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Abstract:
This paper presents a grey wolf algorithm for a concur‐
rent real‐time optimization problem in searching for an
optimal game‐solving solution. There are many solutions
to the game. Each solution can demand different optimal
values of different parameters. However, some ways the
players try to solve the game do not lead to success.
The optimization problem consists of two phases. Each
phase impacts the second one in real time. The first phase
is responsible for the optimization of the parameters.
The second phase validates the choice and optimizes
the parameters. As an optimization method, we chose
grey wolf optimization. At the beginning, the algorithm
generates several solutions. The solution with the value
of the parameters closest to maximum is the position of
an alpha wolf. The rest of the solutions are, according to
the values of the parameters, split into the positions of
beta, delta, and omega wolves.

Keywords: concurrent real‐time optimization, grey wolf
optimization, metaheuristics, swarm intelligence, game
theory

1. Introduction
Games can very realistically simulate a lot of real

situations of daily life. Such simulations are easy to
make, cheap, and have no consequences in real life.
They can also improve existing solutions or indicate
their weak points. Instead of putting human life in
danger or losing some expensive hardware, it is better
to play a game. Modern computer games have become
more complex. They allow for checking more and
more aspects of the situation they simulate. However,
checking every possible solution to solve the game
can take too much time and is too expensive. What is
more, some ways do not lead to success. Therefore, it
is very important to ϐind the best solutions and elimi‐
nate the wrong ones. But what does the best solution
mean? Games can be solved in many ways. Each way
demands different values of many different parame‐
ters. The question is which parameters the players
should choose and what their optimal values will be
when the time to solve the game is limited. As can be
observed, the optimization process might be split into
two phases. The ϐirst phase chooses the parameters
that need to be optimized. The second phase veriϐies
the choice and optimizes the parameters.

Every change in the second phase makes changes
in the ϐirst one. If the ϐirst one is modiϐied, the opti‐
mization in the second one also must be changed.
Therefore, the process describes concurrent real‐time
optimization [1]. Such a type of optimization was pro‐
posed by Górski and Ogorzałek to ϐind unexpected
tasks in the IoT design process and their optimal
assignment.

In this paper, a grey wolf algorithm was imple‐
mented for a concurrent real‐time optimization pro‐
cess of searching for the best solution to solve com‐
puter games. To the best of our knowledge, such an
optimization problem has not been investigated in
game theory so far. Solving this problem can help to
automatically ϐind the solution to computer games.

The paper is organized as follows: the second
chapter includes relatedwork, the third one describes
the implementation of greywolf optimization to inves‐
tigated problem. In the next section the experimental
results are given. The last chapter contains conclu‐
sions and directions of future work.

2. Related Work
Concurrent real‐time optimization [1] is a new

kind of optimization. It was proposed by Górski and
Ogorzałek [1]. Such a type of problem indicates that
there are two optimizing phases. Each phase impacts
another in real time. Changes in one phase make
changes in the second one in real‐time. The ϐirst phase
is responsible for the choice of parameters to opti‐
mize. The second phase validates the choice and opti‐
mizes it. However, during the optimization process,
the parameters may be changed. Such a problem was
called a picking an apple problem. There are many
possibilities to pick an apple. For example: climbing
a tree, shaking a tree, using a tool or a ladder, etc.
Depending on the choice, there are different param‐
eters to optimize. It is very hard to establish which
way is best. Moreover, in some cases, not all the ways
to pick up an apple are possible. The solutions can
be characterized by some common parameters that
can be used to evaluate the quality of the results and
choose the best one. The same situation can be found
in game theory. There aremany possible ways to solve
a game. Each one demands different actions taken by
a player and therefore different values of available
parameters.
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However, depending on the situation in a game‐
play, increasing the values of some of the parame‐
ters does not lead to solving the game. The common
parameter for every solution is the time necessary
to solve the game. Such a problem was solved in
IoT [1] andembedded systems [2] design todetect and
assign unexpected tasks. In [33], the authors proposed
a genetic programming approach for detecting and
assigning unexpected tasks in the SoC design process.
So far, every one of the algorithms solving concurrent
real‐timeoptimizationproblemshasbeenproposed in
hardware design. However, the problem in hardware
design is different. The hardware was speciϐied by the
task graph [34]. Therefore, the hardware is needed
to execute some tasks. The architecture consisted of
two kinds of processing elements: programmable pro‐
cessors (PPs) and hardware cores (HCs). PPs were
able to execute more than one task, while HCs were
dedicated to executing only one task. The tasks were
characterized by two parameters. Usually, it was time
and cost. The faster the architecture, the more expen‐
sive it was. Therefore, in hardware design, concurrent
real‐time optimization belongs to the Pareto group
of problems [35]. In game theory, such a situation
does not occur. Modifying one feature of the character
does not decrease the value of another. In [36], Górski
proposed an extension of a task graph for real‐life
problems. Such an extended task graph can allow for
the proposal of solutions in more areas.
2.1. Game Theory

Game theory describes the way to solve a game
using mathematical formulas. Every game consists of
four parts [3]:
‐ Players – persons who play the game by controlling
characters.

‐ Actions – actions that are taken by the players to
solve the game.

‐ Strategies – a way chosen by the players to solve the
game.

‐ Payoff – return (positiveornegative) obtainedby the
players after taking the actions.

The characters controlled by the players during the
gameplay can be characterized by many, sometimes
different, parameters (abilities). Generally, the values
of those parameters are not constant during gameplay.
The opponents, often controlled by the computer, also
have different values of the same parameters. The val‐
ues of the parameters for the characters controlled by
the computer can also be modiϐied. In [4], the authors
proposed using graph databases to improve artiϐi‐
cial intelligence in games. The players must choose
the strategy for evolving the characters and solving
the game. In multiplayer games, the strategies must
include an inϐluence of one player’s behavior on the
rest [5]. In [6], the authors proposed a graph‐based
model to automate game story generation. Unfortu‐
nately, the proposed solution did not include every
aspect of the gameplay.

Figure 1. Chierarchy in a group of wolves

In game theory large group of games are seri‐
ous games [7]. The purpose of such games is not
only entertainment. They are used in nurse educa‐
tion [8], language learning [9], learning cultural her‐
itage [10], on environmental management [11] and in
many other areas of daily life mostly common with
training and education.
2.2. Grey Wolf Optimization

Grey wolf optimization (GWO) was proposed by
Mirjalili, Mirjalili, and Lewis in 2014 [12]. It is a
kind of swarm intelligence algorithm, like particle
swarm optimization [13], grasshopper optimization
algorithm [14], whale optimization algorithm [15],
or Dragonϐly Algorithm [16]. GWO is a simulation of
hunting prey by a group of wolves. In every group of
wolves, there is a leader called the alpha wolf. The
leader is closest to the prey. The next position belongs
to Beta Wolf. A beta wolf is a candidate for becoming
an alpha. The third in order is the deltawolf. The last in
a hierarchy are omega wolves – the rest of the group.
Such a hierarchy is presented in Figure 1 below.

Hu Pan and Chu proposed a binary grey wolf opti‐
mizer (BGWO) to solve binary problems [17].

GWO is well known to stop at the local minima
when optimizing parameters. Therefore, during the
last few years, some modiϐications have been pro‐
posed. One of the modiϐications is based on the usage
of maps like circle maps [18] and chaotic maps [19,
20]. Another improvement to GWO is an adaptive
grey wolf optimizer (AGWO) [21]. Such amodiϐication
allows the algorithm to provide optimal values faster
by using a three‐point history of parameter values.
In [22], the authors proposed using chaos theory to
improve the algorithm by making it more prone to
avoiding local minima when optimizing parameters.
Hybrid solutionswere also proposed, like connections
of GWOand𝛽‐hill climbing algorithm [23] called𝛽‐hill
climbing grey wolf optimizer (𝛽‐HCGWO).
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In [24], a beetle antenna strategy that allows
the 𝛼 wolf to hear and thus improve the hunt‐
ing strategy. Yang and others proposed to modify
the position update strategy by adding information
about 𝜔 wolves, making the iterations nonlinear [25].
In [26], the authors proposed a group‐state compe‐
tition strategy to extend the search space of GWO.
Nadimi‐Shahraki, Taghian, and Mirjalili proposed an
improved grey wolf optimizer (I‐GWO) [27]. I‐GWO
implemented a dimensional learning hunting strategy.
The strategywasbasedon thebehavior of a singlewolf
hunting strategy in nature.

Grey wolf optimization was implemented to:
parameter identiϐication of photovoltaic cells [28],
task scheduling [29, 30], solving engineering prob‐
lems [27], path planning [31,32], and many others.

3. The Methodology
Every game can be solved in many ways. Every

way demands a different combination of values of
different parameters. In most games, there is a main
character controlled by a player. The character has a
set of parameters. In our methodology, such a set is
represented by a vector v consisting of n numbers. The
vector is presented below:

v = [v1, v2, … vn] (1)

The player can evolve the character during the
game. However, in many cases, time for evolution can
be limited. Moreover, the opponents can evolve con‐
trolled characters during the gameplay, too. Special
features of the opponents can also make evolving one
of the parameters useless. To solve the game, one of
the winning combinations of all the parameters must
be found. Achieving the set of parameters that allows
solving the game can take different times. Therefore,
the time of evolution, the character, or the number of
iterations of evolution are common parameters that
allow us to evaluate the quality of the results. In this
paper, we concentrate on ϐinding the best way to solve
the game, understood as theminimumnumber of iter‐
ations (Ib) demanded to achieve the appropriate set of
parameters:

Ib = min(I) (2)
Where I is the number of iterations.
At the beginning, a population of m wolves is ran‐

domly created.
m = nv ∗ np (3)

Where: np is the number of optimizing parameters
and nv is the number of winning combinations of the
parameters.

Next, all solutions are divided into appropriate
groups: alpha, beta, delta, and omega. The distance (D)
between a grey wolf and its prey can be calculated
using the equation below:

𝐷 = |𝑋𝑝 ∗ 𝐴 − 𝑋𝑤| (4)

Figure 2. A sheaf graph presenting a single iteration

In Equation (4), Xp describes the coordinates of
a prey, and Xw describes the coordinates of the grey
wolf. A can be calculated as follows:

A = 2 ∗ d (5)

Where d is a random value between 0 and 1, as
was said before, in the game, there is an established
set of vectors that includes minimum combinations
of values that allow defeating the opponent. Those
are potential positions that allow the wolves to attack
the prey. Therefore, the problem is multicriteria. The
value of every parameter cannot be decreased. For
example, the character cannot lose points of strength
after training. The proposed algorithm chooses ran‐
domly one of the parameters, vc, and changes its value
in the following way:

V = vc + |P| (6)

Where P can be established using the following
equation:

P = 2 ∗ d ∗ r− r (7)
Where r is changed proportionally to the number

of iterations from 2 to a maximum of 0 in each iter‐
ation, but this value is calculated for each parame‐
ter separately. This operation shortens the distance
between the wolves and the prey. Such a situation is
presented on a sheaf graph [6] below:

Figure 2 presents a simple production (one iter‐
ation) – increasing the strength of a character. The
character is in location 1 and is characterized by 3
parameters: strength, endurance, and cleverness.

The number of iterations is limited. Because not
every way leads to winning a game, the obtained
result can be invalid in some runs of the algorithm.
Therefore, using the methodology presented in this
paper can help to establish the sets ofmovements that
will not allow one to win the game. The goal of the
algorithm is to ϐind the fastest way to solve a game.
As the fastest way to solve a game, we understand
the minimal number of iterations necessary to win a
game.

4. Experimental Results
To check the quality of the obtained results, we

decided to analyze a scenario of a part of an arcade
game. In the scenario, the player chooses one of
the characters belonging to three groups: magicians,
knights, and villagers.
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Every character has some abilities (parameters),
such as strength, endurance, magic ability, etc. The
player evolves the chosen character in a possible num‐
ber of iterations (Imax). In each iteration, it is possible
to evolve only one ability. There are a few combina‐
tions of the values of parameters that allow one towin
the game and defeat the opponent.

As was written before, to the best of our knowl‐
edge, this paper is the ϐirst to deal with a concur‐
rent real‐time optimization problem in game theory.
Therefore, it is very hard to compare the results
because of the lack of solutions for such a deϐined
problem. We decided to compare the obtained results
with a randomalgorithm. Such an algorithmgenerates
the initial solution randomly and randomly selects one
of the parameters and increases it by a randomly cho‐
sen value from 0,1 to 1. In the future, we plan to pro‐
posemore approaches, like, for example, PSO, for such
a problem and compare the results, but so far, other
algorithms for concurrent real‐time optimization in
game theory have not been developed. As was said
before, existing algorithms solving concurrent real‐
time optimization in hardware design cannot be used
in game theory because of the speciϐication of the envi‐
ronment inwhich theywork. Theyworkwith different
constraints, different numbers of optimizing param‐
eters, different behavior of the parameters (Pareto
problem), and other environmental conditions. It does
not mean that it is impossible to use genetic pro‐
gramming or genetic algorithms to solve the problem
in game theory, but such algorithms, which will be
equal to work in the game environment, need to be
developed.

The experiments are divided into two groups. The
ϐirst group of experiments was made for three evolv‐
able parameters. The second group of experiments
was made for four evolvable parameters. In Table 1
below, the obtained results for three abilities of a char‐
acter (parameters) are presented. The experiments
were made for different numbers of winning combi‐
nations (for ϐive winning combinations). A number of
winning combinations in Tables 1 and 2 were marked
with the letter w. For each number of winning com‐
binations, 50 tries were made. We believe that such
a number of runs is enough to provide a good dis‐
cussion of the results. In Table 1, the results obtained
depend on the number of maximum iterations. Imax is
a constraint on the number of iterations. Ib represents
the minimum iteration in 50 runs in which the wolves
achieved the position allowing them to attack the prey.
Ia is the average number of iterations from all of the
valid runs. All the experiments were made for Imax
equal to: 5, 10, 20, and 50.

In the ϐirst set of experiments, there were four
winning combinations of three possible parameters.
As expected, one of the target vectors was obtained in
the lowest average iteration when the constraint was
the sharpest (5 iterations). The value was equal to 4.
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Figure 3. A percentage presentation of a number of
valid results for the first set of parameters for the first
group of experiments

The averagenumber of iterations inwhich thewin‐
ning combination of parameters was achieved grew
with the number of possible iterations – 7 for Imax
equal to 10, 10 for Imax equal to 20, and 11 for Imax
equal to 50. The percentage value of valid runs (the try
when a valid result was obtained) was the lowest for
the sharpest constraint. When the maximum number
of possible iterations was equal to 5, valid solutions
were obtained only in 14% of runs. When the number
of possible iterations was equal to 10, the number of
valid runs increased to 56%. For Imax equal to 20, the
percentage value of valid obtained results was equal
to 92%. For Imax = 50 in every run valid solution
was generated. As can be easily observed, the results
obtained by the grey‐wolf algorithmweremuch better
than those obtained by the random solution. The best
obtained results using the random algorithm were: 9
(for Imax equal to 10 and 50) and 10 (for Imax = 20).
The percentage of valid solutions is also worse for the
random algorithm. Meanwhile for Imax = 50 and 20
the results were similar (respectively 100 and 88), for
a lower value of Imax operator (Imax = 10) it was
only 8%. For Imax = 5, the random algorithm was not
able to generate any valid solution. Figure 3 shows a
graphical presentation of the generated valid solution
depending on the Imax constraint for results obtained
by the Grey‐wolf algorithm.

For the second set of experiments (ϐive winning
combinations and three parameters), the statistics
were very similar to those of the ϐirst set. However,
as we expected, the percentage of achieved winning
solutions grew. Such values were achieved because
when the number of possible solutions was greater,
it should be easier to obtain a valid solution – there
is one more winning combination of the parameters.
The results were equal to 20% for Imax = 5, 60%
for Imax = 10, 94% for Imax = 20, and 100% when
Imax is equal to 50. That dependency was presented
in Figure 4. The percentage of winning solutions for a
random algorithm was also higher. For an Imax equal
to 20 and 50, it was 92 and 100 percent. For Imax = 10,
it was 18. For Imax = 5, the algorithm was not able to
generate a valid solution.
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Table 1. The results for three parameters

Imax GW 2024 Random
m w Ib Ia %of winning solutions Ib Ia %of winning solutions

5 12 4 3 4 14 – – 0
10 12 4 4 7 56 9 10 8
20 12 4 4 10 92 10 16 88
50 12 4 4 11 100 9 16 100
5 15 5 4 5 20 – – 0
10 15 5 4 8 60 8 10 18
20 15 5 4 11 94 9 16 92
50 15 5 5 12 100 9 16 100
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Figure 4. A percentage presentation of a number of
valid results for the second set of parameters for the
first group of experiments

The experiments were made in the same way as
for the ϐirst group – with different number of possi‐
ble iterations: 5, 10, 20 and 50. After comparing the
results with the ϐirst group it can be noticed that the
best results for each Imax were generated later.

For the ϐirst set (four winning solutions), when
Imax = 5 and Imax = 10, it was in the 4th iteration,
for Imax = 20 in the 6th iteration, and in the 5th
iteration for Imax = 50. In the second set, the results
were as follows: 5th iteration for Imax equal to 5, 10,
and 20, and 6th iteration for Imax = 50. The average
number of iterations has also grown. For the ϐirst set of
experiments, it was equal to: 5 (Imax = 5), 9 (Imax = 9),
15 (Imax = 20), and 19 (Imax = 50). In the second
part of the second group of experiments, the average
results were equal to: 5 for Imax = 5, 9 for Imax = 10,
14 for Imax = 20, and 16 for Imax = 50. Such results
of experiments were expected because in the second
group of experiments, there were more parameters
that needed to be evolved by a player, thus generating
a valid combination of parameters could take more
time. Similarly, as for the ϐirst group of experiments,
the average value of iterations decreased when there
weremore target combinations of the parameters that
allowed solving the game. In Figure 5, the dependency
of the percentage of generating valid solutions for
different maximum numbers of possible iterations for
a grey wolf algorithm was presented.

0

20

40

60

80

100

5 10 20 50
P

e
rc

e
n

ta
g

e
 o

f 
v

a
li

d
 

s
o

lu
ti

o
n

s
 

Imax

Figure 5. A percentage presentation of a number of
valid results for the first set of parameters for the
second group of experiments

The lowest value of valid solutions, 22%, was
obtained when Imax = 5. For Imax = 50 in every
run of the algorithm, a valid solution was generated.
For Imax = 10, it was 56%, and for Imax = 20 it
was 94%. A random algorithmwas not able to provide
a valid solution for Imax equal to 5 and 10 for both
parts of the second group of experiments. Even for
Imax = 20, the random algorithm provided only 10%
(for four winning solutions) and 4% (for ϐive winning
solutions) of valid results.

The algorithm was also slower than the grey‐wolf
algorithm – it needed to generate, on average, for
Imax = 20: 19 (w = 4) and 20 (w = 5) iterations and
for Imax = 50: 27 (w = 4) and 25 (w = 5) iterations.
The graphical representation of the percentage of gen‐
erating valid solutions for different numbers of Imax
for the second part of the experiments for a grey wolf
algorithm was presented in Figure 6 below.

Like for the ϐirst group of experiments with
increasing the number ofwinning combinations of the
parameters, the percentage of obtained valid solutions
was growing. Itwas equal to 30% for Imax = 5, 68% for
Imax = 10, 94% for Imax = 20, and 100% for Imax =
50. The percentage of valid results obtained for the
second group of experiments was a bit higher than for
the ϐirst one. We were expecting that the value for the
second group of experiments could be lower because
of the increased time to generate a valid solution.

69



Journal of Automation, Mobile Robotics and Intelligent Systems VOLUME 19, N∘ 2 2025

Table 2. The results for four parameters

Imax GW 2024 Random
m w Ib Ia %of winning solutions Ib Ia %of winning solutions

5 20 4 4 5 22 – – 0
10 20 4 4 9 56 – – 0
20 20 4 6 15 94 18 19 10
50 20 4 5 19 100 18 27 98
5 25 5 5 5 30 – – 0
10 25 5 5 9 68 – – 0
20 25 5 5 14 94 20 20 4
50 25 5 6 16 100 19 25 100
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Figure 6. A percentage presentation of a number of
valid results for the second set of parameters for the
second group of experiments

However, it must be remembered that results
obtained using the GWO algorithm are based on prob‐
ability, and the number of valid solutions obtained for
both groups of parameters is very similar. Only for
Imax = 5, the difference of the value oscillates between
8–10%, but such a sharp constraint could not be a
good reference point. What is worth underlining is
that inmost of the sets of the experiments, thewinning
combination of parameterswas obtained inmore than
half of the runs. Therefore, even though one run of the
algorithm did not produce a valid solution, there was
a big chance that the second run would generate the
winning combination.

5. Conclusion
In this paper, the grey‐wolf optimization algorithm

for the concurrent real‐time optimization problem in
game theory was presented. Due to our best knowl‐
edge, it is the ϐirst solution that dealswith the problem
of real‐time optimization in game theory and the third
area of usage of such optimization. The implemented
algorithm is well known to be very fast because it nar‐
rows down the search space. It causes GWO also to be
well known for stopping in local minima of optimizing
parameters. However, the speciϐication of the prob‐
lem (more than one target vector of the parameters)
decreases such a disadvantage.

Comparison of the results obtained by grey wolf
algorithm with solutions obtained by random algo‐
rithm shows the effectiveness of chosen algorithm to
investigated problem. Grey wolf algorithm was able
not only to generate the results faster than random
solutions but also gave valid results even when the
second algorithm did not provide any valid result.

In the future, we will try to use some modiϐica‐
tions of GWO and apply them to the problem dis‐
cussed in this paper. It is also possible that applying
another metaheuristic can give good results in solv‐
ing the investigated problem. We will also check the
efϐiciency of evolutionary computation in this problem
in game theory. Concurrent real‐time optimization is
quite new problem in computer science. So far, it has
been used to detect unexpected tasks in the IoT design
process. Findingmore areas of usage, this kind of opti‐
mization also seems to be a good direction of research.
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