
Abstract:
Most dynamic models of wheeled mobile robots as-

sume that the wheels undergo rolling without slipping, thus
in general wheeled mobile robots are considered as non-
holonomic systems. This paper deals with the problem of
motion planning of mobile robots, whose nonholonomic
constraints have been violated during the motion. The slip-
ping phase is studied in details. A static model of interaction
forces between wheels and ground is adopted by means of
the singular perturbation approach [2]. A novel control
theoretic framework for mobile robots subject to slipping
is defined: both kinematics and dynamics of a mobile robot
are modeled as a control system with outputs, the perfor-
mance of a locally controllable system is nontrivial, the
Jacobian of the mobile robot is defined in terms of the
linear approximation to the system [36]. A novelty of the
methodology consists in respecting of the analogy between
the stationary and mobile robots and deriving performance
characteristics from local controllability. In this paper we
address the problem of motion planning by means of the
Jacobian pseudo inverse algorithm. The effectiveness of
the Jacobian pseudo inverse motion planning algorithm is
demonstrated with reference to differential drive type robot
(Pioneer 2DX) subject to slipping.

Keywords: dynamics, kinematics, motion planning, slip-
ping effect, wheeled mobile robot.

1. Introduction
Wheeled mobile robots are most often assumed to be

capable of rolling without slipping, and modeled as non-

holonomic systems. Numerous literature sources deal with

mobile robots subject to nonholonomic constraints (namely

pure rolling and nonslipping condition) [1, 5, 14, 36, 40].

Such an assumption is, however, far from realistic in prac-

tice. In fact, due to various effects such as slipping, sliding,

compliance of the wheels, the ideal constraints are never

strictly satisfied. Since friction is the major mechanism

for generating forces acting on the vehicle’s wheels, the

problem of modeling and predicting tire friction has al-

ways been an area of intense research in the automotive

industry. However, accurate tire–ground friction models

are difficult to obtain symbolically, the most common tire

friction models used in the literature are static [22, 30]. The

dynamic friction models attempt to capture the transient be-

haviour of the tire–road contact forces under time–varying

velocity conditions [7, 13]. The modeling of friction forces

exerted at the wheels has been used for various studies [3,

29, 35, 39, 41]. A trajectory tracking problem for wheeled

mobile robots subject to some drift and slipping effects,

when the velocities become significant and therefore do not

satisfy perfectly the ideal constraints, was undertaken by

d’Andrea-Novel and coauthors [2] by means of the singu-

lar perturbation approach. A robust controller, that handles

uncertain soil parameters, for trajectory tracking of four–

wheel differentially driven, skid–steering vehicles has been

presented in [8]. A traction control strategy minimizing

slip in rough terrain has been presented in [6, 18, 24].

In this paper we are concerned with a problem of

motion planning of wheeled mobile robots, for which

nonholonomic constraints of pure rolling and nonslipping

have been violated during the motion. The problem can be

stated as follows: given a desirable location of the mobile

robot in the taskspace, find a configuration in which the

robot reaches the desirable position and orientation in a

prescribed time horizon. The inverse kinematic algorithm

based on the inverse of the Jacobian is the most popular

method [4, 27]. Limitations of the methods presented in

the abovementioned literature have been discussed in [42];

the inverse Jacobian method is not applicable to mobile

robots.

As an alternative, the endogenous configuration space

approach [36], which applies to mobile robots, has been

proposed. This alternative has been inspired by the contin-

uation method paradigm in motion planning of nonholo-

nomic systems [34], and by the existing theory of stationary

manipulators. As a starting point the methodology assumes

a control system representation of the mobile robot and

postulates that the performance of a locally controllable

system should be non-trivial. The end point map of the

system plays the role of the kinematics and dynamics of

the mobile robot. Control actions exerted on the system

are regarded as the endogenous configurations of the mo-

bile robot. The Jacobian of the mobile robot is defined in

terms of the linear approximation to the control system. As

far as the Jacobian equation is concerned, a distinction be-

tween singular and regular configuration has been made.

The motion planning problem for mobile robots is formu-

lated as a control problem with prescribed control time

horizon. The endogenous configuration space approach ap-

plies to any mobile robot. Inverse kinematics algorithms

based on the pseudo inverse of the Jacobian for mobile

robots have been examined in [20, 37]. The literature deal-

ing with extension of the endogenous configuration space

approach to the motion planning of nonholonomic mo-

bile robots whose control system representation includes

not only kinematics but also dynamics of the robotic sys-

tem is rather modest [32]. The motion planning problem

of mobile robots subject to slipping effects examined using

traditional methods have been presented in [2, 9, 19, 31,

33].
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Assuming the control theoretic point of view, our main
objective will be to show that the motion planning problem
for a mobile robot subject to slipping effects can be solved
within the endogenous configuration space approach [36].
We shall begin with a description of the robot dynamics. To
this aim we shall assume a linear dependence of the trac-
tion forces on the slip of the wheels, and then incorporate
the obtained traction forces into the singular perturbation
model introduced in [2], see also [12, 15]. This proce-
dure will provide a control system representation of the
robot motion, comprising a slow and a fast subsystem. The
motion planning problem will be solved by means of a
Jacobian inversion of the task map. To this aim we shall
employ the Jacobian pseudo inverse. We show the func-
tionality of the Jacobian pseudo inverse motion planning
algorithm elaborated within the endogenous configura-
tion space approach. To our best knowledge, an application
of the endogenous configuration space methodology to
the motion planning problem for mobile robots subject to
slipping have not been tackled yet. We believe that the Jaco-
bian motion planning algorithm designed by combining the
singular perturbation modeling and the endogenous con-
figuration space approach is a specific contribution of this
paper. By design, the motion planning algorithm proposed
in this paper applies to any control system representation
having controllable linear approximation. The proposed
motion planning method provides the open–loop control
functions. Nevertheless, there exist some modifications of
the method, which take into consideration the uncertainties
of the model (e.g. Iterative Learning Control Strategy or
Nonlinear Model Predictive Control Algorithm) [21, 26].

The paper is composed as follows. Section 2 presents
an analysis of robotic systems subject to slipping effects.
The analysis, patterned on [2], makes use of an explicit
modeling of the dissipative nature of the interaction forces
applied to the system by the external world. Section 2 also
summarizes basic concepts of the endogenous configu-
ration space approach; it introduces the Jacobian pseudo
inverse motion planning algorithm. Section 3 presents the
results related to the application of the Jacobian pseudo
inverse motion planning algorithm to the Pioneer 2DX mo-
bile robot moving with slipping. The paper is concluded
with section 4.

2. Basic concepts
Let us consider a class of wheeled mobile robots, whose

nonholonomic constraints are not satisfied. Let q ∈ Rn de-
note generalized coordinates of the mobile robot. We shall
assume that l (l < n) velocity constraints A(q)q̇ = 0, im-
posed on the robot motion can be violated. Intuitively, we
are expecting that the violation of constraints measured
by the norm ||A(q)q̇|| is small. Using the canonical de-
composition of Rn = KerA(q)⊕ ImAT (q), we introduce
quasi-velocities η ∈ Rm, µ ∈ Rl, m+ l = n, such that the
mobile robot kinematics are represented as

q̇ = G(q)η + AT (q)εµ, (1)

where columns g1(q), . . . , gm(q) of the matrix G(q) span
the null space KerA(q), so A(q)G(q) = 0. η ∈ Rm
- vector of auxiliary velocities and µ ∈ Rl - vector of
slips velocities. The quasi-velocity µ has been scaled by a

small parameter ε representing the violation of constraints.
Observe, that A(q)q̇ = A(q)AT (q)εµ, so the ideal case
corresponds to ε = 0. The introduction of quasi-velocities
and the scaling parameter has been originally proposed in
[2] as a key element of the singular perturbation approach.
The Lagrange equations of the mobile robot dynamics
assume the following form [2]

Q(q)q̈ + C(q, q̇) = F (q) + B(q)u. (2)

with Q(q) and C(q, q̇), denoting, respectively the inertia
matrix, and the vector of centrifugal, Coriolis, frictional
and gravity forces. B(q) stands for the control matrix. The
vector F (q) denotes the interaction forces (exerted on the
system by the external world). u represents the control
functions. Having rewritten the equations of motion (2)
and with q̈ expressed from (1) as

q̈ =
[
G(q) AT (q)

] [ η̇
εµ̇

]
+ Ġ(q)η + ȦT (q)εµ,

where Ġ(q) = ∂G(q)
∂q (G(q)η + AT (q)εµ) ȦT (q) =

∂AT (q)
∂q (G(q)η + AT (q)εµ), and added of an output func-

tion characterizing the task of the mobile robot, we obtain
an affine control system representation of the kinematics
and the dynamics of the mobile robot

q̇ = G(q)η + AT (q)εµ[
η̇
εµ̇

]
= P (q, η, εµ) +R(q)u

y = k(q, q̇).

(3)

The terms appearing in eq. (3) are defined in the following
way

P (q, η, εµ) =

[
P1(q, η, εµ)
P2(q, η, εµ)

]
=[

G(q) AT (q)
]−1

(
−(Ġ(q)η + ȦT (q)εµ)−

Q−1(q)C(q,G(q)η + AT (q)εµ)
)

+H−1(q)

[
0

A(q)F

]
,

R(q) =

[
R1(q)
R2(q)

]
=
[
G(q) AT (q)

]−1
Q−1(q)B(q).

The matrix

H(q) =

[
GT (q)Q(q)G(q) GT (q)Q(q)AT (q)
A(q)Q(q)G(q) A(q)Q(q)AT (q)

]
is symmetric and positive definite, while the output function

y = k(q, q̇)

may describe the position coordinates or velocities of the
mobile robot in its motion plane.

If ε is sufficiently small, the state variables of the con-
trol system (3) can be divided into slow (q, η) and fast
µ, corresponding to the slow and the fast dynamics. Fur-
thermore, it is easy to show, that after taking ε = 0, the
control system (3) reduces to the kinematics and dynam-
ics model of the mobile robot subject to the nonholonomic
constraints. In this case, the third line represents the trac-
tion forces (∈ ImAT (q)) that enforce satisfaction of the
nonholonomic constraints, see [2].
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Since the admissible control functions of the mobile robot
(3) belong to the Hilbert space, they will be assumed
Lebesgue square integrable over the time interval [0, T ],

u(·) ∈ L2
m[0, T ].

They have sense of forces or torques, and constitute the
dynamic endogenous configuration space X ∼= L2

m[0, T ],
[42]. X is a Hilbert space.
Let z = (q, η, µ) ∈ Rn+m+l denotes the state vector of
eq.(3), and suppose that for a given initial state z0 and
every control u(·) there exists a state trajectory z(t) =
ϕz0,t(u(·)) = (q(t), η(t), µ(t)) and an output trajectory
y(t) = k(q(t)) of system (3). In accordance with the
endogenous configuration space approach the task map of
the mobile robot will be identified with the end point map
of the control system (3)

Tz0,T (u(·)) = y(T ) = k(ϕz0,T (u(·))) (4)

and computes the system output at T , when driven by u(·).
Given the system (3), we shall study the following motion
planning problem for the mobile robot: find a control
function u(·) such that, at a given time instant T , the
system output reaches a desirable point yd of the task space,
so y(T ) = yd. The motion planning problem becomes
equivalent to the inversion of the task map: find a control
function u(·) such that Tz0,T (u(·)) = yd. This inversion
can be achieved using a Jacobian algorithm [36]. To this
aim, we define the Jacobian of (4) as the derivative

Jz0,T (u(·))v(·) = DTz0,T (u(·))v(·),

v(·) ∈X . The Jacobian map transforms tangent vectors to
the dynamic endogenous configuration space into R3, and
describes how an infinitesimal change in the input force is
transmitted into a change of the position and orientation of
the mobile robot at T .
In order to compute the Jacobian map at a given config-
uration u(·) ∈ X we introduce the variational system
associated with (3)

ξ̇ = A(t)ξ +B(t)v, ζ = C(t)ξ (5)

as the linear approximation to (3) along z(t), initialized at
ξ0 = 0, where

A(t) =[
∂(G(q(t))η(t)+A(q(t))εµ(t))

∂q G(q(t))
∂(P (q(t),η(t),εµ(t))+R(q(t))u(t))

∂q
∂P (q(t),η(t),εµ(t))

∂η

AT (q(t))ε
∂P (q(t),η(t),εµ(t))

∂µ

]
,

B(t) =

[
0
R(q(t))

]
, C(t) = ∂k(z(t))

∂z .

ξ ∈ Rn denotes the state of the variational system; its evo-
lution is described by the eq. (5).
Taking into account (3) and (5), we can compute the Jaco-
bian map as the output trajectory ζ(T ) of the variational
system (5) [36]

Jz0,T (u(·))v(·) = C(T )

∫ T

0

Φ(T, t)B(t)v(t)dt, (6)

where Φ(t, s) denotes the fundamental matrix of system
(5), that satisfies the evolution equation

∂Φ(t,s)
∂t = A(t)Φ(t, s), Φ(s, s) = In+m+l .

Observe that the Jacobian (6) corresponds to the compli-
ance map introduced in [42].

Given the end point map (4) of the mobile robot, and a
desirable point yd in the taskspace, the motion planning
problem consists in defining an endogenous configura-
tion ud(·) ∈ X such that Tz0,T (ud(·)) = yd. Usually,
this problem may be solved numerically, by means of a
Jacobian pseudo inverse motion planning algorithm. Let
uϑ(·) ∈ X , ϑ ∈ R denote a smooth curve in the dy-
namic endogenous configuration space, passing through
an initial configuration u0(·). The taskspace error e(ϑ) =
Tz0,T (uϑ(·))− yd along this curve, describing the differ-
ence between actual and desirable mobile robot locations
at T should decrease along with ϑ, in a prescribed way, e.g.
exponentially. By requiring that the error should decrease
exponentially, d

dϑe(ϑ) = −γe(ϑ), with decay rate γ > 0,
we derive the Ważewski-Davidenko equation

Jz0,T (uϑ(·))duϑ(·)
dϑ

= −γe(ϑ). (7)

Finally, using the Jacobian pseudo inverse operator(
J#
z0,T

(u(·))ζ
)

(t) = B(t)ΦT (T, t)M−1
z0,T

(u(·))ζ, (8)

where

Mz0,T (u(·)) =

C(T )
∫ T

0
B(t)Φ(T, t)ΦT (T, t)BT (t)dtCT (T )

is the mobility matrix of the endogenous configuration
u(·), we arrive at the dynamic system defining the Jacobian
pseudo inverse algorithm

duϑ(t)

dϑ
= −γ

(
J#
z0,T

(uϑ(·))e(ϑ)
)

(t). (9)

Solution of the motion planning problem is obtained
as the limit at +∞ of the trajectory of (9), u(t) =
limϑ→+∞ uϑ(t). Once the inverse operator in (8) is chosen,
the solution of eq. (9) is unique.

Since the dynamic endogenous configuration space
X is infinite-dimensional, in order to carry out effective
computations we shall use a finite parameterization of
the control functions u(·) in (3) by truncated orthogonal
expansions (Fourier series)

uci(t) =
∑k
j=0 ci2j−1 sin jωt+ ci2j cos jωt,

i = 1, 2, . . . ,m ω = 2π
T , ci−1 = 0.

(10)
Subscript c in (10) means that the control functions are
parameterized. After the parameterization, the dynamic
endogenous configuration u ∈X is represented by a vector
c ∈ Rs, s = m(2k + 1) and the Jacobian (6) becomes a
Jacobian matrix Jz0,T (c). A discretization of the motion
planning algorithm (9) results in changing the dynamic
endogenous configuration c ∈ Rs iteratively, with iterations
indexed by an integer ϑ, i.e.

cϑ+1 = cϑ − γJ#
z0,T

(cϑ)eϑ, ϑ = 1, 2, . . . , (11)
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where J#
z0,T

(c) = JTz0,T (c)
(
Jz0,T (c)JTz0,T (c)

)−1, and
eϑ = Tz0,T (ucϑ(·))− yd.
The discrete Jacobian pseudo inverse algorithm (11), which
relies on the Euler approximation of the differential equa-
tions (9), is sensitive to its parameters. In particular, by
increasing γ we may lose convergence, on the other hand,
by decreasing it excessively we may slow down the con-
vergence, i.e. computational complexity of the algorithm
increases. Additionally, the final solution depends strongly
on the initial controls. The proposed motion planning al-
gorithm is local with respect to the initial controls. This is
a common feature of the Newton-like algorithms.

3. Case study
As an example, let us consider Pioneer 2DX – the

differential drive type mobile robot (a mobile robot of
this class has been studied in [2]; fig. 1). The robot is

a b

Fig. 1. a – Mobile robot Pioneer 2DX. b – Desirable
positions of the robot.

equipped with two independently actuated, identical wheels
(of radius r) mounted on a common axle (of length 2l) (fig.
2). Let us assume that, as the result of a deformation at
the contact point, the wheels may slip, both longitudinally
as well as laterally. The generalized platform coordinates
are chosen as q = (x, y, lθ, rϕ1, rϕ2)T , where x, y are
position coordinates of the center of wheel axle, θ denotes
the orientation of the platform, and ϕ1, ϕ2 are revolution
angles of the wheels. The meaning of geometric parameters
of the robot is explained in fig. 2. The mathematical model
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Fig. 2. Mobile robot.

of the kinematics and dynamics of the mobile robot is
represented by the control system (3),

A(q)=

sin θ − cos θ 0 0 0
cos θ sin θ 1 −1 0
cos θ sin θ −1 0 −1



G(q) =


cos θ cos θ
sin θ sin θ
−1 1
0 2
2 0

 , B =

[
0 0 0 1

r 0
0 0 0 0 1

r

]T
,

(12)
thus[

η̇
εµ̇

]
=
[
G(q) AT (q)

]−1
(
−Ġ(q)η − ȦT (q)εµ+

Q−1(q)B(q)u
)

+H−1(q)

[
0

A(q)F

]
.

The actuation of the wheels is achieved by two motors
that generate two torques defining the inputs u = (u1, u2)
to the system. The output function describes the position
coordinates and the orientation angle of the mobile robot in
its motion plane (y(q) = (x, y, θ) ∈ SE(2) ∼= R2 × S1).
Assuming that the center of mass of the robot is located at
the middle point of the axle of wheels, we get the following
form of the inertia matrix Q = diag

{
m,m, Iθl2 ,

Iϕ
r2 ,

Iϕ
r2

}
,

m – the mass of the robot, Iθ – the moment of inertia of
the robot around the vertical axis, and Iϕ – the moment of
inertia of each wheel.

Now let us derive a model for the generalized interac-
tion force F . As in [2], we shall adopt a ”pseudo–slipping”
model [29], according to which the lateral and longitudinal
forces applied by the ground to the wheels are proportional,
respectively, to the slip angle and the slip coefficient.
Let v denotes the velocity of the center of the wheel, that
rotates with the angular velocity ϕ̇. Let vx and vy be, re-
spectively, the longitudinal and lateral components of v.
The longitudinal slipping velocity of the wheel is equal to
the difference vx − rϕ̇, and the longitudinal slip s is given
by s = vx−rϕ̇

||v|| . Eventually, the longitudinal traction force
applied by the ground is characterized as

fx = −Cs = − C

||v||
(vx − rϕ̇),

where C is a slip stiffness coefficient, depending on the
nature of the wheel and the ground. The force fx opposes
the longitudinal slip.
The slip angle δ, defined as the angle between the plane
of the wheel and the velocity of its center is given by
δ ' sin δ =

vy
||v|| . The lateral traction force applied by the

ground, opposed to the lateral velocity component vy , takes
the form

fy = −Dδ = − D

||v||
vy

withD denoting a cornering stiffness coefficient depending
on the nature of the wheel and the ground.
Finally, we get the following form of the interaction force
acting on the wheel

f =

[
fx
fy

]
= − 1

||v||

[
C 0
0 D

] [
vx − rϕ̇
vy

]
. (13)
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Fig. 3. Long distance, point B: Robot paths and posture trajectories, control functions u = (u1, u2), and slips (vs1, vs2, vs3) =
(vx − rϕ̇1, vx − rϕ̇2, vy), a – ε = 10−3, b – ε = 10−1.

From the definition (12) of A(q) we deduce that for the
wheel i [

vix − rϕ̇i
viy

]
= Li(q)A(q)q̇, (14)

where Li(q) is a 2 × 3 matrix, i = 1, 2. Specifi-

cally, the matrix L1(q) =

[
0 1 0
−1 0 0

]
, while L2 =[

0 0 1
−1 0 0

]
.

The generalized interaction force of the wheel i is
computed using the principle of virtual work

FTi q̇ = fTi vi,

implying that

Fi = AT (q)LTi (q)fi.

Using (13) and (14), we get

Fi = −AT (q)LTi (q)
1

||vi||

[
Ci 0
0 Di

]
Li(q)A(q)q̇.

(15)
Finally

F = −AT (q)

k∑
i=1

(
1

||vi||
LTi

[
Ci 0
0 Di

]
Li

)
A(q)q̇.

(16)
In computations we shall additionally assume that Di

and Ci have the same value for both wheels. In order to

avoid numerical problems that may appear for small val-
ues of ||vi|| we slightly modify the model introducing a
saturation. In particular, if ||vi|| < δ then ||vi|| is replaced
by δ, where δ is a small positive constant. To the needs of
computer simulations we assume the following real ge-
ometric and dynamic parameters of the mobile platform
Pioneer 2DX: l = 0.163m, r = 0.0825m, m = 8.67kg,
Iθ = 0.256kgm2, Iϕ = 0.02kgm2 [17]. Additionally, we
assume the saturation coefficient δ = 10−6, the corner-
ing stiffness coefficient Di = 0.4 and the slip stiffness
coefficient Ci = 1 for i = 1, 2 [2].

The control functions will take the form (10) with
k = 1, so c ∈ R6. The state space of the system (3) is 10-
dimensional, z = (q, η, µ)T ∈ R10. The following motion
planning problem will be examined: for given initial state
z0 = 0 of the robot, and three desirable positions (A,B) in
the plane (see figure 1b)), find an endogenous configuration
c guaranteeing that the positions are reached in timeT = 5s
at the final robot orientation θd = 0. A collection of final
positions of the platform consists of 3 points distributed
around a circle of radius r = 2m (short distance) or r =
5m (long distance). The initial controls of the mobile
platform are fixed as (c10, c20) = (1, 1), the remaining
initial values of coefficients being zero. The error decay
rate γ = 0.75. The motion planning problem is regarded
as solved when the taskspace error norm ||e|| = ||yd −
k(q(T ))|| drops below 10−6 within≤ 500 iterations. Every
solution of the motion planning problem is accompanied
with a computation of the platform trajectory length d, the
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Fig. 4. Short distance, point A: Robot paths and posture trajectories, control functions u = (u1, u2), and slips (vs1, vs2, vs3) =
(vx − rϕ̇1, vx − rϕ̇2, vy), a – ε = 10−3, b – ε = 10−1

control energy e =
∫ T

0
u(t)Tu(t)dt, and the number of

iterations necessary to find the solution i.
The results are summarized in tab. (1) (ε1 = 10−1 and

ε2 = 10−3) and in fig. (3–4).

Tab. 1. Motion planning of the mobile robot Pioneer 2DX.
position A position B

i d[m] e i d[m] e

r1
ε1 24 2,06 1,57 25 2,22 2,43
ε2 24 2,19 1,05 25 2,80 1,78

r2
ε1 24 5,15 7,51 26 5,62 14,01
ε2 24 5,41 3,58 25 6,76 5,71

As the next step ε have been assumed to be equal 1.
Now the traction properties in the tire – road contact zone
are illustrated by the changes of the parameters Ci, Di.
Naturally, the bigger Ci and Di are, the better traction
properties we get. Let us assume additionally Di = 2Ci
(the lateral slip is twice larger than the longitudinal slip) and
Ci equal, respectively, Ci1 = 100, Ci2 = 102, Ci3 = 104

and Ci4 = 106. The results are summarized in tab. 2 and
in figs. 3, 8.

It is worth observing, that in most cases the energy lost
due to slipping and skidding effects increases along with
increasing ε. Point B is the most difficult final point for
the algorithm: the acceptable trajectories are obtained with
large energy expenditure. Finally, the closer to the ideal case
we are, the less number of iterations i of the band-limited
Jacobian pseudoinverse algorithm is needed and the longer
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Fig. 9. Long distance r = 20m, T = 10s, point B:
Robot paths and posture trajectories, control functions
u = (u1, u2), and slips (vs1, vs2, vs3) = (vx − rϕ̇1, vx −
rϕ̇2, vy), Ci = 106, i = 18, d = 26, 7597[m], e =
3, 6421.

distance the platform covers while executing the task of
motion planning (fig. 3a and 4a). The band-limited Jacobian

Tab. 2. Motion planning of the mobile robot Pioneer 2DX.
position A position B

i d[m] e i d[m] e

r1

Ci1 17 2,1480 1,1809 15 2,3371 1,4171
Ci2 14 2,2156 0,7733 15 2,8208 0,9656
Ci3 14 2,2357 0,7293 15 2,9319 0,9206
Ci4 14 2,2359 0,7289 15 2,9332 0,9201

r2

Ci1 14 5,1471 2,0313 19 6,6976 5,5604
Ci2 14 5,4266 1,4108 17 6,7147 1,9244
Ci3 14 5,4926 1,3584 17 7,1136 1,9099
Ci4 14 5,4934 1,3579 17 7,1190 1,9099

pseudoinverse algorithm copes well with long distances
(see fig. 9). Preliminary results (see tabs. 1 and 2) confirm,
that substituting the role of the perturbation parameter ε for
the parametersCi andDi expressing the traction properties
of the wheels (violation of the nonholonomic constraints)
reduces considerably the computational complexity of the
Jacobian pseudoinverse algorithm.

4. Conclusions and future works
The main objective of this paper has been to propose

a novel approach to motion planning for wheeled mo-
bile robots subject to slipping effects. We have focused
on mobile robots, whose ideal pure rolling and nonslip-
ping constraints have been violated during the motion.
Following [2], this transgression has been modeled as a
small perturbation of the ideal constraints. To describe
the kinematics and the dynamics of the robot, the endoge-
nous configuration space approach has been adopted. The
basic concepts of mobile robots subject to slipping have
been defined by correspondence to nonholonomic mobile
robots. Thus, the proposed approach is a combination of the
singular perturbation modeling and the endogenous con-
figuration space approach. As the result, we have obtained
a control system representation of the robot kinematics
and dynamics, defined a task map as the end point map
of this system, and reduced the motion planning problem
to the inversion of the task map achieved by means of the
Jacobian pseudo inverse operator. The motion planning al-
gorithm devised in this paper relies on the linearization of
the control system along a trajectory, and applies to any
system whose linearization is controllable. The motion
planning problem has been solved by means of the Jaco-
bian pseudo inverse algorithm. As an illustration of the
theory developed in the paper, the motion planning prob-
lem for the mobile robot Pioneer 2DX subject to slipping
have been solved. Our computer experiments have con-
firmed that this algorithm is able to solve efficiently the
motion planning problem of the mobile robot subject to
slipping; it is computationally rather expensive, but has
good convergence properties. The motion planning algo-
rithm derived within the endogenous configuration space
approach is computable and useful in application to mo-
bile robots whose nonholonomic constraints are violated.
Future research will be conducted towards experimental
verification of this approach. Current works are conducted
towards application more adequate models of interaction
forces between wheels and the ground [7]. A construction
of hybrid model of a mobile robot whose motion consists
of slipping and nonslipping phases would be of interest.
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