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OF AUTOMATION SOFTWARE AT RUNTIME ON SENSOR FAULTS
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Abstract:

This proposal introduces a conceptual design of self-
adapting system software to manage sensor failures in
factory automation. The approach reconfigures the arran-
gement of software modules in real time to preserve the
required stability of production processes without inter-
rupts. Reconfiguration will be decided by rules from
a knowledge base system. This paper discusses conventio-
nal, object oriented and agent based concepts, and focuses
on modelling of these concepts. For discussion purposes,
a real industrial application - a continuous thermo-hydra-
ulic press will be presented as application example.
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1. Introduction

Industrial production systems have very high require-
ments regarding their robustness against defects and
failures. The production process shall not be interrupted
or even hampered.

This paper describes an agent-based approach that
reconfigures automation software at runtime to compen-
sate failed sensors and actuators. It uses physical depen-
dencies between process values in a production environ-
ment to install virtual sensors and it reconfigures the
system input to an optimal presentation of the current
process state. In plant automation, software systems are
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Fig. 1. Model of a continuous thermo-hydraulic press.

being used to control technical systems with sensors and
actuators as input and output devices. Apart from office
environments the surrounding of such field devices is
very rough. Humidity and heat are influences that shor-
ten the lifetime of sensors. Expensive and unwelcome
downtimes of plants are the consequence of such failu-
res. In case of physical defects of a sensors or an actua-
tor, e.g. adrive, human intervention is not possible with-
out expensive delays. In many cases, continuing the
production process with some restrictions until the next
scheduled service is preferable than interrupting it for
unplanned repair work.

In case of sensor faults, defective devices can be brid-
ged by reconfiguring the affected control loops at run-
time. Sensors and actuators pose as interfaces between
technical processes and the control equipment. Some
additional sensors may be installed for monitoring pur-
poses. Any faulty sensor, which is used in a control cycle,
will results in uncontrolled behaviour, unless alternative
solution is being used.

2. Required changes at runtime

Industrial automation can be classified as production
technology and process technology, which is further sub-
classified as batch processing and continuous flow pro-
cessing [2]. Consequences of unplanned production
stops have different impact on different categories. In
production systems such interrupts are unwelcome but
they are not critical, as the treated material can remain
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stable during the interrupts. The treating of material in
process technology cannot be interrupt that easily, as
the material will continue its reaction during the interr-
upts. Continuous flow processes are extremely challen-
ging to interrupt. Fast flowing material requires real time
reactions from the automation system for every change.

Therefore, a continuous flow technology example will
be used for discussion purpose. For this purpose, alterna-
tive reactions for a continuous thermo-hydraulic press
with failed sensors are being inspected. Fig. 1 gives an
overview of this application. A press is composed of up to
80 frames. Each frame consists of 5 separately controlled
hydraulic cylinders that are equipped with pressure and
distance transducers. The sensors are physically linked to
programming logic controllers (PLC), which execute the
control software. The sensors are linked by a field bus
system. One PLC may control between 10 and 20 frames.
The failure of one component results in a failure of the
entire control chain.

The press produces fibreboards from raw material like
wood fibres and glue. [14] The raw material is sandwi-
ched between steel belts that are pressurized by the
hydraulic cylinders. Intense differences of pressure bet-
ween two neighbouring frames are not allowed.

Basically, there are three different ways for a control
system to react to a sensors failure. First, the system may
shut down the production process and stop until the de-
fective sensor is changed. However, interrupting a run-
ning system can be very expensive or even impossible.
Continuous processes in particular cannot be aborted and
may react with an unpredictable behaviour, if an actuator
is driven by uncontrolled value. Fig. 2 illustrates this
behaviour at the thermo-hydraulic press. If the distance
sensor of a hydraulic cylinder has a malfunction, the
control function may set the pressure too high. This jams
the steel belt and the materialin the press.
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fig. 2. Sketch of a continuous fiberboard press with an
uncontrolled pressure value.
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Fig. 3. Sketch of a continuous fibreboard press with two
controlled units in a safe position.

hydraulic cylinder

Secondly, the jam can be avoided by forcing the con-
trolled device to a stable state, e.g. a valve is opened
completely or it is closed completely. Such stable state
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has to be predefined for each use case and it will allow

continuing the production for a short time or shut down

the process safety (Fig. 3).

The third way to react on sensor failures is a dynamic
reconfiguration of the system during runtime using re-
dundant devices or information. However, the backup
solution is constrained by several requirements:

e Backup devices are expensive. A machine for pressing
fibreboards has up to 200 sensors of the same kind.
A hardware backup for each sensor would double the
cost of the sensor equipment; it would extend the
necessary number of inputs at the PLC and increase
the effort for wiring the additional devices.

® A solution can be the use of virtual devices, which is
a model based calculation of a measuring point. These
calculations base on analytical dependencies to
neighbouring sensors. Software solutions are cheap,
easy to duplicate and they do not require any
additional cabling. The quality of these calculations
is depending on the quality of the model.

e The automation software should switch to backup
devices at runtime. Dynamic reconfiguration at run-
time requires more than having a number of suitable
solutions. It also needs a decision, which solution is
an ap-propriate compensation for the existing failure.

e The automation system has to be reconfigured in real
time. E.g. the material of a fibreboard moves more
than one meter per second. The material could jam
very quickly if a failure is not handled immediately.
Therefore, the decision to replace defective sensors
by an alternative must be part of the control software.

3. Predefined alternatives

Traditional imperative programming languages offer
different strategies to combine virtual sensor devices, re-
placement techniques and quality checks. Established de-
sign principles are based on modular approaches. Func-
tional coherences are capsulated in modules. The pro-
gramming languages that are used in PLC do not contain
such constructs to assign the replacement functions at
runtime. Sensor inputs are read directly from input
variables. A solution may only be realized by hard coded,
nested “if - then - else” clauses. The decision has to be
retrieved each time; an actual sensor value is needed.
Such decisions have to cover every possible failure and
link to a corresponding strategy to handle it. In case of
sensor failures, a virtual value will be calculated using
a predefined calculation rule. To handle cases, which are
combinations of sensor failures, every possible sequence
has to be regarded and implemented. In these classical
approaches, each element and its relations in between is
predefined and described in a static way. Furthermore
a high dependability between these elements arises from
a low level of abstraction by describing them (e.g. func-
tion calls) [17].

The object orientation has methods (late binding),
which allow the creation of new structures at runtime [9].
However, the object-oriented approach uses the same low
abstraction level. The first available object oriented IEC
61131-3 platform doesn't support this concept of late
bindings [4].

To react on changes of the system-structure at run
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time, it would be necessary, to handle all possible chan-
ges, which can occur during design-time of a system and
define the appropriate behaviour. This is particularly dif-
ficult when the behaviour of the system is connected to
real-time requirements.

This is possible for systems with a limited number of
elements, dependencies and a limited behaviour varia-
tion. For systems, which consist of many elements affec-
ted by many factors, the overall behaviour grows by the
number of possible dependencies between the different
elements much faster than the number of elements. [9]
The attempt to describe all possible states of the system
a priori, leads to an extraordinary effort designing the
software.

Agent based approaches promise a real dynamic re-
configuration at runtime, as decisions can be concluded
from rules.

4. An agent approach for rule based decisions

A well-suited approach for developing decentralized,
complex and dynamic software systems is the paradigm
of agent-oriented software engineering. In agent-orien-
ted software, development of an agent is defined as an
encapsulated software unit with a defined goal. An agent
autonomously fulfils its goal and continuously interacts
with its environment and other agents [16].

Unlike a static approach in an agent oriented appro-
ach the entirety of the structure and its behaviour has
not to be fully specified at design time. The behaviour is
generated dynamically at runtime regarding the current
situation and within defined variations.

Strategies for faulty sensors for example, are determi-
ned by a set of rules, instead of predefining a calculation
as replacement for a faulty sensor. The agent retrieves
the best alternative from a set of possible references at
run-time. Decisions, concerning the best reaction to the
current situation, are moved to run time. This leads to a
reduction of complexity at design-time [17].

The lack of suitable methods for the design of agents
in industrial applications is actually recognized by seve-
ral working groups. The national project AgentAut [7] as
well as the European projects Pabadis [6] and Pabadis
promise [10] work on an integrated method for distri-
buted control systems, but focus only on the integration
of PPC/MES and control level. The European projects
SOCRADES [12] and RI-MACS [11] use agents to organize
the coordination of communication networks between
distributed devices. Agents are not applied for open or
closed loop control purposes in the field control level.
In all these projects the flexibility of agents is primarily
used to realize an optimised planning of production pro-
gram at runtime and not to increase the dependability of
the system regarding real time requirements. However,
neither methods nor tools that are adapted to design
agents for industrial real-time applications on PLC basis
exist [8]. An exception is the project AVE [1], which de-
veloped such a method to support a systematic design of
an agent-based system for embedded real-time systems
in terms of safety and real-time requirements.

The difficulty in developing an agent system for real-
time applications is to define the action space of an
agent precisely enough to ensure the requirements regar-

ding the availability of the system, the required perfor-
mance and the product quality.

In [15] a SysML [5] based approach was presented by
us that supports developers defining the requirements
and constraints of an automation system. This model is
used as a template for the definition of the action space
as the main part of the agent's knowledge base. A main
part of the agents duties in the context of increasing
availability of an automation system, is to detect, ana-
lyse and handle faults. By now, the agents just focus on
instrument fault detection by using analytical redun-
dancy between different measurement-points. For every
real sensor, which has functional dependencies to other
sensors, we calculate additional virtual sensors using
values of neighbouring real sensors. The virtual sensors
are used to validate the corresponding measurements
and detect faults (parity space approach). If there is
more than one virtual or real sensor available at one
measurement-point, it is possible to detect a single fault
(isolation). Principally the virtual sensor values will
never be as precise as a real sensor values. In case of
diagnosing a fault, this implies the risk of false alarms or
on the other hand the sensitive to faults. In case of
substituting a real sensor by a virtual one, this loss of
precision is not only relevant for closed loop controls but
for the whole control strategy of the process.

Therefore, it is insufficient just to calculate virtual
sensors and to substitute faulty real-sensors. Additio-
nally, the consequences of such substitutions and cons-
traints of the automated system have to be taken into
consideration. An agent knowledge base contains two
main components - constraints and knowledge. Cons-
traints define the margin of the activity space that is
used by the agents to take decisions. Knowledge is the
possible alternatives at a certain point inside the activity
space. Both aspects require an exact orientation of the
agentsin the action space.

Next, a knowledge base, which allows detecting sen-
sor failures, calculating a surrogate value and estimates
the resulting precision at runtime, will be introduced.
One important point for the design of such a knowledge
base is, that it is easy to design and implement in a PLC
environment. A very simple and powerful notation for
this purpose, which is well known in the domain of auto-
mation, is the directed graph [3].

In this graph, each node represents a measurement
point. It is equipped with a value source that can be
either a real or a virtual sensor. A quality-value at each
node describes the accuracy of the measured or calcu-
lated value. The quality value ranges continuously from
Oto1.

The edges of the graph describe functional correla-
tion (f, Fig. 4) between the measurement-points and
represent the analytical dependencies, which are used to
calculate virtual sensor-values at runtime. The direction
of the arrows indicates sensor values that are appropriate
for a substitution (Fig. 4). The black dots are used, if
more than one sensor is required to calculate a virtual
sensor. For example: Sensor “S2_1" can be calculated,
using the function “f,,” and the sensor values “P1_1" and
“S1_1". The function “f_s2” expresses the dependency
between the thickness of the incoming material “s,” the
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pressure of the hydraulic cylinder “p,” and the thickness
of the outgoing material using a spring model. The spring
constant (C, Fig. 4) represents the elasticity of the
material and depends on the actual temperature, density
and humidity of the wood. The time-delay (t,), which is
causes by the moving material and the distance between
the sensors, is considered by using recorded values for
“S1_1" and “P1_1". The functions “fs1” and “f_p1” are
transformation of the same equation. The function “f;”
is a linearization between two measurement points
(X1,¥17 X,,¥,) which value is calculated at the position of
the virtual sensor (x).
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Fig. 4. Analytical dependencies of sensor values (P-pres-
sure, S-distance) using the material property (C).

The substitution of a real sensor by a virtual one will
not change the structure of the graph. It is possible to
use virtual sensors as source for other virtual sensors and
the probability for that rises with the number of failures
and corresponding substitutions.

The precision of virtual sensor-values is possibly re-
duced by inaccurate models and time aspects, e.g. dead
time or delays because of the underlying measurement,
the field bus or the calculation of virtual sensor values in
the PLC. Reduced precision lowers the quality of the
virtual sensors compared with original measurements.
This loss of precision is considered by a so-called quality
factor (g, Fig. 4), which is bound to every arrow of the
graph and described by values between 0 and 1. In addi-
tion a quality-value (Q, Fig. 4) at every node represents
the precision of a sensor measurement. Real sensors get a
quality-value, which is initially determined by vendor
specifications. The quality-value of a virtual sensor is
determined by a product of quality-factor multiplied with
the quality-value of its source. It indicates the coherency
between the model and the reality. A low quality-value
shows a high uncertainty about the calculated or mea-
sured value.
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While each replacement impairs the accuracy of cal-
culated values, the quality values represent the estima-
tion of uncertainty. The described strategy prefers real
measurements, as they have the lowest divergence or the
highest quality value. It cuts of cyclic calculations, as
their quality value would tend towards zero. This pre-
vents complete virtual process images that are coherent
but not validated.

In case of a sensor failure, its quality-value would
tend towards zero. Following the arrows of the graph and
using the corresponding functions, it is possible to
calculate a virtual sensor-value as well as its precision
with the quality-factor and quality-value of the source.
Every arrow that leaves the node represents a virtual
sensor, which can be benchmarked at runtime by compa-
ring their quality-values. The virtual sensor with the
highest quality-value will replace the defective sensor
without changing the model structure but changing the
quality value. References to other sensors still remain.
If a virtual sensor is used as a backup of a sensor, which is
the source of other virtual sensors, the quality of these
derived sensor values will be recalculated. The agents,
which pre-assigned the defective sensor as a source, have
to compare the available alternatives again. Doing so,
the agent system optimises the use of the remaining real
sensor values. Local decisions of agents lead to an opti-
mal quality of controller input values over the entire sys-
tem. The agent system optimises the use of measure-
ments dynamically at runtime.

The correctness of values can be reasoned by combi-
ning the assigned quality values of all possible virtual
sensors. Discrepancy of measured value and a virtual
sensor of low quality value do not stringently implicate
a sensor fault. Only a very high discrepancy would im-
plicate that either the measured or the source of the
virtual sensor is faulty. In contrary, a sensor is detected
as defective if all possible substitute values diverge in
the same way with high quality values. The threshold,
which defines the agent's decision, is oriented at user
defined safety requirement for the specific part of pro-
cess or the technical system.

Furthermore the agents use the quality value of a vir-
tual sensor to determine the effect on the availability of
the plant operation and to compare it with the given
requirements and constraints. The reliability of sensor
values is evident for processing automated production
systems. While the substitution of real sensors with cal-
culated virtual sensors increases the readiness in case of
partial faults, it risks the accuracy of the process flow.
While the correctness of possible alternative strategies
for static systems is determined during development
time, an agent based dynamic system decides this during
runtime. Both have to decide, whether the production
process can be continued with replaced, calculated va-
lues or if it has to be suspended. The loss of a sensor
reconfigures the control behaviour automatically. The
automated result may be a single parameter adjustment
or an immediate shut down of an entire plant and is
characterized as dynamic reconfiguration at runtime.

The effort to calculate virtual sensor values depends
on the complexity of the related mathematical terms and
on the number of dependant sensors. As long as virtual
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sensors are used only for diagnostic purposes, the effort
may be reduced by extending the calculating period of
virtual sensors.

5. Implementation and evaluation

The introduced concept was evaluated by applying it
to the thermo-hydraulic press. A Matlab model of the
process was used to simulate the real industrial appli-
cation. The agent system was implemented using a clas-
sical PLC [13], which is programmed according to the IEC
61131-3 standard. Each agent is coded in IEC 61131-3
programming languages and is assigned to a separate
function block with duties for control, messaging, and
diagnosis. The agents are linked together by a common
process image and the option to communicate via mes-
sages. The agents can either bound to different tasks or
PLC's orjust run allin the same task on one PLC.

All control agents are identical. Each agent controls
one of the 23 frames of the thermo-hydraulic press. This
architecture is oriented at the structure of the technical
systems that composes the mechanical elements of
a plant. Agent parameters are set according to the requi-
rements of the local sub-processes. They depend on the
location of the agent's controlled elements in the press.
One supervisor agent stores this knowledge. On request
of the control agents the supervisor submits the settings
and constraints.

As part of all control agents, the common knowledge
base represents relations between sensors on one frame
and its neighbouring frames.

O sensor - distance

. SEensor - pressure

Fig. 5. Distribution of sensors in a frame.

Due to their identical structure all agents use a nearly
congruent part of the knowledge base. Differences only
concern the parameters of their calculation terms and
result from the transformation of material properties. The
processing of wood fibre and glue influences the depen-
dency of measured values between different sensors sig-
nificantly.
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Fig. 6. Matrix of as representation of the knowledge base.

The graph is mapped to a matrix (Fig. 6) that is
implemented on an IEC 61131-3 runtime system. The
columns and rows are labelled with references of all
nodes. The main diagonal is periodically updated with
the values and qualities of real measurements. All other
intersections of rows and columns refer to tuples of
quality factors and values. The column id is the source
and the row id is the target. Replacement for sensor in
column id can be identified through the row id. These
table cells represent the marked edges of the graph. Table
cells, which do not represent an edge, are set to the tupel
(0,0).

Using this mapping, an agent can get the results of
real measurements and all alternative calculations. This
simple access allows an easy diagnosis and straightfor-
ward reconfigurations. All table cells contain references
to variables, which are written by function blocks, with
measured or calculated values. The function blocks of real
measurements are used to pre-process the measured
input values. The function blocks of virtual sensors are
more complex. They have to compensate delays that are
caused by the material transport in the press. This
requires measured values to be recorded. The calculation
of virtual sensor values is done using this recorded data.
As long as a related sensor is operating, the difference
between measured and calculated value is recorded. This
information is used to quantify the quality value. Addi-
tionally, this information helps to improve the precision
of asimple initial model.

The application example uses three different types of
virtual sensors. The first sensor type calculates the back-
up values by interpolation of neighboured sensor values.
The second one uses physical relations of the process and
calculates the resulting material thickness at a frame
from the incoming material and the current pressure. The
third virtual sensor type calculates the pressure from the
difference of incoming and outgoing material thickness.
The function blocks deliver a sensor value and a quality
value independently from a measured or calculated sour-
ce. A status variable indicates the operation status of
a sensor. This is used for local diagnosis of sensors.

Although pointers are not part of the IEC 61131-3
language specification, they are supported by some of
the leading manufacturers of automation equipment, for
example TwinCat by Beckhoff or Step7 by Siemens.

The use of pointers was helpful to build references to
the measured and calculated values. It was possible to
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build one knowledge base that could be used by all
agents without recopying the values. Additionally, poin-
ters simplified the software structures as reconfiguration
was realized by changing pointers from references to real
sensors to references to virtual sensors.

The agents continually checked the plausibility of
current values using its alternatives. In case of a deter-
mined fault the current sensor was replaced by the best
alternative sensor. Therefore, the address of the replace-
ment substitutes the address of the predecessor. The new
current sensor is available to all other functions, function
blocks and programmes at the accustomed place, delive-
ring new values for sensors and quality. The detection of
faults is done at the beginning of every PLC-cycle and the
replacement is done immediately, so that further access
to this measurement-point is redirected to the new
calculated value and no delay occurs.

The exchange is represented by using the values of
the virtual sensor instead of the real in the corresponding
node (measurement-point). All relations of the structure
remain valid. A decreasing quality value causes further
decreasing quality values at the derived virtual sensor.
All related agents include this new information in their
decision for the selected virtual sensor and dampen the
negative effect of a sensor break down on the entire
system.

6. Conclusions

Due to the power of modern controller hardware it is
possible to make even very complex software based
decisions at runtime. This flexibility can be used to
detect and react on failures, in order to increase the
availability or to improve the efficiency by adapting to
changing requirements. Compared with a classical appro-
ach the self-adaptation of the application during run
time was flexible and easy to implement. Decision rules
on hasis of the knowledge base facilitate the definition
of constraints and dependent requirements. If it is ne-
cessary to predefine all measures and their parameters
(min., max.) before run-time, worst-case scenarios will
be used and according parameters chosen. The agent's
knowledge base and replacement mechanism allows re-
action based on changes in environmental conditions. By
that it handles changed precision of sensors and/or
actuators during run-time. The solution adapts the actual
values with appropriate changes instead of using worst-
case values in predefined replacements. The process ope-
ration time will be longer under the prerequisite that the
process operation is still beneficial with reduced preci-
sion, speed, etc. This leads to higher availability of the
production line.

The current work evaluated, that it is possible to set-
up an agent based decision system that adapts data
sources for sensor values automatically and shows that
complex decisions are possible with rules defined in easy
structures that can be implemented in an IEC 61131-3
environment. Future work will also evaluate the usability
of this approach. The required effort and skills for model-
ling such agent-based solutions will be compared with
conventional procedures. The usability of creating, un-
derstanding and modifying agent based or conventional
solutions will be regarded separately.
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The self-adapting agent approach gives the perspec-
tive that modular systems may be composed easily.
Agents promise a better reuse because they negotiate
their relations instead of being bound strongly and
inflexible. The benefit of this approach will be regarded
at different classes of applications, like hybrid combina-
tion of process and production systems.
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