
Abstract:

1. Introduction

In this paper we present preliminary results on system-

level analysis of power efficiency in FPGA-based designs.

Advanced FPGA devices allow implementation of sophi-

sticated systems (e.g. embedded sensor nodes). However,

designing such complex applications is prohibitively ex-

pensive at lower levels so that, moving the designing pro-

cess to higher abstraction layers, i.e. system-levels of de-

sign, is a rational decision. This paper shows that at least

a certain level of power awareness is achievable at these

higher abstractions. A methodology and preliminary re-

sults for a power-aware, system-level algorithm partitio-

ning is presented. We select data reduction algorithms as

the case study because of their importance in wireless sen-

sor networks (WSN’s). Although, the research has been

focused on WSN applications of FPGA, it is envisaged

that the presented ideas are applicable to other untethered

embedded systems based on FPGA’s and other similar

programmable devices.

Keywords: power awareness, FPGA, system-level, Han-

del-C, data reduction..

Sensor nodes are important examples of embedded

systems. A typical sensor node (for either civilian or mi-

litary applications) has a wireless communication unit,

a processing unit, a sensing unit, and a power unit, [1]-[3].

Power resources of the sensor node are often limited or

even irreplaceable in a field. This is a factor significantly

constraining performances and power consumption of

sensor nodes. Thus, processing devices with fixed archi-

tecture, e.g. microcontrollers (MCU) or digital signal pro-

cessors (DSP), are still the most popular technique for sen-

sor node implementations (due to their mature power and

energy management).

However, advanced multimillion-gate reconfigurable

architectures become incomparably more powerful (e.g.

Altera FPGA chips, Xilinx FPGA chips, [4], [5]). There-

fore, more attention has been recently paid to reconfigur-

able architectures, e.g. software-based processors (Lat-

ticeMico, Nios, MicroBlaze, PicoBlaze, XTensa), [4]-[7].

Although there are currently only a few wireless sensor

node applications employing FPGA chips and in these ap-

plications FPGAis mostly used as a supporting processing

unit (e.g. [8]-[11]) it is envisaged that by employing such

reconfigurable processing units more flexible sensor no-

des, adaptable to a wider range of scenarios (including un-

predictable ones) can be developed.

A typical FPGA incorporates the main array of slices

and I/O blocks, and a number of other hard cores, i.e. me-

mory blocks, digital clock managers, encryption circuit-

ries, and custom multipliers, [12]. Although, power and

performances of FPGAare often compared to application-

specific integrated circuits (ASIC), e.g. [12], [13], confi-

gurable interconnections and switching structures (indis-

pensable to achieve programmability of FPGA) increase

loads and, thus, power consumption, [14]. This is a draw-

back of FPGA and, therefore, a careful analysis of power

characteristics is of a particular importance for FPGA-ba-

sed designs.

Together with powerful FPGA devices, advanced

high-level designing tools – e.g. compilers (Quartus, ISE),

hardware description languages (Verilog, VHDL), sys-

tem-level hardware description languages (such as Han-

del-C or Catapult C), etc. – are available so that complex

processing units can be quickly synthesized and prototy-

ped using FPGA’s or other complex devices. However, the

system-level techniques are not power-aware so that sig-

nificant power and/or hardware overheads (comparing to

tedious but efficient low-level techniques) may be intro-

duced in designs developed at high-levels, e.g. [4], [5],

[15].

The main objective of this paper is to show that a cer-

tain level of power awareness can be incorporated into the

system-level design techniques with almost no overheads.

We demonstrate it using results of several experiments on

power optimization in FPGA designs. The experiments

are conducted using Handel-C language and DK Design

Suite. The results are obtained for the case study of data

reduction algorithms. This is a deliberate choice since data

reduction is one of the fundamental issues in wireless sen-

sor networks (and other related areas).

The following sections of the paper are structured as

follows: Section 2 overviews power consumption in

FPGA and methods of power estimation and reduction. In

Section 3, we present selected data reduction algorithms

employed in untethered embedded systems (such as sen-

sor nodes). Section 4, which is the core part of the paper,

contains description of the experimental results obtained

for those algorithms. We first demonstrate that hardware

and power characteristics of FPGA designs can be repre-

sented sufficiently accurately at the system-level. Then,

by using this observation, we show how power savings

can be achieved by the system-level design partitioning.

We focus on algorithms partitioned into domains that are

run in parallel, but certain ideas for sequentially execut-

able domains are presented in Section 5. Section 6 conclu-

des the paper.

SYSTEM-LEVEL APPROACHES TO POWER EFFICIENCY

IN FPGA-BASED DESIGNS

(DATA REDUCTION ALGORITHMS CASE STUDY)

Pawel Piotr Czapski, Andrzej Śluzek

Submitted 6 ; accepted 18 .th February 2010 August 2010th

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 5, N° 2 2011

Articles 49

2. Power Consumption in FPGA

Power consumption of CMOS devices, e.g. FPGA,

consists of two components: static and dynamic, [12],

[13], [16]-[19]. The dynamic power consumption of

CMOS devices is caused by signal switching at the device

transistors, [16], [18], [19]. Frequencies of signal swit-

ching are obviously related to the clock frequency. Hence,

the dynamic power consumption of a multi-resource sys-

tem is generally modelled as:

(1)

where , , and , represent correspondingly the capa-

citance, the voltage swing, and the clock frequency of the

ith resource (e.g. [12], [13], [18], [19]).

The actual dynamic power of FPGA devices is, ob-

viously, determined by the complexity of the implemented

design. The design-dependent factors that contribute to

the dynamic power are: of resour-

ces, , and of resour-

ces, [12], [13], [20].

The represents the sum of para-

sitic capacitances of interconnected wires and transistors.

The reflects an obvious fact that

FPGA provides more resources than usually required to

implement a particular design (unused resources do not

consume the dynamic power). The is

the average number of signal transitions in a clock cycle.

Generally, it is related to the clock frequency but it may

also depend on other factors, e.g. temporal patterns of in-

put signals. Hence, (1) can be rewritten as:

(2)

where and are the utilization, and the switching

activity of individual resources.

The static power consumption is caused mainly by the

leakage current between the power supply and the ground.

The sub-threshold leakage current (depending on tempe-

rature and the threshold voltage) dominates the leakage

current, see [19].

Some researches, e.g. [12], show that the static power

of modern FPGA’s, e.g. the Virtex-II family (SRAM-

based FPGA, 0.15 µm technology), ranges between 5 and

20% of the total dissipated power, depending on the tem-

perature, the clock frequency, and the implemented de-

sign. However, since the static power of FPGA is mainly

technology-dependent and it does not change with the

design complexity, we do not discuss the static power

issues in this paper.

According to [20], three approaches to FPGAdynamic

power consumption reduction exist. First, changes can be

done at the system-level, e.g. modifications to the algo-

rithms used. Secondly, if the architecture of FPGA is al-

ready fixed, a designer may change the logic partitioning,

mapping, placement and routing. Finally, if no such chan-

ges are possible, enhanced operating conditions (this

2.1. Dynamic and Static Power

2.2. Reduction of Power Consumption

C V f

U S

V

i i i

i i

th

effective capacitance

resources utilization switching activity

effective capacitance

resources utilization

switching activity

includes changes in the capacitance, the supply voltage,

and the clock frequency) may offer some improvements.

For example, because of high capacitance of external con-

nections, on-chip memories instead of off-chip memories

are recommended, [19]. The capacitance may also be re-

duced by tight timing constraints, e.g. [12], [18], forcing

place-and-route tools to choose resources with lower ca-

pacitance.

Reducing the supply voltage is the most effective

mean to power consumption reduction (a quadratic term

in (1) and (2)). However, lower supply voltages increase

delays in circuits (that decreases performance) so it must

be carefully balanced against any performance drop. De-

creasing the clock frequency can also reduce power con-

sumption. However, it may require changes to the design,

especially for devices performing under predefined tim-

ing constraints.

Details of power consumption of FPGA can be ob-

tained by real measurements or by simulation-based esti-

mations, [12], [13], [20-22]. The real measurements pro-

vide the most accurate power information, e.g. [20], but

the measured device must be a representative one. Power

estimates that use the simulation-based approach are more

convenient, but they provide only approximate results.

The majority of existing power estimation techniques

are based on the switching capacitance and the corres-

ponding factors such as the average switching activity and

the average resource utilization, see [12], [13], [17]-[19],

[20], [22], [23]. Such approaches are suitable for power

consumption estimates of FPGA devices, where most of

implemented designs are synchronous and driven by the

system clocks.

2.3. Power Consumption Estimation in FPGA

3. Data Reduction Algorithms

More complex embedded systems obviously have to

process more data. Handling large amount of data becomes

even more difficult when the data have to be transmitted

wirelessly. Some researchers report that the cost of sending

one bit of data over a certain distance is as high as the cost

of 3000 CPU instructions executed locally, see [24]-[27].

Thus, the issue of data reduction (compression) becomes

of the paramount importance.

Data reduction (compression) algorithms are either

lossless or lossy, e.g. [28], [29]. Lossless techniques are

used in applications that cannot tolerate any difference bet-

ween the original and decompressed data. Generally, loss-

less compression techniques generate a statistical model of

data and map data to bit strings based on the generated

model. Lossy compression techniques provide much hig-

her compression ratio by accepting distortion in the re-

construction process. In general, lossy compression tech-

niques transform given data into a new data space using an

appropriate basis function or functions, [30].

Compression algorithms can be evaluated using diffe-

rent criteria: the relative complexity, the memory require-

ments, CPU speed requirements, compression ratio, the

distortion level, see [28], [29], [31].

3.1. Introduction

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles50

VOLUME 5, N° 2 2011

P = C V fi i i� �

P = C V f U S� � � � �i i i i i

2

2

i

system-level. The selected algorithms are

and . Our further experiments have

shown, nevertheless, that similar results have been ob-

tained for other algorithms of diversified structures so that

this case study exemplifies of what we believe is a useful

technique of general applicability.

is a popular algorithm for embedded

systems due to its simplicity, low hardware and perfor-

mance requirements, and the nature of data to be stored or

communicated, [35]. However, problems may arise if the

alphabet of source data is not big enough, or with highly-

skewed probabilities, or just a binary one (in-network data

such as detection, classification, tracking, etc.) in the

worst case, [28], [29]. This problem can be partially sol-

ved by building the extended alphabet (that has symbols

grouped in blocks of two and more). However, this intro-

duces exponential growth of the codebook.

is a better choice that assigns code-

words to particular sequences without generating codes

for all sequences of that length (as in the case of

), [28], [29]. However, is much

more tedious to implement. Thus, even if

is a good candidate for wireless sensor networks, it

has not been (to our knowledge) implemented yet in such

applications. Nevertheless, our experiences show that

may be a feasible choice for FPGA-

based applications.

Dividing a design into a number of domains is a pro-

ven technique. The selected algorithms can be naturally

decomposed into and (al-

though further partitioning of both and

is also later discussed). We use such decom-

positions as the major technique for optimizing the power

consumption at the system-level of design, [43]. It is

shown that by a proper algorithms partitioning and the

corresponding selection of clock frequencies for the indi-

vidual domains, a significant power savings can be ob-

tained without analyzing the hardware-level details of the

designs.

The algorithms are implemented at the system-level in

Handel-C using DK Design Suite (a complete design en-

vironment for C-based algorithmic design entry, simula-

tion and synthesis).

To investigate power efficiency of the designs, we

compile them for RC203 development board, equipped in

Xilinx Virtex-II FPGA (xc2v3000fg676-4). XPower (one

of the accessories of Xilinx Integrated Software Environ-

ment (ISE)) is employed for hardware-level power con-

sumption estimation. XPower provides the estimates us-

ing simulated data describing activity of the implemented

design. Sensor nodes (and other similar systems) are often

deployed in hardly predictable environments. Hence, we

arbitrarily assume that activity rate of the implemented

designs is 50%. To minimize differences between XPower

estimates and the actual hardware implementations, we

decided to use the external FPGA pins as the direct data

inputs and outputs.

Dynamic power consumption is proportional (see

Equations (1) and (2)) to the size of the design and the

clock frequency. However, the complexity of FPGA de-

Huffman co-

ding Arithmetic coding

Huffman coding

Arithmetic coding

Huffman

coding Arithmetic coding

Arithmetic

coding

Arithmetic coding

compressors decompressors

compressor de-

compressor

4.1. Methodology

3.2. Data Reduction in Wireless Sensor Networks
Data reduction is not commonly used in applications of

wireless sensor networks. The major limitations are me-

mory footprints and inadequate performances of proces-

sing units, see [31]-[33]. Therefore, the use of typical loss-

less data compression algorithms like LZO, BZIP2, PPMd

(and other PC-based algorithms) is discouraged, see [31].

Nevertheless, there are some works on such algorithms

used in sensor nodes of a limited power and performance

(e.g. LZW in [34]). Other lossless data reduction algo-

rithms used in sensor networks are Huffman and RLE

coding, [35].

Some pre-processing techniques changing data des-

criptions and increasing compression ratio are also often

used, [34, 35]. These use Burrow-Wheeler Transform

(BWT) and Structured Transpose (ST) to reorder data be-

fore LZW coding, and decorrelation transforms such as

Wavelet Transform (WT) to describe data structures befo-

re employing Huffman codes. However, the latter intro-

duce some distortions due to employed lossy transforma-

tions.

To overcome the limitations of standard algorithms,

novel compression schemes have been developed for

wireless sensor networks, [25], [27], [31], [32], [36]-[40].

These are ,

, and lossless schemes, and so-

me low-complexity video compressions schemes such as

JPEG with some modifications.

Lossy data reduction in wireless sensor networks in-

cludes aggregation and approximation, [24], [27], [40].

Aggregation summarizes the measurements in the form of

simple statistics, e.g. average, maximum, minimum, etc.,

over regular intervals. This is an effective way in reducing

the data volume but rather crude for applications requiring

detailed historical information, e.g. in surveillance and

monitoring. Approximations (e.g. histograms, wavelets,

discrete cosine transform, linear regression, etc.) are em-

ployed if data exhibit a large degree of redundancy.

There are also other methods of data reduction in wire-

less sensor networks, e.g. [26], [32], [41], [42]. They in-

volve distributed processing and combine routing, data fu-

sion and data aggregation so that they are not a subject of

our discussion.

Although the shear data volume is the major issue in

wireless sensor networks, directly affecting the communi-

cation capacity, e.g. [26], [34], there might be additional

requirements for data reduction algorithms in such sys-

tems. For example, data reduction schemes are supposed

to reduce communication latency, to enhance the energy

efficiency (by reducing the energy consumed on data

transmission, [25]) and to generally reduce the energy con-

sumption, [26].

Altogether, energy awareness is (directly or indirectly)

one of the main issues for data reduction algorithms in

wireless sensor networks. Therefore, data reduction algo-

rithms have been selected as the case study for this paper.

In this section we discuss experiments on FPGA im-

plementation of two data reduction algorithms. The main

objective of these experiments is to prove that the dynamic

power awareness of FPGA designs can be achieved at the

coding by ordering pipelined in-network com-

pression differential coding

4. Experiments

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 51

VOLUME 5, N° 2 2011

signs is differently measured at different levels. The sys-

tem-level (abstract) complexity is expressed by the num-

ber of equivalent NAND gates. For a given algorithm, its

abstract complexity is therefore fixed (depending on the

algorithm structure and the compiler’s efficiency). Even if

the algorithm is decomposed into several parts, its overall

complexity is just a union of individual component com-

plexities. Thus the system-level “dynamic power consum-

ption” of a design can be defined in some non-defined

units (NDU) as a product the equivalent NAND number

and the clock frequency.

The hardware-level complexity is determined by the

mapping the system-level structures (netlists) into the

FPGA resources (slices, I/O blocks, interconnections,

etc.). However, the mapping results may significantly

vary for different clock frequencies, especially for decom-

posed algorithms that can be implemented within one do-

main or physically partitioned into several hardware

domains.

Therefore, the fundamental question for system-level

power estimates is whether the abstract complexity of

algorithms (i.e. the number of equivalent NAND gates)

can be used as a reliable factor for determining the actual

dynamic power usage. Intuitively, the power grows with

the number of NAND gates but it is important to evaluate

fluctuations caused be mapping-and-placing differences

(e.g. by using various clock frequencies), differences

between single-domain and multi-domain implementa-

tions of a decomposed algorithm, etc. Since we have not

found in the available sources experimental validation of

this issue, Section 4.2 presents such a validation. It con-

firms feasibility of our approach, i.e. we can use the sys-

tem-level complexity of designs to fairly accurately repre-

sent the power characteristics of the actual FPGA imple-

mentations.

In this experiment we investigate hardware-level po-

wer characteristics of a decomposed algorithm (

decomposed into and is

actually selected) implemented for various clock frequen-

4.2. Accuracy of the System-level Power Estimates

Huffman

coding compressor decompressor

cies in either one or two domains. In order to avoid any

distortion of results, we do not use any chip area cons-

traints and we allow , , and tools to per-

form unconstrained optimizations.

is selected because both parts (i.e.

compressor and decompressor) in spite of their different

inner structures have almost identical system-level com-

plexities, i.e. the system-level dynamic power estimates

would be similar. In DesignA, the and

are implemented within the same module but in

two separate clock domains. In Design B, they are imple-

mented in a separate single-domain module each.

was implemented for data of 1bit

width, the alphabet of 2 elements, and the sample size of

32 elements, but these parameters do not have any actual

significance.

Multiple variants of both designs have been hardware-

implemented using diversified clock frequencies (mini-

mum and maximum clock frequencies are defined by the

platform limitations). Although certain variations in the

physical layouts of the implementation are unavoidable,

we expect that the hardware-level power estimates would

be consistent.

Figures 1 to 4 show exemplary layouts (which, as ex-

pected, are actually diversified) while Tables 1 to 3 show

the related hardware-level estimates of dynamic power

obtained by using XPower.

We can observe that the added dynamic power con-

sumption of separately implemented and

is almost the same as the total dynamic power

consumption for the design with both and

(compare the rows 1, 2 and 3 of Tables 1 and 2

to the rows 1 and 4 of Table 3, correspondingly). The va-

riations are below a 5% threshold.

The tables additionally show that the dynamic power

consumption changes proportionally to the clock frequen-

cy change, as predicted in the system-level estimates. In

spite of diversified physical layouts of the implementa-

tions (compare Figures 1 to 4) power characteristics of the

design remain consistent.

map place route

Huffman coding

compressor decom-

pressor

Huffman coding

compressor de-

compressor

compressor de-

compressor

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles52

VOLUME 5, N° 2 2011

Fig. 1. Compressor (15MHz; on the right) and decom-

pressor (15MHz; on the left) in an exemplary Design A

– Huffman coding.

Fig. 2. Design B with only compressor (15MHz)

– Huffman coding.

Table 1. Only decompressor – Design B.

Table 2. Only compressor – Design B.

Table 3. The overall power consumption (decompressor/

compressor) – Design A.

The results of this experiment are the key to the system-

level clock domain algorithm partitioning discussed be-

low. They confirm that power consumption can be estima-

ted at the system-level using the abstract complexity of the

designs (e.g. the number of equivalent NAND gates) and

the assumed clock frequency. Even though we cannot esti-

mate the absolute values (which depend on the conversion

ratio from non-defined units (NDU) to milliwatts - it sho-

uld be determined individually for a given model of FPGA)

the optimum clock frequencies for various domains and/or

the best partitioning strategies can be found in this way.

4.3. Algorithm Partitioning into Parallel
Domains –Approach

In the subsequent experiments, we use algorithm par-

titioning as a tool for power reduction. The same algo-

rithms, i.e. and

(actually their and) are used

as the case study. First, we focus on partitioning into do-

mains that are run simultaneously (the alternative scenario

is briefly discussed in Section 5).

The partitioning scheme is applied to and

of both algorithms. The and

are each divided into two domains perfor-

ming simultaneously (more details in Subsection 4.4) and,

based on their system-level characteristics, the most

power-efficient clock frequencies are proposed for the

domains.

Details of the system-level analysis of the designs are

as follows:

The algorithm implemented at the system-level (DK

Design Suite) is first compiled and synthesized to the net-

list level. The system-level hardware complexity (resour-

ces) is estimated by the equivalent number of NAND gates

used by the design. Such results are obviously platform-

independent. Even though the synthesized designs are la-

ter targeted to a relevant hardware (using Xilinx ISE soft-

ware) the resources are estimated at the system-level only.

When a domain is isolated from an algorithm, this

domain is separately compiled and synthesized at the

system-level to obtain the equivalent number of NAND

gates. The complexity (i.e. the equivalent number of

NAND gates) of the remaining algorithm is computed

straightforwardly by subtracting the number of gates of

the isolated domain from the whole algorithm. It has been

verified experimentally that (at least in the implemented

algorithms) the results do not depend on which domain is

isolated, i.e. in case of two domains the complexity of any

domain is practically the same no matter whether it is

isolated or whether it is considered “the remaining part of

the algorithm”.

Huffman coding Arithmetic coding

compressors decompressors

compressors

decompressors compressor

decompressor

System-level hardware complexity

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 53

VOLUME 5, N° 2 2011

Fig. 3. Design B with only decompressor (15MHz)

– Huffman coding.

Fig. 4. Compressor (24MHz; on the right) and decom-

pressor (6MHz; on the left) in an exemplary Design A

– Huffman coding.

Clock frequency [MHz]

6

15

24

Clock frequency [MHz]

6

15

24

Decompressor

clock

frequency

[MHz]

6

8

12

15

18

22

24

Compressor

clock

frequency

[MHz]

24

22

18

15

12

8

6

Total dynamic power

(clock+logic+signals) [mW]

1.57+5.31+13.66=20.54

1.04+13.06+33.73=47.83

1.67+20.89+54.46=77.02

Total dynamic power

(clock+logic+signals) [mW]

1.04+5.06+12.43=18.53

1.04+12.43+30.91=44.38

1.67+19.88+49.40=70.95

Total dynamic power

(clock+logic+signals)

[mW]

2.77+25.19+63.07=91.03

2.82+25.25+64.00=92.07

2.57+25.40+64.98=92.95

1.97+25.48+65.79=93.24

2.48+25.65+68.03=96.16

2.48+25.84+67.71=96.03

2.53+25.95+65.75=94.23

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles54

Processing time estimates

Power consumption estimates

Huffman coding

Processing time of a particular algorithm (or its do-

main) is also estimated at the system-level using debug-

ging tools of DK Design Suite. A clock cycle is the basic

unit of the time estimates. Because we assume a parallel

run of the domains, the longer execution time (of the iso-

lated domain or of the remaining algorithm) determines

the overall processing time.

Dynamic power consumption in FPGAis directly rela-

ted to the hardware resources. We assume that the system-

level complexity (i.e. the equivalent number of NAND ga-

tes) multiplied by the clock frequency describes the dyna-

mic power utilisation expressed in NDU (non-defined

units). The validity of this approach has been justified by

the experiment described in Section 4.2.

It should be noted that such a power characteristics is

platform-independent.

To deal with certain limitations of DK Design Suite,

we use samples of 32 elements, and sequences of 4 sym-

bols for . These values correspond to

1sec of data gathering by certain sensors (e.g. the typical

sampling frequency for magnetometers used in wireless

senor networks is approx. 10-50 Hz) so they are reason-

able, see [44]-[47]. We also arbitrarily decide that the

width of processed data is 10bits which is typical resolu-

tion of analog-to-digital-converter (ADC) used in wire-

less sensor networks, [48].

Memories required by data reduction algorithms are

implemented within the FPGA so that large capacitances

of external connections are avoided. Such an approach

does not distort the results since the FPGA-based memory

is used only for the essential operations, and we do not

store more than one sample of input or output data.

The of consists of

(building Huffman tree), (buil-

ding Huffman code), and (encoding

symbols) functions. and

are executed for every new sample, and

is executed for every new symbol to be encoded. There-

fore, we decided to put and

in one clock domain and in another

clock domain. Moreover, we decided to implement a me-

mory to store samples of input data () and the

symbol code table (; for symbols encoding)

in the same clock domain as (as the data

are mostly accessed by). Hence,

and have to access

and through channels. Block diagrams

of the clock domain partitioning of the

is presented in Figure 5. The system-level

characteristics of the design are given in Table 4.

The of consists of

(building Huffman tree; however, it differs

from used in compressor) and

(decoding symbols). The first function is executed for

4.4. Algorithm Partitioning into Parallel
Domains – Implementation

Arithmetic coding

compressor Huffman coding Build-

HuffTree BuildHuffCode

CodeSendDirect

BuildHuffTree BuildHuffCode

CodeSendDirect

BuildHuffTree BuildHuff-

Code CodeSendDirect

SampleArray

SymbolCode

CodeSendDirect

CodeSendDirect Build-

HuffTree BuildHuffCode Sample-

Array SymbolCode

Huffman coding

compressor

decompressor Huffman coding

BuildHuffTree

BuildHuffTree CodeGet

each new sample and the latter one is executed for each

new code to be decoded into a symbol. Hence, they are in

different clock domains. Moreover, we decided to imple-

ment memory to store statistics of input data ()

and internal node structures of binary tree (

) in the same clock domain as . ,

has to access and

through channels. Block diagrams of the clock do-

main partitioning of the

are presented in Figure 6. The system-level characteristics

of the design are given in Table 5.

We have implemented the compressor of

using the following functions: (buil-

AlphArray

InterNode-

Array CodeGet Hence

BuildHuffTree AlphArray InterNode-

Array

Huffman coding decompressor

Fig. 5. Block diagram of Huffman coding compressor.

Table 4. Huffman coding (compressor) – hardware re-

sources and processing time.

Fig. 6. Block diagram of Huffman coding decompressor.

Table 5. Huffman coding (decompressor) – hardware

resources and processing time.

Arithmetic

coding vasPrbCount

Arithmetic coding

VOLUME 5, N° 2 2011

CodeSendDirect

SampleArray

SymbolCode SymbolCode

SampleArray

BuildHuffCode

BuildHuffTree

Secondary clock domain

channels

channels

Main clock domain

Clock cycles

-

1,155

20,352

Clock cycles

-

655

14,666

[NAND gates

equivalent]

214,634

79,195

135,439

[NAND gates

equivalent]

130,724

45,737

84,987

Complete compressor

Main clock domain

Secondary clock domain

Complete compressor

Main clock domain

Secondary clock domain

CodeGet

AlphArray

InterNodeArray

BuildHuffTree

Secondary clock domain

channels

channels

Main clock domain

InterNodeArray

AlphArray

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 55

ding a probabilistic model of sample data),

(building a cumulative distribution function based on the

probabilistic model of sample data) and

(encoding the alphabet symbols or sequences of symbols).

and are executed for each

new sample (so they are in the same clock domain), and

is executed for each new symbol or sym-

bols sequence to be encoded (so is located in the other

clock domain). The memories storing a sample of input

data (), storing the probabilistic model of input

data (), and storing the cumulative distribution func-

tion of input data () are implemented in the

same clock domain as . Thus,

and have to access , , and

through channels. Block diagrams of the

clock domain partitioning of the

are presented in Figure 7. The design charac-

teristics are shown in Table 6.

The decompressor of our imple-

mentation consists of (building the cumu-

lative distribution function based on the probabilistic

model of sample data) and (decoding al-

phabet symbols or symbols sequences). The first function

is executed for each new sample and the latter one is exe-

cuted for each new code to be decoded into a symbol or

a sequence of symbols. Therefore, we decided to place

each function in different clock domains. Moreover, the

memories storing the probabilistic model of input data

() and storing cumulative distribution function of

input data () are implemented in the same

clock domain as . Hence, has

to access and through channels.

Block diagrams of the clock domain partitioning of the

are presented in Figure

8. The characteristics of the design are given in Table 7.

vasCDFCount

vCodeEncSeq

VasPrbCount vasCDFCount

vCodeEncSeq

uiaSample

asPrb

asCumDistFun

vCodeEncSeq vasPrbCount

vasCDFCount uiaSample asPrb

asCumDistFun

Arithmetic coding com-

pressor

Fig. 7. Block diagram of Arithmetic coding compressor.

Table 6. Arithmetic coding (compressor) – hardware

resources and processing time.

Arithmetic coding

vasCDFCount

vCodeDecSeq

asPrb

asCumDistFun

vCodeDecSeq vasCDFCount

asPrb asCumDistFun

Arithmetic coding decompressor

The resources estimates of a partitioned design might

be distorted by the hardware needed for the inter-domain

communication. To figure out the actual significance of

these overheads, we have implemented the corresponding

designs consisting of the channels only (actually, redun-

dant channels that can transfer data samples of 32, 128,

and 512 elements are implemented). The results, i.e. the

equivalent numbers of NAND gates, are presented in

Tables 8 and 9.

Tables 8 and 9 show that the channel overheads are in-

significant compared to the compressor/decompressor

logic (given in Tables 4 to 7). They are 0.24%, 0.40%,

0.22%, and 0.17%, of the compressor/decompressor logic

of and , correspondingly. The

additional hardware resources overheads for inter-domain

clock synchronization are also included into these numbers.

The example (confirmed by similar experiments for

other algorithms) shows that for moderate/large FPGAde-

signs inter-domain communication overheads are negli-

gible and they do not affect the system-level analysis of

power characteristics.

Fig. 8. Block diagram of Arithmetic coding decompressor.

Table 7. Arithmetic coding (decompressor) – hardware

resources and processing time.

Table 8. Huffman coding – channel overheads.

Table 9. Arithmetic coding – channel overheads.

Huffman Arithmetic coding

Channels overhead

VOLUME 5, N° 2 2011

vCodeEncSeq

asPrb

asCumDistFun asCumDistFun

asPrb

vasCDFCount

vasPrbCount

Main clock domain Secondary clock domain

channels

channels

uiaSample uiaSample

channels

Clock cycles

-

3,961

5,350

[NAND gates

equivalent]

231,666

225,047

6,619

Complete compressor

Main clock domain

Secondary clock domain

32

216

680

32

216

680

128

228

764

128

228

764

512

240

848

512

240

848

Sample size

Compressor

[NAND gates equivalent]

Decompressor

[NAND gates equivalent]

Sample size

Compressor

[NAND gates equivalent]

Decompressor

[NAND gates equivalent]

Clock cycles

-

3,418

3,204

[NAND gates

equivalent]

303,114

299,679

3,435

Complete compressor

Main clock domain

Secondary clock domain

vCodeDecSeq

asPrb

asCumDistFun asCumDistFun

asPrb

vasCDFCount

Main clock domain Secondary clock domain

channels

channels

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles56

4.5. Algorithm Partitioning into Parallel
Domains –Analysis

Huffman coding

Results of algorithm partitioning (using a two-domain

partitioning) are presented in Tables 4 and 5 (

) and in Tables 6 and 7 (). In both

algorithms, the longer processing time of a domain

defines the nominal clock frequency for the whole design

(depending on the maximum acceptable processing time

that cannot be exceeded). Any reduction of the clock

frequency to an individual domain would correspondingly

reduce the dynamic power (according to Equations 1 and

2). Therefore, we can estimate the power saving that can

be achieved by slowing down the other domain that

requires fewer clock cycles to complete its operation.

In Table 4, the main domain needs only 1,155 clock

cycles of execution time while the secondary domain

requires 20,352 cycles (see Figure 5 for the domain

details). When both domains are driven by the same clock

frequency (i.e. the compressor design is not partitioned)

the overall power consumption can be estimated (in some

non-defined units (NDU)) as:

(79,195 + 135,439) × 1 = 214,634NDU

However, in the partitioned design the main domain

can be run at the frequency equal to only 5.67% of the

nominal clock frequency (1,155/20,352 = 0.0567) and can

still complete its operation within the same time. Thus, the

power consumption for the main domain can be reduced

to:

79,195 × 0.0567 = 4,490.36NDU

while the secondary domain needs:

135,439 × 1 = 135,439NDU

Therefore, the total power consumed by the partitio-

ned design is equal to:

4,490.36 + 135,439 = 139,929.36NDU

i.e. 65.19% of the original 214,634NDU for the non-

partitioned design. Almost 35% of the dynamic power is

saved.

Following the same methodology for the

(see Table 5 and Figure 6 for the domain details) we

conclude that 84,987 equivalent gates of the secondary

domain should be driven by the nominal clock frequency

while 45,737 gates of the main domain need only 4.47% of

that frequency (655/14,666 = 0.0447). Therefore, the

power consumption of the partitioned design can be

expressed as:

45,737 × 0.0447 + 84,987 × 1 = 87,031.44NDU

which is 66.58% of the power needed by the non-

partitioned implementation (that needs 130,724NDU).

Huffman

coding Arithmetic coding

decompres-

sor

Arithmetic coding
Using the same approach for the of

(domain details in Figure 7) we can see in

Table 6 that 6,619 gates of the secondary domain should

be driven by the nominal clock, while 225,047 gates of the

main domain can be driven by 74.04% of the nominal

frequency (3,961/5,350 = 0.7404). Thus, the total power

consumed by the non-partitioned algorithm driven by the

nominal clock is:

(225,047 + 6,619) × 1 = 231,666NDU

while the total power estimate for the partitioned design

is:

225,047 × 0.7404 + 6,619 × 1 = 173,243.80NDU

so 25.22% of power consumption has been saved com-

pared to the non-partitioned design.

For the (details in

Table 7 and in Figure 8), the main domain (consisting of

299,679 gates) determines the nominal clock frequency,

and the secondary domain (only 3,435 gates) needs

93.74% of the frequency. The power savings are very

insignificant in this case, i.e.

(299,679 + 3,435) ×1 = 303,114NDU

versus

299,679 × 1 + 3,435 × 0.9374 = 302,898.97NDU

The dynamic power reduction is only 0.07%.

The algorithm partitioning framework discussed in

Section 4 is applicable to algorithms where all fragments

perform simultaneously (though possibly with diversified

intensities, i.e. at various clock frequencies). This frame-

work, nevertheless, may not give satisfactory power sav-

ings in some situations (e.g. for the

). As seen in Table 7, both parts of the algo-

rithm require almost the same processing time so that no

matter what the domain sizes are, we cannot expect any

spectacular power savings by parallel partitioning.

There are many algorithms, however, where not all

fragments of a decomposed algorithm should be run con-

tinuously (i.e. processing is at least partially sequential).

Since the dynamic power consumption depends on swit-

ching activities of the relevant resources, the idle frag-

ments (i.e. those with temporarily very low switching acti-

vity) consume only negligible amounts of dynamic power.

By exploiting this fact, further savings of the dynamic

power are possible at the system-level.

Assume an algorithm partitioned into just two frag-

ments and that are executed sequentially. Let the cor-

responding domains and have their processing times

of and clock cycles, correspondingly. The overall

execution time for the whole algorithm can be, therefore,

expressed as:

compressor Arith-

metic coding

Arithmetic coding decompressor

Arithmetic coding de-

compressor

X Y

D D

c c

5. Remarks on Sequential Partitioning

x y

x y

VOLUME 5, N° 2 2011

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 57

(3)

where and are the corresponding domain clock

frequencies.

The power consumption can be hypothetically redu-

ced if the clock frequency of the more hardware-intensive

domain is reduced and (if we need to maintain the overall

throughput of the system) the clock frequency of the other

domain is correspondingly increased.

If the original frequencies are changed (by and ,

respectively) the overall execution time would changed

and the following dependency can be straightforwardly

obtained from Equation 3:

(4)

where is the overall execution time increment due to

frequency changes and .

If the processing time is preserved, the value of Equa-

tion 4 is zero, so that a simple expression can be obtained

on how to simultaneously modify clock frequencies in

both domains without affecting the processing time:

(5)

Then, the recommended (i.e. minimizing the overall

power consumption) frequencies can be found by optimi-

zing products under constraint spe-

cified by (5).

The proposed approach ignores several practical ef-

fects. First, the assumption about a zero dynamic power

during the inactivity periods holds only approximately.

Secondly, the static power that inherently exists in any

FPGA device may further distort the validity of calcula-

tions. Therefore, the feasibility of this technique to the ac-

tual power consumption reduction has to be verified expe-

rimentally. The experiments are currently conducted, and

the results will be presented in our future papers.

In this paper, we have proposed methods for optimi-

zing the dynamic power consumption in FPGA device at

the system-level of the designing process. It is calculated

and verified experimentally that algorithm decomposi-

tions into simultaneously executed fragments (when com-

bined with the appropriate choice of clock frequencies)

may significantly reduce the dynamic power indeed.

Moreover, as an additional/alternative tool, we propose

a sequential algorithm partitioning that may further redu-

ce the power consumption by changing clock frequencies

of the relevant clock domains (without affecting the algo-

rithm’s throughput). It should be highlighted that the pro-

posed ideas do not introduce any unintentional processing

delays or significant hardware overheads.

Our estimations regarding power savings are intentio-

nally based on the system-level results only. Therefore,

the dynamic power savings should remain similar for

a wide range of FPGA’s and other devices. Only the ratio

between the dynamic and static power, and the actual

values in milliwatts will not be, obviously, device-

independent.

f f

f f

t

f f

hardware×frequency

x y

x y

x y

� �

�

� �

6. Conclusions

Additionally (or rather primarily) we have also shown

that the power characteristics of partitioned and non-par-

titioned designs estimated at the system-level are, in ge-

neral, inherited at the hardware-level, in spite of variations

in the actual layouts of the implemented designs. Thus, the

validity of the proposed techniques has been justified ex-

perimentally.

Our experiments are focused on data reduction algo-

rithms, namely and .

Thus, certain properties of these algorithms have been

(intentionally or not) revealed as well. In particular, con-

trary to the existing believes, we found that

is a feasible candidate for FPGA-based data reduc-

tion embedded systems. In certain scenarios (more details

are not discussed in this paper) it may be superior to

.

Though our experimental works are based on data re-

duction algorithms implemented in FPGA devices, the

same approach can be applicable to other algorithms and

other configurable structures. And certainly wireless sen-

sor networks are not the only area where the proposed

framework can be useful.

We also express our hope that modern powerful FPGA

devices will find a niche in wireless sensor networks and

other energy-aware systems. In spite of a relatively high

static power (e.g. 378mW of static power for Xilinx Vir-

tex-II FPGA) they offer numerous advantages, e.g. if the

design is large or at least moderate, the dynamic power do-

minates. For example, a design utilizing just 1/3 of Virtex-

II FPGAslices may consume up to 533mW of the dynamic

power. Thus, our efforts on dynamic power reduction do

not seem baseless.

Finally, an important direction for the future results

can be highlighted. In the conducted experiments, the al-

gorithm partitioning has been done intuitively (based on

our understanding on the algorithm’s structure). Even

though currently it seems to be the most typical (and the

most convenient) approach, we believe that system-level

algorithm partitioning for power consumption optimiza-

tion is an interesting topic. Our experiments clearly reveal

that, for example, partitioning into domains of opposite

properties (large domains with slow clocks small

domains with very fast clocks) is a recommended strategy

for parallel partitioning. Moreover, we have found that

(contrary to some believes) inter-domain communication

resources in FPGA implementations are typically insigni-

ficant compared to the size of (moderate and large) de-

signs. More interesting properties might be revealed when

futher researches are conducted in this area.

- Nanyang Technological Univer-

sity, School of Computer Engineering, Block N4 #02a-32,

NanyangAvenue, Singapore 639798.

E-mail: pawel@czapski.eu

- Nanyang Technological University,

School of Computer Engineering.

* Corresponding author

Huffman coding Arithmetic coding

Arithmetic

coding

Huf-

fman coding

versus

AUTHORS
Pawel Piotr Czapski*

Andrzej Œluzek
.

VOLUME 5, N° 2 2011

� �t =

=

�� �f cx x �� �f cy y

�� �f cy y

f f fx x x� ���() f f fy y y� ���()

f f fy y y� ���()

� �f cx x

f f fx x x� ���()

t t t == x y� �
cx cy

fx fy

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles58

References
[1] K. Romer,F. Mattern, “The Design Space of Wireless

Sensor Networks,” ,

vol. 11, no. 6, December 2004, pp. 54-61.

[2] M.A.M. Vieira, C.N. Jr. Coelho, D.C. Jr. da Silva, J.M.

da Mata, “Survey on Wireless Sensor Network Devi-

ces”. In:

, 2003, pp. 537-544.

[3] J. Feng, F. Koushanfar, M. Potkonjak, “System-Archi-

tectures for Sensor Networks Issues, Alternatives, and

Directions”. In:

,

2002, pp. 226-231.

[4] Xilinx, Inc., “Product Selection Guides,”

, 2008. [Online].Avail-

able: http://www.xilinx.com. [Accessed: September 06,

2008].

[5] Altera Corporation, “Altera Product Catalog,”

, 2008.

[Online]. Available: http://www.altera.com. [Accessed:

September 06, 2008].

[6] Lattice Semiconductor Corporation, “LatticeMico Pro-

duct Brochure,”

, 2008. [Online]. Available: http://www.

latticesemi.com. [Accessed: September 06, 2008].

[7] Tensilica, Inc., “XTensa Product Brief,”

, 2008. [Online].Available: http://www.tensilica.

com. [Accessed: September 06, 2008].

[8] B. O'Flynn, , “The Development of a Novel Mini-

aturized Modular Platform for Wireless Sensor Net-

works,” in

,

2005, pp. 370-375.

[9] S.J. Bellis, K. Delaney, B. O'Flynn, J. Barton, K.M.

Razeeb, C. O'Mathuna, “Development of Field Pro-

grammable Modular Wireless Sensor Network Nodes

forAmbient Systems,” , vol.

28, no. 13,August 2005, pp. 1531-1544.

[10] D. Bauer, S. Furrer, S. Rooney, W. Schott, H.L. Truong,

B. Weiss, “The ZRL Wireless Sensor Networking Test-

bed,” IBM Zurich Research Laboratory, Ruschlikon,

Switzerland, Tech. Rep. RZ 3620 (# 99630), 2005.

[11] V. Tsiatsis, S.A. Zimbeck, M.B. Srivastava, “Architec-

ture Strategies for Energy-Efficient Packet Forwarding

in Wireless Sensor Networks”. In:

, 2001, pp. 92-95.

[12] L. Shang, A.S. Kaviani, K. Bathala, “Dynamic Power

Consumption in Virtex-II FPGA Family”. In:

, 2002, pp.

157-164.

[13] V. Degalahal, T. Tuan, “Methodology for High Level

Estimation of FPGAPower Consumption”. In:

, 2005, pp. 657-660.

[14] N. Rollins, M.J. Wirthlin, “Reducing Energy in FPGA

Multipliers Through Glitch Reduction,” presented at the

International Conference on Military and Aerospace

Programmable Logic Devices, Washington, DC, USA,

2005.

IEEE Wireless Communications

Proceedings of the Emerging Technologies and

Factory Automation

Proceedings of the IEEE International

Conference on VLSI in Computers and Processors

FPGA and

CPLD Solutions from Xilinx, Inc.

Altera -

FPGA, CPLD, ASIC and Programmable Logic

FPGA and CPLD solutions from Lattice

Semiconductor

Tensilica: Con-

figurable and Standard Processor Cores for SOC

Design

et al.

Proceedings of the Fourth International Sym-

posium on Information Processing in Sensor Networks

Computer Communications

Proceedings of the In-

ternational Symposium on Low Power Electronics and

Design

Proceed-

ings of the 2002 ACM/SIGDA 10 International Sympo-

sium on Field-Programmable Gate Arrays

Proceed-

ings of the 2005 Conference on Asia South Pacific De-

sign Automation

th

[15] Celoxica, Ltd., “Agility Compiler,”

, 2006. [Online]. Available: http://www.celoxica.

com/products/agility/default.asp. [Accessed: October

18, 2006].

[16] S.J.E. Wilton, S.-S. Ang, W. Luk, “The Impact of Pipe-

lining on Energy per Operation in Field-Programmable

Gate Arrays”. In:

, Vol. 3203, J. Becker, M. Platzner, and S. Ver-

nalde, Eds. Berlin, Germany: Springer-Verlag, 2004,

pp. 719-728.

[17] G.J.M. Smit, P.J.M. Havinga, “A Survey of Energy Sa-

ving Techniques for Mobile Computers,” University of

Twente, Department of Computer Science, Enschede,

Netherlands, Tech. Rep. Moby Dick, 1997.

[18] P.J.M. Havinga, G.J.M. Smit, “Low Power System De-

sign Techniques for Mobile Computers,” University of

Twente, Department of Computer Science, Enschede,

Netherlands, Tech. Rep. ISSN 1381-3625, 1997.

[19] O.S. Unsal, I. Koren, “System-Level Power-Aware De-

sign Techniques in Real-Time Systems”. In:

, vol. 91, no. 7, July 2003, pp. 1055-

1069.

[20] H.G. Lee, S. Nam, N. Chang, “Cycle-Accurate Energy

Measurement and High-Level Energy Characterization

of FPGAs”. In:

, 2003, pp.

267-272.

[21] N. Chang, K. Kim, “Real-Time per-Cycle Energy Con-

sumption Measurement of Digital Systems”,

, vol. 36, no. 13, June 2000, pp. 1169-1171.

[22] K. Weiß, C. Oetker, I. Katchan, T. Steckstor, W. Rosen-

stiel, “Power Estimation Approach for SRAM-based

FPGAs”, In:

, 2000, pp. 195-202.

[23] M. French, “A Power Efficient Image Convolution En-

gine for Field Programmable Gate Arrays”. In:

, Washington, DC, USA, 2004.

[24] A. Deligiannakis, Y. Kotidis, N. Roussopoulos, “Com-

pressing Historical Information in Sensor Networks”.

In:

, 2004, pp.

527-538.

[25] M. Chen, M.L. Fowler, “The Importance of Data Com-

pression for Energy Efficiency in Sensor Networks”. In:

, 2003.

[26] M. Chen, M.L. Fowler, “Data Compression Trade-Offs

in Sensor Networks”. In:

, 2004,

pp. 96-107.

[27] A. Deligiannakis, Y. Kotidis, “Data Reduction Tech-

niques in Sensor Networks”,

, vol. 28, no. 1, March 2005, pp. 19-25.

[28] K. Sayood, , 3 ed.

San Francisco, CA, USA: Morgan Kaufmann, 2006.

[29] D. Salomon,

, 4 ed. London, UK: Springer-Verlag, 2007.

[30] T. Dang, N. Bulusu, W. Feng, “RIDA: A Robust Infor-

Celoxica - The Tech-

nology Leader in C Based Electronic Design and Syn-

thesis

Field Programmable Logic and Appli-

cation

Proceed-

ings of the IEEE

Proceedings of the 4 International

Symposium on Quality Electronic Design

Electro-

nics Letters

Proceedings of the 2000 ACM/SIGDA 8

International Symposium on Field Programmable Gate

Arrays

Interna-

tional Conference on Military and Aerospace Program-

mable Logic Devices

Proceedings of the 2004 ACM SIGMOD Interna-

tional Conference on Management of Data

Proceedings of the 2003 Conference on Information

Sciences and Systems

Proceedings of the SPIE Con-

ference on Mathematics of Data/Image Coding, Com-

pression, and Encryption VII, with Applications

IEEE Data Engineering

Bulletin

Introduction to Data Compression

Data Compression - The Complete Refe-

rence

th

th

rd

th

VOLUME 5, N° 2 2011

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 59

mation-Driven Data Compression Architecture for Irre-

gular Wireless Sensor Networks”. In:

, vol. 4373, K. Langendoen, T. Voigt, Eds. Ber-

lin, Germany: Springer-Verlag, 2007, pp. 133-149.

[31] V. Jolly, S. Latifi, N. Kimura, “Energy-Efficient Routing

in Wireless Sensor Networks Based on Data Reduction”.

In:

, 2006, pp. 804-812.

[32] N. Kimura, S. Latifi, “ASurvey on Data Compression in

Wireless Sensor Networks”. In:

, 2005, pp. 8-13.

[33] K.C. Barr, K. Asanovic, “Energy-Aware Lossless Data

Compression,”

, vol. 24, no. 3, pp. 250-291,August 2006.

[34] C.M. Sadler, M. Martonosi, “Data Compression Algo-

rithms for Energy-Constrained Devices in Delay Tole-

rant Networks”. In:

,

2006, pp. 265-278.

[35] J.P. Lynch, A. Sundararajan, K.H. Law, A.S. Kiremid-

jian, E. Carryer, “Power-Efficient Data Management for

a Wireless Structural Monitoring System”. In:

, 2003, pp. 15-17.

[36] H. Akcan, H. Bronnimann, “Deterministic Data Reduc-

tion in Sensor Networks”. In:

, 2006, pp. 530-533.

[37] A.T. Hoang, M. Motani, “Collaborative Broadcasting

and Compression in Cluster-based Wireless Sensor Net-

works”. In:

, 2005, pp. 197-206.

[38] P. J. Marron, R. Sauter, O. Saukh, M. Gauger, K. Rother-

mel, “Challenges of Complex Data Processing in Real

World Sensor Network Deployments”. In:

, 2006, pp. 43-48.

[39] D. Petrovic, R.C. Shah, K. Ramchandran, J. Rabaey,

“Data Funneling: Routing with Aggregation and Com-

pression for Wireless Sensor Networks,” in

, 2003, pp.

156-162.

[40] A. Deligiannakis, Y. Kotidis, “Data Reduction Tech-

niques in Sensor Networks”,

, vol. 28, no. 1, March 2005, pp. 19-25.

[41] Y. Al-Obaisat, R. Braun, “On Wireless Sensor Net-

works: Architectures, Protocols, Applications, and Ma-

nagement”. In:

, 2006.

[42] A. Ciancio, S. Pattem, A. Ortega, B. Krishnamachari,

“Energy-Efficient Data Representation and Routing for

Wireless Sensor Networks Based on a Distributed Wa-

velet Compression Algorithm”. In:

, 2006, pp. 309-316.

[43] P.P. Czapski, A. Sluzek, “Power Optimization Tech-

niques in FPGADevices:ACombination of System- and

Low-Levels,”

Wireless Sensor

Networks

Proceedings of the International Conference on Pa-

rallel and Distributed Processing Techniques and Appli-

cations

Proceedings of the In-

ternational Conference on Information Technology: Co-

ding and Computing

ACM Transactions on Computer Sys-

tems

Proceedings of the 4 International

Conference on Embedded Networked Sensor Systems

Proceed-

ings of the Fourth International Workshop on Structural

Health Monitoring

Proceedings of the 2006

IEEE International Conference on Mobile Adhoc and

Sensor Systems

Proceedings of the Second European Work-

shop on Wireless Sensor Networks

Proceedings

of the ACM Workshop on Real-World Wireless Sensor

Networks

Proceedings

of the First 2003 IEEE International Workshop on

Sensor Network Protocols and Applications

IEEE Data Engineering

Bulletin

Proceedings of the 1 IEEE International

Conference on Wireless Broadband and Ultra Wideband

Communication

Proceedings of the

Fifth International Conference on Information Pro-

cessing in Sensor Networks

International Journal of Electrical, Com-

th

st

puter, and Systems Engineering

et al.

Proceedings of the Third International Con-

ference on Embedded Networked Sensor Systems

Proceedings of the Seventh International IEEE Con-

ference on Intelligent Transportation Systems

Proceedings of the SPIE Conference on

Unattended Ground Sensor Technologies and Applica-

tions

Proceedings of the Fourth International Symposium on

Information Processing in Sensor Networks

Cros-

sbow Technology: Wireless: Home Page

, vol. 1, no. 3, 2007, pp.

148-154.

[44] L. Gu, , “Lightweight Detection and Classification

for Wireless Sensor Networks in Realistic Environ-

ments” , in

, 2005,

pp. 205-217.

[45] J. Ding, S.-Y. Cheung, C.-W. Tan, P. Varaiya, “Signal

Processing of Sensor Node Data for Vehicle Detection”.

In:

, 2004, pp.

70-75.

[46] J.R. Agre, L.P. Clare, G.J. Pottie, N.P. Romanov, “Deve-

lopment Platform for Self-Organizing Wireless Sensor

Networks”. In

, 1999, pp. 257-268.

[47] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, D. Culler,

“Design of a Wireless Sensor Network Platform for

Detecting Rare, Random, and Ephemeral Events”. In:

, 2005, pp.

497-502.

[48] Crossbow Technology, Inc., “Product Catalog,”

, 2008. [Online].

Available: http://www.xbow.com. [Accessed: September

06, 2008].

VOLUME 5, N° 2 2011

