validating the robot’s ability to accurately estimate its
position within the 60-square-metre workspace. This
convincing correspondence, in which every structural
feature islocalized in a central map in accordance with
the real-world, provides confidence in the navigation
stack’s ability to produce an accurate and reliable nav-
igation and supports real-time prioritization of the
identified high-risk areas and targeted disinfection.

6. Subsystem Integration and Validation

The research team performed experiments in the
facilities and laboratories of two universities, thereby
facilitating a comprehensive exploration of different
environments.

a) b)

Figure 7. a) Laboratory at Aristotle University of
Thessaloniki (70 m?), showing accurate reconstruction
of walls, doorways, and fixed obstacles within a 0.05 m
resolution grid. b) Classroom at International Hellenic
University (60 m?), demonstrating a consistent map
quality across different indoor environments

The experiments were conducted in a classroom
at the International Hellenic University and in the
reception area of the professors’ offices at Aristotle
University of Thessaloniki. Detailed maps of these
premises have been provided for reference. For exam-
ple, in Fig. 6(b), the classroom’s settings posed sig-
nificant challenges due to numerous static obstacles,
such as cabinets and components, and dynamic obsta-
cles, like humans. As illustrated, the experiment aimed
to evaluate the robot’s ability to map the environ-
ment, detect human presence, and autonomously dis-
infect high-risk areas based on real-time data. After
an inspection period, the system identified several
high-risk areas, as illustrated in Fig. The system accu-
rately detected human presence and tracked indi-
viduals’ movements to distinguish consistently occu-
pied areas. The web interface displayed color-coded
circles to represent risk levels: green circles indi-
cated low mobility and low risk, orange circles repre-
sented medium mobility, and red circles highlighted
areas of high mobility, classified as high-risk. Out
of the four regions detected, two were classified as
high-risk, one as medium-risk, and one as low-risk.
The robot autonomously disinfected the high-risk
areas by applying more disinfectant where contamina-
tion risk was higher, while reducing disinfectant use in
low-risk areas, thereby optimizing resource consump-
tion.

7. Discussion and Conclusions

In this research work, within the EIT Health
Research Grand project, a customized robot has been
implemented to disinfect indoor workplaces. The pro-
posed solution integrates a machine vision system to
locate visitors and workers in a specific area. It also
integrates a decision-making system that selects high-
risk areas for disinfection and adjusts the spraying
volume based on the risk level, with higher-risk areas
receiving more disinfectant. The disinfection process
is initiated via a user-friendly web interface that pro-
vides the robot operator with information about high-
risk areas and their size.



Journal of Automation, Mobile Robotics and Intelligent Systems

VOLUME 19, N°3 2025

Figure 8. The following illustration depicts the human
detection and navigation process. The upper display
depicts the map of the environment with detected
human positions, while the lower left and right windows
illustrate real-time object detection and distance
estimation for identified individuals

Initialize AGV
Position
i Initialize AGV
| Orientation
Move AGV

Enable
Disinfection
Start
Disinfection

Drop Tablet

Go to Docking
Station
Battery: 68%

Figure 9. Following a two-hour inspection, the locations
identified requiring further investigation were marked
on the diagram. The circles’ color represents the risk
level associated with each area. In contrast, the size of
the circles indicates the extent of the area in which
human movements were observed

The innovation of the system lies in three key
aspects: (i) the integration of machine vision to mon-
itor areas with high human concentration, (ii) the
integration of an intelligent decision-making mecha-
nism that selects high-risk areas for disinfection and
adjusts the spraying volume based on the estimated
infection probability, with higher-risk areas receiving
more disinfectants, and (iii) the selection of the short-
est route to carry out the processes. The proposed
robotic system optimizes the amount of disinfectant
liquid required to cover an area and the time needed
to complete the disinfection process in large buildings
and workspaces.

The robot was tested in an area with high human
presence during validation. The performance metrics
considered were map accuracy and human detection
efficiency. The robot successfully mapped the envi-
ronment, accurately representing the physical layout,
and identified the points with the highest human pres-
ence and activity. Then it autonomously navigated to
the high-risk areas to perform disinfection. The sys-
tem demonstrated accurate disinfection confirming its
practical application in real-world settings.

Originally, the robot uniformly sprayed the entire
30-square-meter workspace of the 60-square-meter
laboratory. Integration of machine vision and the DSS
resulted in a 33% reduction in disinfectant usage, as
the system now selectively targets only ten high-risk
1 m? zones for decontamination, as opposed to the
previous practice of blanket spraying the entire area.
Future research will focus on amendments on the
robot chassis with improved fluid capacity and bat-
tery autonomy to support operations in larger areas.
Additionally, integrating more nozzles will allow the
robotto spray in multiple directions simultaneously or
to select a specific direction based on the area layout.

While our lab trials demonstrated feasibility, real-
world deployment requires maintenance and adap-
tation strategies. We plan endurance runs to assess
battery life—anticipating recharging every 2 hours
under continuous operation—and to monitor nozzle
clogging or wear, scheduling tablet-drop and sprayer-
nozzle inspections accordingly. To minimize down-
time, the proposed robotic system will feature a
removable battery pack and interchangeable fluid
containers as spare parts. We will also implement
remote vehicle management, logging usage and main-
tenance data, and provide on-board functionalities for
utilizing multiple facility layout occupancy grid maps.
Furthermore, the consortium is committed to evaluat-
ing the robustness of robotic vehicles in various real-
world environments. By expanding trials beyond uni-
versity laboratories to include office suites and meet-
ing rooms with differing crowd densities, the consor-
tium aims to ascertain the system’s mapping efficiency
in each setting.

The consortium also plans to participate in
key industry conferences and events, such as the
European Detergents Conference and the WA
Disinfection and Disinfection By-products Conference,
to attract potential partners and expand the solution’s
applicability. Another critical step is attempting
to patent the innovative solution. This approach
could pave the way for exclusive distribution rights,
additional revenue through royalties, and commercial
sales under the Hi-Gien brand.
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