
Abstract:

1. Introduction

Next-generation of High-Speed Machining (HSM) sys-
tems demand advanced features such as intelligent control
under uncertainty. This requires, in turn, an efficient admi-
nistration and optimization of all system's resources to-
wards a previously identified objective. This work presents
an optimization system based on Markov Decision Process
(MDP), where an intelligent control guides the actions of
the operator in peripheral milling processes. Early results
suggest that MDP framework can cope with this applica-
tion, yielding several benefits, which are discussed in de-
tail. Future work will address the full integration of the de-
veloped optimization scheme within a commercial machi-
ning center.

Keywords: Markov Decision Process, optimization, High-
Speed Machining, milling process, neural network.

High-Speed Machining ( ) requires high magnitu-
des of spindle speeds, feed rates, as well as acceleration
and deceleration rates. Simultaneously, it is subjected to
stringent restrictions such as low machining cost and ti-
me, as well as high precision and accuracy.

Intelligent machines have the potential to meet the
strong competitiveness demanded by new businesses.
For example, intelligent CNC machines convey advance
features such as prediction of operations, reduction of
setup time, detection of cutting tool condition, acquisi-
tion of knowledge and inferences from incomplete infor-
mation [1]. However, process planners still have great
difficulties for measuring on-line process data on mach-
ining processes such as cutting tool life and surface
roughness [5].

This paper presents the design and implementation of
a novel Intelligent Control System for HSM, exhibiting
several desirable features such as: prediction of key vari-
ables (surface roughness and cutting tool condition),
definition and adaptation of optimal cutting conditions
and operation policy, and an objective function-based
optimization. Special emphasis is given to the decision-
making module of this system.

This paper is an extended version of that presented
at “

and is organized as follows: Section 2 des-
cribes the state of the art on HSM, where key areas for im-
provement are identified. Section 3 introduces the indus-
trial HS-1000 Kondia machining center and the data
acquisition system where the experiments took place.
Section 4 briefly describes the optimization scheme
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proposed. Section 5 illustrates the intelligent system,
while Section 6 discusses results. Finally, section 7 closes
with some concluding remarks.

2. State of the art
Several optimization methods have been developed

around process planning systems for machining pro-
cesses.

A procedure for tool selection in milling operations
was proposed in [2]. First, several alternatives of cutting
tools were considered by an iterative method. Then, cut-
ting data were refined by a set of technological cons-
traints including tool life, surface finishing, machine
power, and available spindle speeds and feed rates. Three
user-defined optimization strategies were available (mi-
nimum cost, maximum production rate or predefined tool
life).

In [3], a Cutting Parameters Optimization System
(CPOS), based on a two-stage methodology, was introdu-
ced. First, a tentative number of passes and depth of cuts
were determined through the so-called Volume Sectio-
ning method. Then, the cutting speed and feed rate for
each pass were optimized by using Genetic Algorithms
(GA). The cutting tools were selected from predefined
libraries. Two optimization criteria were considered (mi-
nimum production time and minimum production cost),
accounting for several technological constraints.

A second order mathematical model was developed
for Ra prediction as a function of the cutting speed, feed
rate, depth of cut, and nose radius of the cutting tool in
turning operations [10]. The minimization of Ra was
taken as objective function and it was optimized using
GA. A combination of these cutting parameters was opti-
mized based on a GA approach.

Based on previous work by [3], an algorithm for the
selection of optimal cutting conditions was proposed in
[8], allowing the calculation of number of cuts required
and machining time. [20] presented a new hybrid optimi-
zation technique based on the maximum production rate
criterion and ten technological constraints. A general al-
gorithm, called OPTIS, was used in conjunction with Arti-
ficial Neural Networks (ANN) in order to solve the com-
plex optimization problem. OPTIS selects the optimum
cutting conditions (based on minimum machining costs)
from commercial databases. ANN ensured efficient and
fast selection of the optimum cutting conditions and
processing of available technological data. Compared to
the GA and Linear Programming (LP) approaches, this
hybrid optimization technique improved the optimal
cutting parameters selection by around 30.41% and 20%,
respectively. Based on OPTIS, [21] proposed an adaptive
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neural controller for on-line optimal control of a milling
process. The milling state was estimated the cutting
force's measurement. The feed-rate was selected as the
optimized variable.

A two-phase optimization strategy based on the Ta-
guchi dynamic characteristic theory was proposed in
[12]. Experimental results showed that the machining
time could be reduced with low process variance and
increased robustness of the CNC milling processes.

[19] presented a Taguchi method coupled with Prin-
cipal Component Analysis (PCA) for the optimization of
high-speed CNC milling processes. Optimal process con-
ditions were selected for producing the best dimensional
precision and accuracy, surface roughness, and tool wear.
The selected control factors were: milling type, cutting
speed, feed per tooth, film material, tool material, num-
ber of teeth, rake angle and helix angle. Based on the PCA
technique, an index for the inter-correlated multiple per-
formance features of a high speed CNC milling process
was computed, obtaining optimized settings.

A Genetically Optimized Neural Network System
(GONNS) that selects the optimal cutting conditions for
milling processes was proposed by [11]. GA was used to
maximize the rate of metal removal and minimize the
surface roughness based on different ANN models. A ma-
thematical model based on both material behavior and
machine dynamics was described in [9], able to determi-
ne cutting forces for end-milling operations. A GA opti-
mized the cutting parameters for minimizing machining
time and maximizing tool life for a constant rate of ma-
terial removal.

[7] reviewed different optimization techniques in me-
tal cutting processes, discussing a general framework for
process parameter optimization. Reviewed optimization
methods currently applied are: Taguchi method, Respon-
se Surface Methodology, Mathematical Iterative Search
Algorithm, Genetic Algorithms, and Simulated Anne-
aling. Furthermore, typical objective functions include:
minimum production cost, maximum production rate, in-
crease tool life and maximum profit rate, as well as
weighted combination of these. Cutting constraints that

via
should be considered in machining economics include:
tool-life, cutting force, power, chip-tool interface tem-
perature, and surface finish.

Table 1 compares previous works in optimization of
machining processes. Almost all of them are usable with-
in narrow operating conditions only; some do not consi-
der process variables, while others demand unavailable
HSM handbooks. In this research, an intelligent control
system, which includes a planning module, guides the
operator in the decision-making process in order to mini-
mize operating costs.

3. Experimental set-up
Experiments were carried out in an industrial HSM cen-

ter HS-1000 Kondia, featuring a 25 KW drive motor, 3 axis,
24000 rpm maximum spindle speed and a Siemens open
Sinumerik 840D controller (shown in Figure 1). Several
sensors were installed as follows (Figure 2):

1. Three accelerometers and one Acoustic Emission (AE)
sensor were installed on a ring. The ring was fixed to
the spindle of the machining center (Figure 3).

2. Two accelerometers were fixed in the “x” and “y”-axis
directions on the work-piece.

3. One AE sensor was fixed on the table.

4. A Kistler 3-component force dynamometer was fixed
to the work-piece, in order to record force signals.

The signals were fed to two data acquisition boards
with sample rates of 40,000 and 1,000,000, respectively
(due to technical requirements of the AE sensors).

A milling process was carried out in a test piece of size
100 x 170 x 25 mm, with different Aluminium alloys
(5083-H111, 6082-T6, 2024-T3, 7022-T6, 7075-T6), seve-
ral cutting tools (25o helix angle, and 2-flute, Sandvik
Coromant of 8, 10, 12, 16, and 20 mm) and several geo-
metries (concave, convex or straight path), as shown in
Figure 3. Table 2 lists the variables and their description.
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Table 1. Comparison of previous works in optimization of machining processes (MMC = Minimum Machining Cost).

Reference

Carpenter & Maropoulos, 2000

Dereli , 2001
Suresh , 2002
Mursec &  Cus, 2003
Zuperl , 2004
Tzeng & Chen, 2005

Yih-Fong, 2005

Zuperl , 2006

Tansel , 2006

Palanisamy , 2007

et al.
et al.

et al.

et al.

et al.

et al.

Machining process [Optimization method]

Milling [Iterative Method]

End Face milling [Volume Sectioning & GA]
Turning [GA]
Turning, milling [Data from tool manufactures]
Turning [OPTIS algorithm & ANN]
Milling [Taguchi Dynamic Characteristic theory]

Milling [Taguchi and PCA]

Milling [Adaptive neural Controller]

Milling [ GONNs]

End Milling [Mathematical model & GA]

Objective Function

MMC, maximum production rate
& tool life.
Minimum machining time & MMC.
Minimum surface roughness.
MMC.
Maximum production rate, & MMC.
High machining efficiency
& geometrical accuracy.
Dimensional precision & accuracy,
surface roughness, tool wear.
Regulation the cutting force by
adjusting the feed rate.
Maximum metal removal rate,
& minimum surface roughness.
Minimum machining time
& maximize tool life.
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face roughness monitoring and planning module. The first
three are here briefly described, while the planning mo-
dule will be presented in detail in the following section.

Based on the aforementioned data acquisition sys-
tem, standard filtering was applied to the process vari-
able signals. Some signals were pre-processed by the Mel
Frequency Cepstrum Coefficients (MFCC), widely used in
speech recognition systems [18], in order to find parti-
cular features.

4.1. Data Acquisition Module

Fig. 3. Accelerometers and Acoustic Emission (AE) sensors
installed on a ring fixed to the spindle of the CNC machining
center.

Fig. 4. Cutting tools (Sandvik Coromant 8,10,12,14,16
mm) and several Geometries (concave, convex, and straight
path).

Fig. 5. Intelligent Control System. The system considers
four integrated modules: data acquisition, cutting tool,
surface roughness and planning module.

Fig. 1. HS-1000 Kondia machining center.

Fig. 2. Data acquisition system. The monitoring system is
integrated by: (1) Supporting ring. (2a) Brüel and Kjaer
accelerometers (charge sensitivity: 98 ± 2 pC/g, resonant
frequency: 16 KHz & 42 KHz). (2b) PCB piezotronic acce-
lerometers (x-axis & y-axis, sensitivity: 10 mV/g; range fre-
quency: 0.35-20,000 Hz). (3) Charger amplifiers. (4) Con-
ditioning amplifier. (5) Kistler 3-component forces Dyna-
mometer (force range: -7.5 pC/N in x-axis and y-axis and -
3.5 pC/N in z-axis, natural frequency: 3-5 KHz). (6) Kistler
charger amplifier. (7) National Instruments data acquisi-
tion card. (8) Kistler Piezotron acoustic emissions (sensi-
tivity: 700 V/m/s, freq. range: 50-400 KHz). (9) AE Piezo-
tron coupler. (10) CompuScope card. Finally, (11) a HMI
based on LabView for real time control and monitoring
operations was developed.

4. Optimization scheme proposed
[14-16] proposed an intelligent control system, illus-

trated in Figure 5. This control system integrates four main
modules: data acquisition, cutting tool monitoring, sur-
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Table 2. Definition of Variables.

Variable Description

4.2. Cutting tool Module

Feed rate.
Spindle speed.
Axial depth of cut.
Radial depth of cut.
Curvature of the geometry.
Cutting tool diameter.
Feed per tooth.
y-axis workpiece cutting force.
Brinell Hardness.
Surface Roughness.
Predicted .
Desired .
Flank wear in cutting tools.
Cutting conditions: , , , .
Cutting parameters. Selection of the cutting
tool, workpiece hardness, etc.
Geometric parameters. Geometry of the
cutting tool and path of the cutting process.

The procedure for computing the MFCC can be summa-
rized as follows:

1. A small segment of the signal is selected for applying
a Discrete Fourier Transform (DFT), in order to compu-
te the magnitude of the energy spectrum in a loga-
rithm scale.

2. The real frequency scale is mapped to the per-
ceived frequency scale as:

3. After a triangular band-pass filter is applied for smo-
othing the scaled spectrum, the MFCC are computed
using the inverse DFT:

where is the output of the triangular band-pass filter,
is the number of band-pass filters, defines the

Cepstrum coefficient number , and
defines the total number of Cepstrum coefficients.

The cutting tool wear condition is defined as a gra-
dual loss of tool material at contact zones with the work-
piece. It has a direct impact on the final dimensions of
the product, surface finishing and surface integrity. Di-
rect monitoring is not easily implemented due to non-
standard measuring methods.

An indirect monitoring approach based on vibration
measurements was developed [13]. Vibration signals we-
re characterized by MFCC and associated with the cutting
tool condition. The cutting tool states were defined as:
new , half-new

, half-worn , and
worn , where is the flank wear
according to ISO-8688-2 norm. A Hidden Markov Model
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(HMM) framework was developed in order to identify
based only on the MFCC of the vibration signals in the
work-piece (y-axis).

Several factors affect the surface roughness ,
such as: feed per tooth, cutting tool diameter, radial
depth of cut, work-piece hardness, etc.

A Response Surface Methodology (a statistical and
mathematical technique) was applied for modeling .
Applying an ANOVA, four models were obtained for com-
puting the Ra:

Each model was developed for a single cutting tool
condition ( ). Verifying that the residuals followed
a normal distribution statistically validated these models.

It is also possible to predict during the machining
process by applying an Artificial Neural Network (ANN)
model. The ANN model was built based on cutting para-
meters and on-line measure-
ment of process variables (MFCC of , the y-axis work-
piece cutting force), as follows:

An estimator based on multi-sensor and data fusion
provides an improved and robust estimation. For details
see [17].

A CNC machining center could have three main intelli-
gent areas: cutting tool monitoring, operation & machine
tool modeling and adaptive control [6]. The planning
module on the proposed system has two main tasks:

Computation of the optimal cutting parameters that
minimizes the surface roughness. There are two ope-
rating modes: pre-process and in process.
Computation of the machining policy that minimizes
the production cost.

One of the key tasks of the planning module is the
computation of the optimal cutting parameters before
the cutting operation ( ). Given a set
of variables provided by the operator ( , , , ),
the surface roughness ( ) is estimated, and the cut-
ting parameters are optimized with a Genetic Algorithm
(GA). Figure 6 shows the detailed procedure.

The second key task of the planning module is the
computation of the optimal cutting parameters during
the machining process ( ).

Considering some process variables and the on-line
estimated , the actual surface roughness ( ) is esti-
mated. First, the difference between the and the de-
sired surface roughness ( ) is computed:

V

(Ra)

Ra

Ra = f(f , D , ae, HB, Curv)

V

Ra

(f , D , ae, HB, Curv)
Fy

Ra = ANN(f , D , ae, HB, Curv, Fy, V )
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Ra
Ra
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4.3. Surface Roughness Module

5.1. Cutting parameters (off-line optimization)

5.2. Cutting parameters (on-line optimization)

5. Planning module
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Based on this error and the previous feed per tooth
, the new is re-computed:

Finally, the is re-estimated on-line, based on cur-
rent process variables and new cutting parameters. This
iterative scheme can yield improved strategies for the
next work-piece. Figure 7 shows the detailed procedure.

The third key task of the planning module is the
optimization of the machining policy, based on a minimi-
zation of the production costs. The policy, which genera-
tes guidelines for the operator, is limited to the available
universe of variables of this problem (different Aluminum
alloys, cutting tool diameters, and cutting tool wear
condition).

A methodology based on the Markov Decision Process
(MDP) [4] was here implemented. The key characteristic
of a Markov model is a probability law in which the future
behavior of the system is independent of the past beha-
vior, given its current condition. Therefore, a MDP is
a controlled stochastic process satisfying the Markov pro-
perty with a cost assigned to state transitions. A solution
to a MDP is a policy mapping states to actions, and that
determines the state transitions to minimize the cost
according to the performance criterion.

A formal description of a MDP is as follows:
is a finite set of states of the system. The pos-

sible states of the cutting tool wear condition are:

, new,
, half-new,
, half worn,
, worn, and
, tool fracture.

is a finite set of actions that the operator
can take. The possible actions are:

(f ) f

f = f (1- Error)

Ra

S = {s ,
s , s , s , s }

s
s
s
s
s

A = {a , a , a }
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5.3. Machining Policy

Fig. 6. Off-line optimization of cutting parameters.

�

�

�

�

�

�

�

�

, no action. This action represents an aggressive
condition, because the operator uses the cutting tool
until to reach the maximum.

, change the cutting tool. It is a conservative con-
dition, which implies to change the cutting tool when
the Cutting Tool Module predicts the worn condition.

, stop the machine and inspect the cutting tool.
It is an intermediate condition among the and
conditions.

is the state transition probability distribu-
tion function. For each action and state of the system,
there is a probabilistic distribution over the states that
can be reached after the actions. These transition mat-
rices were defined to reach the tool fracture condition
from any state of the cutting tool. The function
is defined as the probability of reaching state s starting
in state and given action . As shown in Figure 8, the
transition matrices were computed by considering the
evolution of the cutting tool life,

a

V
a

a
a a

P: S x A

P(s|s', a)

s' a

1

B

2

3

1 2

Fig. 7. On-line optimization of the cutting parameters and
machining policy.
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Additionally, the tool fracture was included to simu-
late a random failure of the cutting tool, which can hap-
pen at any time during the machining process.

The instantaneous cost function is defined for each
action as:

These cost functions were computed by considering:
a) the decision cost for a right or wrong action (Decision
Theory), b) operator costs, energy cost, and the operator
labor, and c) the cost of the cutting tool. The cost func-
tion was defined for all the cutting tool wear conditions
and for each action. For this demonstration, the cost fun-
ctions were computed for 6082-T6 Aluminium alloy, cut-
ting tool of 16 mm, and a machining time of 1.2 minutes.

is a reward function for executing action
in the state , assigning a real number for each action in
each state of the system.

defines a vector that maps the state space into the
action space, that is, an action function, which assigns
an action to each state. These are evaluated by the MDP
algorithm to compute the optimal policy.

A stationary policy is a policy that can be defined
by an action function. The stationary policy is defined by
the function taking action at time , if ,
independent of previous states, actions and time-steps.
The set of all (decisions) policies is denoted by .

The Expected Discount Cumulative Cost will be used to
compute the optimal minimum cost. The total discount
factor problem is equivalent to using a present worth cal-
culation on the basis of decision-making.

Fig. 8. Four states of the cutting tool condition can be
identified. The measured is a function of the removal
metal .
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Let be a Markov Chain with Markov
Matrix . Let be cost function and let be a discount
factor ( = 0.925 is recommended). Then the expected
total discounted cost is given by

Therefore, the total expected discounted cost, under
the probability law specified by the policy , is given by

Thus, the discounted cost optimization problem can
be stated as follows [4]:

Find in such that where the vec-
tor is defined by

The expected discounted cumulative cost with res-
pect to a state for a particular policy and fixed dis-
count factor is defined by (for all in ):

The optimal total-cost function is defined as

which can be shown to satisfy the following optimality
equations (for all in ):

The optimal policy can be found from the total-cost
function as follows (for all in ):

A further set of experiments was defined for different
cutting conditions (see Table 3), in order to evaluate the
system performance. The test pieces were designed to re-
present three typical geometries used in the molding in-
dustry (see Figures 9-11). The cutting conditions were
defined to include central points, limit points, and exter-
nal points into the domain. Also, the different work-
piece materials were defined for these validation tests.
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6. Experimental results

Fig. 9. Test piece number 01 with the three machining
geometries: straight, concave and convex paths.
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Fig. 10. Test piece number 02 with the three machining
geometries: convex, concave and straight paths.

Fig. 11: Test piece number 03 with the three machining
geometries: straight, concave and convex paths.

The optimization step was validated with several
tests.

6.1. Off-line Optimization

1. An operator defines the cutting conditions, cutting
and geometric parameters, and the desired value.

2. The planning module computes the under these
conditions.

3. The GA computes the new cutting conditions ( ) ba-
sed on the difference between the and ,
Figure 13.

4. If the , GA re-computes new cutting condi-
tions based on and , Figure 14.

5. If the , GA re-computes the new cutting
conditions now based on and , Figure 15.

The GA was configured by 100 generations, 20 population
sizes, 0.8 crossover probabilities, and 0.2 mutation pro-
babilities. The feed per tooth ranged between 0.025-
0.13 mm/foot, the radial depth of cut ranged between
1-5 mm and the cutting tool diameter 8-20 mm.

Ra
Ra

f
Ra Ra

Ra > Ra
f D

Ra > Ra
f ae

p

p d

p d

p d

z

z tool

z

Fig. 12. Comparison between the measured and predicted
.Ra
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Table 3. Different cutting conditions, and geometric parameters defined for the new experiments(N: New, HN= Half-New,
HW = Half-Worn, W: Worn, L: Line, I: Island, B: Box).

VB

N

HN

N
N
HN
HN
HW

HW

W

HW

W
W

HW

Experiment

P -2024-L1

P -2024-I1

P -2024-B1

P -2024-L3

P -2024-I3

P -2024-B3

P -2024-I4

P -2024-B5

P -5083-I1

P -7075-L1

P -6082-I1

P -6082-B1

P -6082-L2

P -6082-I2

P -7075-B2

P -7075-L2

P -7075-B3

P -7075-I3

P -7075-L3

P -CERTAL-B1

P -2024-B9

P -2024-I9

P -5083-L3

fz

0.075

0.075

0.075
0.075
0.047
0.115
0.04

0.04

0.08

0.08

0.04
0.05

0.05

ae

3

3

3
3
2
4.5
4

4

5

5

4
2

2

Dtool

12

12

12
12
8
20
12

12

16

16

16
20

16

HB

109

110

110
109
71
158
89

94

151

151

144
110

67

Curv

0
0.037

-0.019
0

0.083
-0.556
0.025

-0.025
0.077

0
0.038

-0.0185
0

0.0385
-0.0286

0
-0.0286
0.0222

0
-0.0185
-0.0313
0.0208

0
P -5083-I3 0.0357
P -5083-B3 -0.0192
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The Markov Decision Process (MDP) was validated in
the industrial HS-1000 Kondia machining center.

The MDP can be solved using different algorithms:
Police iteration and value iteration. The optimal total-
cost function was computed based on the defined MDP
and the information presented in section 5.3. The opti-
mal total-cost function computed with the Policy itera-
tion algorithm is given by

The optimal policy can be obtained by an iterating
step that defines the actions of the operator that mini-
mize the cost:

6.2. Machining Policy

Fig. 13. optimization based on . GA computes the
optimum cutting parameters.

Fig. 14. Optimization based on and .

Fig. 15. Optimization based on and .
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* = {659.56, 704.04, 803.51, 868.92, 4273.6}

= {a , a , a , a , a }1 2 1 3 1

Based on this result, the recommendations are:

For (new cutting tool condition) the action
should be applied.
For , should be applied.
For , should be applied.
For , should be applied.
For , should be applied.

Given that MDP is a stochastic model defined by
a Markov system, the transition matrixes and an initial
distribution of the states (i.e., ) were simu-
lated several times to illustrate the variability of the
results.

Figure 16 shows two simulations given the (ag-
gressive condition) and (conservative condition)
matrices. Figure 16 (top plot) shows a normal evolution
of the in the cutting tool, where the operator does not
take actions and waits for a possible tool fracture when
the cutting tool reaches the maximum worn condition.
Figure 16 (bottom plot) depicts the conservative condi-
tion, where the operator decides to change the cutting
tool if the worn cutting tool condition is detected during
the machining process.

Figure 17 illustrates the results of the variability of
the Markov system for 30 evaluations. The “box and whis-
ker” plot shows the comparative costs between the dif-
ferent actions and the optimal policy determined by the
MDP. The boxes have lines at the lower quartile, median,
and upper quartile values. The whiskers are lines exten-
ding from each end of a box to show the extent of the rest
of the data. The boxes are notched to represent a robust
estimate of the uncertainty about the medians for box-
to-box comparison. These results demonstrate that the
optimal policy presents the lower costs when compared
with the aggressive, intermediate, and conservative
actions.
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Fig. 16. Simulation of the Markov system with the two
transition matrixes. Top plot presents an aggressive con-
dition for the action , and bottom plot a conservative
condition for the action .
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It can be also observed that the machining policy
based only on , or have greater accumulated cost
than the one yielded by the MDP for the 100 machining
cycles. In Figure 17 (upper plot), the average accumu-
lative cost for the 100 machining cycles is USD $4973.79,
$4755.87, and $4385.18 for actions , , and optimal
policy, respectively. Therefore, the potential savings are
USD $588.6 and $370.7 for the -optimal policy and -
optimal policy, respectively.

a a a

a a

a a

1 2 2

1 3

1 3

Fig. 17. Comparison of costs for the different actions and
optimal policy by using the box a whisker plot. Results with

(up plot) and (low plot) transition matrixes.Pa Pa1 2

7. Conclusions
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th

In this work, a planning module for High Speed Mach-
ining was designed and incorporated within an intel-
ligent control system. This module is based on the Markov
Decision Process (MDP) framework, yielding novel featu-
res in an optimization process. In particular, the MDP
framework allows modeling decision-making under un-
certainty where the actions of the operator are partly
under control. Although early results are promising, the
full integration of an MDP framework will require more
research into the cross relationship between key vari-
ables. This will be investigated in future works.
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