
Abstract:
This paper addresses the constrained motion planning

problem for passive joint manipulators with friction. Con-
straints are imposed on a system state space vector. The
dynamics of underactuated manipulators are described
by a control–affine system with a drift term. In order to
solve the constrained motion planning problem the imbal-
anced Jacobian algorithm derived from an endogenous
configuration space approach is used. The state space con-
straints are included into the system representation of the
manipulator dynamics. The extended system is subject to
regularisation because of the Jacobian singularities, then
the unconstrained motion planning problem is solved for
the regularised system. The solution of the motion planning
problem for this system is equivalent to the solution of the
constrained motion planning problem for an original sys-
tem. Performance of the imbalanced Jacobian algorithm
has been demonstrated with series of simulation for the
two kinds of manipulators with and without friction.

Keywords: Constrained Motion Planning, Underactuated
Manipulators, Endogenous Configuration Space

1. Introduction
The typical example of an underactuated robotic system

is the manipulator with one or more passive joints. In the

classic manipulator every joint has its own actuator, so the

number of degrees of freedom (d.o.f.) is equal to the number

of control inputs. Contrary, in the underactuated case, the

dimension of the state space exceeds the dimension of the

control space. The general review of the underactuated

manipulators and dedicated control strategies has been

presented in [1] and [2]. The underactuated systems could

be divided into the models with the gravity terms and

the models where the potential terms are neglected. The

popular systems belonging to the first group are two double

pendulum manipulators: Acrobot [3] with free first joint

and Pendubot [4] without an actuator in the second joint.

The robot models in which the gravity terms are excluded

are e.g. PR manipulator in [5] or RRR manipulator in [6].

Unfortunately, in many publications, the motion equations

of underactuated robots are modelled as the frictionless

systems. Few examples of the underactuated systems with

friction could be found in [7–9]. For the purpose of this

paper we enrol two types of manipulators. First, with the

presence of gravity, and second one, where the gravity

is neglected. For both models we consider two cases,

frictionless and with friction.

A mechanical system whose motion is subject to non-

integrable position and velocity constraints is called non-

holonomic, and such constraints are the first order non-

holonomic constraints. When the constraints assume the

Pfaffian form, the nonholonomic system is represented

by a smooth driftless control system. Examples of such

systems are robotics systems, like wheeled mobile plat-

forms or certain systems of dexterous manipulations. In

contrast to these systems motion of manipulators with pas-

sive joints is subject to the second order nonholonomic

constraints [10]. In this case, the system is represented by

a control–affine system with non–trivial drift term, what

makes the motion planning problem more complicated.

In order to solve the unconstrained motion planning

problem for underactuated manipulator, the endogenous

configuration space approach [11] has been applied in [10,

12]. With this approach, it is possible to generalise the Ja-

cobian inverse kinematics algorithms, known for classic

stationary manipulators, to other robotics systems. The

fundamental concept of this method is that the endoge-

nous configuration space includes all admissible controls

of the robotic system. Originally, this method has been

widely applied to mobile manipulators [11, 13], however,

it can be easily adapt to manipulators with passive joints,

because of the similarity between the equations of non-

holonomic mobile platforms kinematics, and manipulator

dynamics model. A different solution of unconstrained mo-

tion planning problem has been presented in [14] where the

continuation method has been combined with the predic-

tive control scheme. This paper deals with the constrained

motion planning problem for underactuated manipulators

with friction and bounded state. Such problem for friction-

less underactuated manipulators has been solved in [15],

where the imbalanced Jacobian algorithm [13] derived

from the endogenous configuration space approach has

been utilised. Alternative approach to solving the motion

planning problem in presence of constraints is offered by

optimal control theory, as proposed e.g. in [16], and in

particular by the Nonlinear Model Predictive Control ap-

proach [17, 18]. The comparison of these two methods

applied to solving the constrained motion planning prob-

lem for nonholonomic mobile robots has been presented

in [19].

This paper extends the approach presented in [15] for

underactuated manipulators with friction. Following [15],

the constrained motion planning problem is replaced by an

unconstrained one, addressed in an extended control sys-

tem representation. State variable bounds are incorporated

into the manipulator motion equations, through adding an

extra state variable driven by the plus function depending

on the violation of constraints. Then, the expanded system

is subject to a regularizing perturbation in order to elim-

inate the singularities of the Jacobian introduced by the

additional state variable and the associated plus function,
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in the region where the constraints are satisfied. The uncon-
strained motion planning problem in regularised system is
solved by the imbalanced Jacobian algorithm [13, 20], de-
rived from the endogenous configuration space approach.
A feature of the imbalanced algorithm is that applies in-
verse Jacobian operator of the regularised system to the
error produced in the extended system. A solution of the
unconstrained motion planning problem for regularised
system is also a solution of the constrained motion planning
problem for basic system. Presented algorithm has been
used to solve the constrained motion planning problem
for two underactuated manipulators: an inverse pendulum
mounted on a movable cart, and a planar double pendu-
lum. The algorithm performance has been illustrated with
the computer simulations.

The paper is organised as follows. Section 2 describes
derivation of underactuated manipulator dynamics equa-
tions. The motion planning algorithm is presented in sec-
tion 3. Performance of the algorithm is presented with
computer simulations in section 4. The paper concludes
with section 5.

2. Underactuated Manipulator
with Friction
The dynamics of classic manipulator is defined as

M(q)q̈ +N(q̇, q) = F, (1)

where q ∈ Rn is the vector of joint coordinates. The
matrix M(q) is the symmetry and positive definite inertia
matrix, the vector N(q̇, q) collects centrifugal, Coriolis
and possibly gravitational terms. The vector F denotes
control forces and other external forces.

Let us set that only m < n joints are actuated. More-
over we split the vector q into two parts: the active joints
positions qa ∈ Rm and the positions of the passive joints
qb ∈ Rn−m. Then we can rewrite the dynamics (1) as[
Maa(q) Mab(q)
MT
ab(q) Mbb(q)

](
q̈a
q̈b

)
+

(
Na(q̇, q)
Nb(q̇, q)

)
=

(
τ + Fa
Fb

)
,

(2)
where Maa, Mab, Mbb, Na and Nb are elements of matrix
M(q) and vector N(q̇, q) from (1) suitably. The vector
τ ∈ Rm is the control vector, Fa and Fb denote the external
forces acting on active and passive joints respectively.

2.1. Partial feedback linearization
Now, we perform a partial feedback linearization [21]

of the system (2). By a substitution q̈b from second equation
of (2) into first equation of (2) and introducing a new input
vector u ∈ Rm we arrive with a feedback controller

τ =
(
Maa(q)−Mab(q)Mbb(q)

−1MT
ab(q)

)
u

+Na(q̇, q)−Fa−Mab(q)Mbb(q)
−1
(
Nb(q̇, q)−Fb

)
,
(3)

which transforms (2) into{
q̈a = u,

q̈b = −Mbb(q)
−1
(
MT
ab(q)u+Nb(q̇, q)− Fb

)
.

(4)

Finally, we take the new state space vector as x =
(x1, x2, x3, x4) = (qa, q̇a, qb, q̇b) ∈ R2n and the equa-
tions (4) takes the form

ẋ = f(x) +G(x)u, (5)

where

f(x) =
(
x2, 0, x4,−M−1

bb (x)(Nb(x)− Fb)
)T
,

G(x) =


0
Im
0

−M−1
bb (x)MT

ab(x)

 .
Now, let us define the underactuated manipulator with

friction. We consider a viscous friction model

Ff = ε
dq

dt
,

where Ff is a friction force and ε is a friction coefficient.
Following [7] we take Fa = 0 and Fb = −εq̇b. We
assume that the friction appears only in underactuated
joints, because the friction in actuated joints could be
compensated by the partial feedback linearization (3).

3. Motion Planning Algorithm
Given the control system representation (5), the fol-

lowing constrained motion planning problem will be ad-
dressed: starting from an initial state x0 = x(0) ∈ R2n,
find a control function u(·) ∈ L2

m[0, T ], such that for the
prescribed state xd ∈ R2n there holds x(T ) = xd, while
the instantaneous values of state variables are bounded

xubi ≤ xi(t) ≤ xlbi , (6)

for every t ∈ [0, T ], and for some, perhaps not all, 1 ≤
i ≤ 2n, where xub and xlb denote state upper and lower
bounds respectively. In order to solve this problem we use
so-called imbalanced Jacobian algorithm devised in [13,
20], originating from the endogenous configuration space
approach [11].

3.1. Endogenous configuration space
In accordance to [11], admissible controls u(·) in the

system (5), acting on time interval [0, T ], constitute the en-
dogenous configuration space X = L2

m[0, T ] of the under-
actuated manipulator. This space is an infinite dimensional
Hilbert space with inner product

〈
u1(·), u2(·)

〉
R

=

T∫
0

uT
1 (t)R(t)u2(t) dt,

where R(t) is a positive defined weight matrix. To every
endogenous configuration u(·) ∈ X there corresponds
a manipulator state space trajectory x(t) = ϕx0,T

(
u(·)

)
.

We shall assume that this trajectory is well defined for
every t ∈ [0, T ], then we can define an end-point map
Kx0,T : X −→ R2n of the system (5), transforming
endogenous configuration space into manipulator state
space

Kx0,T

(
u(·)

)
= x(T ) = ϕx0,T

(
u(·)

)
. (7)
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Derivative of the end-point map

Jx0,T

(
u(·)

)
v(·) = DKx0,T

(
u(·)

)
v(·) =

d

dα

∣∣∣∣
α=0

Kx0,T

(
u(·) + αv(·)

)
=

T∫
0

Φ(T, t)B(t)v(t) dt, (8)

will be referred to as the system Jacobian, where

A(t) =
∂

∂x

(
f(x) +G

(
x(t)

)
u(t)

)
, B(t) = G

(
x(t)

)
are matrices of the linear approximation of the system
(5) along the configuration u(·). The fundamental ma-
trix Φ(t, s) fulfils the evolution equation ∂

∂tΦ(t, s) =
A(t)Φ(t, s) with initial condition Φ(s, s) = I2n. For
the fixed u(·), the Jacobian transforms the endogenous con-
figuration space into manipulator state space Jx0,T

(
u(·)

)
:

X −→ R2n. Configurations at which this map is surjective
are named regular, otherwise they are singular. Equiva-
lently, u(·) is regular if and only if the Gram matrix

Gx0,T (u(·)) =

T∫
0

Φ(T, t)B(t)BT(t)ΦT(T, t)dt. (9)

is full rank 2n.

3.2. Extension and regularization
One way of dealing with the constrained motion plan-

ning problem consists in replacing the constrained prob-
lem by an unconstrained one addressed in an extended
control system representation. To include the state con-
straints (6) into the basic system, we shall describe them
using the smooth approximation of the plus function
x+ = max{0, x} [22]

x+ ≈ p(x, β) = x+
1

β
log(1 + e−βx).

Function p(x, β) approaches x+ when β increases to
+∞. The constraints will be satisfied, when the functions
p(xi(t)− xubi , β) and p(−xi(t) + xlbi , β) vanish for every
t ∈ [0, T ], and any β > 0. This will also be held, when-
ever the sum of integrals over [0, T ] of those functions is
zero.

The constraints can be included into system (5) by
adding an extra state variable as followsẋ = f(x) +G(x)u,

ẋ2n+1 =
2n∑
i=1

(
p
(
xi(t)− xubi , β

)
+

p
(
−xi(t) + xlbi , β

))
. (10)

Let x̄ = (x, x2n+1) denote the extended state variable, and
Ex̄0,T (u(·)) denote the end-point map of (10). Now, the
solution of the unconstrained motion planning problem
x̄(T ) = (xd, 0) for extended system, is also the solution
of the constrained motion planning problem for basic sys-
tem (5). Unfortunately, if the constraints are satisfied, the

Jacobian of extended system becomes singular. In order
to overcome this difficulty, system (10) will be subject to
regularization. The new state variable is perturbed by the
regularization function r(x) that prevents the extended
system Jacobian of became singular, usually we apply
r(x) = xTx. As a result, we obtain a regularized system

ẋ = f(x) +G(x)u,

ẋ2n+1 =
2n∑
i=1

(
p
(
xi(t)− xubi , β

)
+

p
(
−xi(t) + xlbi , β

))
+ r(x). (11)

Set again x̄ = (x, x2n+1) and let Rx̄0,T (u(·)) denote
the end-point map of (11). Then, the motion planning
problem for the regularized system consists in determining
the control function u(·) that drives x̄(T ) to x̄d(u(·)) =

(xd,
T∫
0

r(x) dt).

3.3. Imbalanced Jacobian algorithm
The unconstrained motion planning problem in regu-

larised system will be solved using imbalanced Jacobian
algorithm [13]. In accordance with endogenous config-
uration space approach [11], we choose a smooth curve
uθ(·) ∈ X , parametrised by θ ∈ R, and starting from an ar-
bitrary chosen point u0(·) in the endogenous configuration
space. Along this curve, we define the output error

e(θ) = Rx̄0,T

(
uθ(·)

)
− x̄d(θ) = Ex̄0,T

(
uθ(·)

)
− x̄d,

(12)
where x̄d(θ) = x̄d(uθ(·)) and x̄d = (xd, 0) denote the
desirable output of the regularized and extended systems,
respectively. The curve uθ(·) is requested to decrease the
error exponentially with a rate γ > 0, so

de(θ)

dθ
= −γe(θ). (13)

Differentiation of error (12) with respect to θ, and using
(13) yields

de(θ)

dθ
= J̄x̄0,T

(
uθ(·)

)duθ(·)
dθ

− dx̄d(θ)

dθ
= −γe(θ).

(14)
where J̄x̄0,T

(
uθ(·)

)
stands for the Jacobian of the regu-

larised system.
The basic idea of the imbalanced Jacobian algorithm is

to omit the term dx̄d(θ)
dθ in (14) and to compute uθ(·) from

the following equation

J̄x̄0,T

(
uθ(·)

)duθ(·)
dθ

= −γe(θ). (15)

We use the fact that the error in the regularised system co-
incides with the error in the extended system, see equation
(12). Consequently, this means that we operate on error
which is defined in the extended system but we use the
Jacobian defined for regularised system Rx̄0,T

(
u(·)

)
. Let

J̄#P
x̄0,T

(
u(·)

)
be a pseudo inverse of the Jacobian, so(

J̄#P
x̄0,T

(
u(·)

)
η
)

(t) = BT(t)ΦT(T, t)G−1
x̄0,T

(u(·))η.
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Then, applying this inverse to (15) leads to a dynamic
system

duθ(·)
dθ

= −γJ̄#P
x̄0,T

(
uθ(·)

)
e(θ). (16)

Assume that uθ(·) is the solution of (16). After its substi-
tution into (14), we get

de(θ)

dθ
= −γe(θ) + π(θ), (17)

where π = −dx̄d(θ)
dθ represents a perturbation. The system

(16) will define the imbalanced Jacobian algorithm, if the
perturbation π(θ) is such that the error (17) tends to 0 along
with θ. If this is a case, solution of the unconstrained motion
planning problem in the extended system can be computed
as the limit ud(t) = limθ→+∞ uθ(t) of the trajectory of
(16). This is also the solution of the constrained motion
planning problem for the basic system. Convergence of the
imbalanced algorithm results from a well known property
of stable linear systems [13, 20, 23].

For practical and computational reason it is useful to
use the finite dimensional representation of the endoge-
nous configuration. We assume that the control functions
in (11) are represented by truncated orthogonal series,
i.e. u(t) = P (t)λ, where P (t) is a block matrix com-
prising basic orthogonal functions in the Hilbert control
space L2

m[0, T ] and λ ∈ Rs denotes control parameters.
The more terms in the series are included, the closer we
approach ”the true” control function. It follows that the
endogenous configuration u(·) is represented by a point
λ ∈ Rs. Now, the Jacobian of the regularised system is
defined by a matrix

J̄x̄0,T (λ) =

T∫
0

Φλ(T, t)Bλ(t)P (t) dt, (18)

where matrices Φλ(T, t) and Bλ(t) are finite dimensional
equivalent of Φ(T, t) and B(t). In finite dimensional case,
the Jacobian pseudo inverse of (18) takes a standard form

J̄#P
x̄0,T

(λ) = J̄T
x̄0,T (λ)

(
J̄x̄0,T (λ)J̄T

x̄0,T (λ)
)−1

.

Consequently, we apply the fixed step size Euler method to
(16), so the discrete version of the imbalanced Jacobian
algorithm is defined by following dynamic system

λ(θ + 1) = λ(θ)− γJ̄#P
x̄0,T

(
λ(θ)

)
e(θ). (19)

In order to guarantee the numerical stability of the algo-
rithm and low value of the discretization error, the param-
eter γ should be sufficient small. The algorithm (19) will
be applied to solve a constrained motion planning problem
for two different underactuated manipulators with friction.

4. Simulations
As a testbed we choose two underactuated manipulators

with friction. The PR (fig. 1) and RR (fig. 2). The bar
over the joint’s symbol denotes the passive joint. Both
models have only one underactuated joint, but there is
no difficulty to apply the presented algorithm for more
complicated models. The simulations are performed in the
Matlab environment.

q1

q2

y2

y1

m1

l ,m22

Fig. 1. PR Manipulator, where y1 = q1 + l2 cos(q2),
y2 = l2 sin(q2).

Fig. 2. RR Manipulator, where y1 = l1 cos(q1) +
l2 cos(q1 + q2), y2 = l1 sin(q1) + l2 sin(q1 + q2).

4.1. PR manipulator
The first model is the PR manipulator, in which only

the first, prismatic joint is actuated. The second, revolute
joint has no actuator but there is a friction force. This
underactuated manipulator is a planar robot moving with
the presence of the gravity. The model corresponds to
a popular cart–pole system.

Dynamics The dynamics of the PR manipulator is
defined as[

m1 +m2 −m2l2 sin(q2)
−m2l2 sin(q2) m2l

2
2

]
q̈+(

−m2l2 cos(q2)q̇2
2

m2l2g cos(q2)

)
=

(
τ
−εq̇2

)
, (20)

wherem1 andm2 denote the masses of first and second link
respectively, and the l2 is the length of the pendulum. The τ
is the control force in the first joint, ε stands for the friction
coefficient and g denotes the gravitational acceleration.
When we use the partially feedback linearization (3) and
change the state space vector x = (x1, x2, x3, x4) =
(q1, ȧ1, q2, q̇2) the equation (20) takes the form

ẋ =


x2

0
x4

− g
l2

cos(x3)− εx4

l22m2


︸ ︷︷ ︸

f(x)

+


0
1
0

1
l2

sin(x3)


︸ ︷︷ ︸

G(x)

u.
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Fig. 3. x1 trajectory (left side – frictionless, right side – with friction).

Fig. 4. Task–space path (top – frictionless, bottom – with
friction).

Simulation results In the simulations we take the
pendulum length equal l2 = 0.2, first link mass m1 = 3,
second link mass m2 = 0.1, and the gravitational acceler-
ation g = 9.81. We will proceed the swing–up manoeuvre,
so the initial point x0 = (0, 0,−π/2, 0) and the desir-
able xd = (0, 0, π/2, 0). We choose the representation
of the control function as the truncated Fourier series,
so the matrix P (t) collects the following basic function
{1, sin(iωt), cos(iωt)} for i = 1, . . . , 4. The time horizon
is T = 1, the convergence coefficient γ = 0.15, and the ini-
tial control parameter vector λ = (1, 01×8). We simulate
two cases: first, without friction ε = 0, and second, with
friction coefficient equal to ε = 0.02. For both cases we set
the limits for the first state element as −0.6 < x1 < 0.6.
The fig. 3 presents the trajectory of the state variable x1.
We also mark the limits with dotted lines. In fig. 4 we
show the task–space path. The posture of the manipula-
tor is sampled every 0.2 time units. As one can expect, the
control function in the frictionless case has smaller ampli-
tude (fig. 5). The algorithm convergence for two value of
the friction coefficient ε is demonstrated in fig. 6.

When we consider a swing–up manoeuvre, for the PR
robot, the energy needed to perform the motion is greater

Fig. 5. Control function u.

Fig. 6. Algorithm convergence.

for the manipulator with friction than for the robot without
friction. This fact can be observed in figs. 3–5. The model
with friction needs more oscillations and higher amplitude
than the frictionless manipulator. The algorithm takes more
steps to converge for the model with friction (fig. 6). In this
case, the slower convergence arises from the fact that the
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Fig. 7. x2 trajectory (left side – frictionless, right side – with friction).

Fig. 8. Task–space path (left side – frictionless, right side – with friction).

state variable x1 is closer to the selected limits than in the
model without friction (see fig. 3).

4.2. RR manipulator
As a second model we choose the double pendulum,

RR planar manipulator with actuated first joint. We as-
sume that the model moves without the gravity. Similar to
previous system, the friction force appears in the second,
passive joint.

Dynamics The dynamics of the RR manipulator
takes the form[

M11 M12

M12 M22

]
q̈+

+

(
− 1

2m2l1l2 sin(q2)(2q̇1q̇2 + q̇2
2)

1
2m2l1l2 sin(q2)q̇2

1

)
=

(
τ
−εq̇2

)
,

where

M11 =
1

3
l21m1 +m2

(
l21 +

1

3
l22 + l1l2 cos(q2)

)
,

M12 = l2m2

(
1

2
l1 cos(q2) +

1

3
l2

)
,

M22 =
1

3
l22m2.

The symbolsm1,m2, l1 and l2 stand for masses and lengths
of the first and second link respectively. Again, τ is the
control moment and ε denotes the friction coefficient. After
the same transformation like in the PR model we obtain
the dynamic system

ẋ =


x2

0
x4

− 3l1x
2
2 sin(x3)
2l2

− 3εx4

l22m2


︸ ︷︷ ︸

f(x)

+


0
1
0

− 3l1 cos(x3)+2l2
2l2


︸ ︷︷ ︸

G(x)

u.

Simulation results The parameters of the second
testbed we choose as l1 = 0.5, l2 = 0.5, m1 = 1,
and m2 = 0.5. We take the initial point as x0 =
(0, 0, π/4, 0), and we want to drive to a desirable point
xd = (0, 0,−π/4, 0). Identically to the simulation of the
PR manipulator, we choose the representation of the con-
trol function as the truncated Fourier series. We take the
vector P (t) = (1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt),
sin(3ωt), cos(3ωt), sin(4ωt), cos(4ωt)). The time hori-
zon for the RR manipulator is T = 2, the decay rate
γ = 0.5, and the initial control vector λ = (1, 01×8). Sim-
ilarly to the previous model we also simulate two cases.
First, frictionless ε = 0, and second with friction coeffi-
cient ε = 0.15. Contrary to the PR manipulator, here we
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limit the velocity in the actuated joint −7.5 < x2 < 7.5.
The trajectory of the state x2 with marked limits are pre-
sented in fig. 7. The fig. 8 shows the task-space path. The
manipulator posture is sampled with the frequency of 0.4
time units. Here, likewise to the PR manipulator, the con-
trol function for the nonzero friction coefficient is larger
than for the frictionless case (fig. 9). The comparison of
the algorithm convergence for the two cases is presented in
the fig. 10

Fig. 9. Control function u.

Fig. 10. Algorithm convergence.

The velocities x2 for the RR manipulator (fig. 7) for
both friction cases have comparable amplitude. However,
the path of the end–effector is much longer (fig. 8) and the
velocity profile has more oscillations (fig. 7) for the model
with friction. Fig. 10 draws a conclusion that the algorithm
needs almost equal number of steps to solve the problem
with and without friction.

5. Conclusions
In this paper we have presented the imbalanced Jaco-

bian algorithm applied to the constrained motion planning
problem for underactuated manipulators with friction. This
algorithm derived from an endogenous configuration space
approach, originally has been dedicated to mobile ma-
nipulators. Following the standard procedure, the state

constraints are included into robot’s dynamics. Next, the
expanded systems are regularized in order to avoid the al-
gorithm singularity. Finally, using the motion planning
Jacobian algorithm for the extended system one can ob-
tain the solution of the constrained problem for the original
system.

The efficiency of the algorithm has been presented in
simulations for two kinds of underactuated manipulators
with and without friction. For the PR manipulator we have
bounded the position of the first joint x1, by the reason that
in real robots the range of the prismatic joint is limited.
Also, for the second, RR manipulator, the limitation of the
velocity x2 has the practical reason. In real manipulators,
the velocity of revolute link depends on used actuator. For
both manipulators and for both friction cases the presented
algorithm has solved the constrained motion planning prob-
lem correctly. In all cases the desirable points have been
reached with assumed accuracy and the state constraints
have been kept.

The presented result could be improved in several
ways. There is no problem to constrain more than one state
variable, or even the whole state vector. Using the similar
way of reasoning, we can also limit the control functions.
It should be taken into account that the motion could
be impossible to perform with badly chosen boundaries.
Additionally, too narrow limits effect in slower algorithm
convergence. Also, the underactuated models could be more
complicated. Firstly, the inequality between the dimension
of control space and state space could be more than one.
Secondly, there are many other underactuated models,
which can be considered, e.g. dynamics of wheeled mobile
robots, surface and underwater vehicles or flying systems.

Finally, we present some advantages of our approach
contrary to the other methods for underactuated manipu-
lators. First of all, the analogy of the system (5) to other
underacutated systems yields a conclusion that the pre-
sented algorithm could be used to other models which can
take the form of control–affine systems with or without
drift. Comparing our method with methods using linear
algorithm based on a linearization around the operation
point. In the presented approach we use the linearization
along the trajectory, so the area of implementation is larger.
The method presented in [1] consists in two phases, in
first phase the actuated joints are positioned, and next us-
ing the specific methods the passive joints converge to the
desired position. Our algorithm is one-phase and the mo-
tion and control forces are continuous and smooth over the
time horizon. Other method [6] relays on the segmented
trajectory. For specific models the two kinds of reference
trajectory are constructed. Using such approach one can
move the underactuated manipulators in translational or
rotational way. The disadvantage of this algorithm, com-
paring to our, is that here the manipulator must be at least
3 d.o.f. In the presented method there is no restriction on
the system dimension.
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