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1. Introduction
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The estimation of a vehicle configuration in its envi-

ronment is mostly solved by Bayesian methods. Interval

analysis allows an alternative approach: bounded-error

localization. Such an approach provides a bounded set of

configuration that is guaranteed to include the actual

vehicle configuration. This paper describes the bounded-

error localization algorithms and presents their com-

plexity study. A real time implementation of the studied

algorithms is validated through the use of an experimental

platform.
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The aim of the localization problem is to maintain

a correct vehicle configuration (position and orientation)

among its displacement using proprioceptive and exte-

roceptive sensors [3]. Proprioceptive sensors generate

a cumulative error along the displacement. Consequently,

using proprioceptive sensors does not give a satisfactory

positioning to be used in higher level tasks like path follo-

wing or path planning. To cope with this problem, any lo-

calization processes also use exteroceptive sensors to im-

prove the predicted configurations of the vehicle. Thus,

the localization processes are broken down into two steps:

they alternate the prediction phases using proprioceptive

sensors and a correction (estimation) phase using extero-

ceptive sensors.

The most commonly used methods are based on Kal-

man filtering [9 , [19 , [8] and Markov localization, using

either a probability grid [5] or particle filtering [2 , [29].

Kalman filtering [7] (in its basic implementation) re-

quires neither a great amount of computing power nor me-

mory but, in return, cannot perform global localization

and can only track one configuration of the vehicle. More-

over, it diverges very swiftly in the presence of erroneous

data (outliers) even whilst using methods developed to

overcome some of its limitations such as those reported in

[10]. Kalman filtering is therefore not well adapted to

a situation where outliers are unavoidable.

Markov localization methods require more computing

power than Kalman filtering but provide more reliable

estimated configurations in complex, dynamic or badly

mapped environments [6]. These methods have domina-

ted for the last few years and much work is still going on to

improve them, especially Monte Carlo localization [30].

Markov localization methods evaluate the probability of

a vehicle being in a given region of a mapped environment

but nothing ensures that the vehicle is indeed in the con-

figuration with the highest probability.

Bounded-error state estimation [11] is an alternative

and less known method which has been proposed for loca-

lization [21 , [22] and tracking [13]. This method is based

on R. E. Moore's [23] work on interval analysis. He propo-

sed to represent a solution to a problem by giving an in-

terval in which the real solution is guaranteed to be. Thus,

whereas the majority of localization methods provide

probabilistic results, this method gives a set of bounded

configuration in which the vehicle is guaranteed to be.

In bounded-error state estimation, all model and mea-

surement errors are assumed to be bounded, with known

bounds. At each time instant, the bounded-error recursive

state estimator provides a set containing all possible confi-

gurations of the vehicle given the measurements and noise

bounds. The methodology has proved its feasibility in si-

mulations [13]. Experiments were done to demonstrate

that this method can be made operational on real data [25 ,

[26]. [26] suggests using the volume of bounded localiza-

tion in order to tune the method with a number of boxes

that remains tractable. Nevertheless, [26] does not show

how to achieve it. This paper focuses on the bounded loca-

lization algorithms of the method and shows how to tune it

in order to achieve a real time operation. Whereas [12 ,

[13] focus on the mathematical aspects of the method,

a complete presentation of the algorithms is provided

here. These algorithms are then used to calculate the com-

plexity of the localization method and to prove its tract-

ability. Finally, we will propose a new method of automa-

tically setting parameters to provide the most precise

localization in real time.

Section 2 describes the necessary mathematical tools

based on interval analysis. Section 3 shows the way of

representing the solution set with subpavings. Section 4

presents the localization process: the operations realized

during the prediction step are reported in Section 4.1

whilst Section 4.2 presents the estimation step. Section 5

shows the complexity of each studied algorithm and Sec-

tion explains how to tune the parameter so as to achieve

a real time implementation. Finally, Section presents the

experimental platform and an experimental validation of

the proposed real time bounded error state estimation.
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Bounded-error state estimation is based on interval

analysis. Interval analysis was introduced in the sixties in

order to avoid the problem of approximations in calcula-

tions. R. E. Moore [23] proposes to represent a solution of

2. Interval analysis

2.1. Overview
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a problem by an interval in which the real solution is gua-

ranteed to be. The minimum and maximum of this interval

are perfectly known and not approached. Interval analysis

provides a set of rules to calculate with the interval

[ ] = [ ] where and are respectively the minimum

and the maximum of [ ]. The width of an interval is

[ ] = . Arithmetical operations (+, , * and /) and

standard mathematical functions readily extend to inter-

vals. For example,

[1,2] [3,4] = [4,6]

ln([1, ]) = [0,1] (1)

The computing development using the interval ana-

lysis is simplified by the use of PROFIL/BIAS (Program-

mer’s Runtime Optimized Fast Interval Library/Basic In-

terval Arithmetic Subroutines) [16], [15], [1], a C++ class

library supporting the most commonly needed interval

and real operations in a user friendly way. Using this

library allows the manipulation of intervals as numbers.

All basic mathematical functions were implemented to

accept numbers as well as intervals.

The notion of is one of the most

important tools provided by interval analysis [11]. For any

function where is defined as combinations

of arithmetical operators and elementary functions, inter-

val analysis makes it possible to build inclusion functions

satisfying

[ ] ([ ]) ([ ]) (2)

where ([ ]) denotes the set of all values taken by (.) over [ ].

The simplest way to obtain an inclusion function is to

replace all real variables by interval ones and all real-

valued operators or elementary functions by their interval

counterparts. The is then obtai-

ned. For example, the function shown below

( ) = 1 (3)

has the following natural inclusion function

([ ]) = [ ] [ ] 1 (4)

For functions (all functions considered in

this work are convergent), the width of their image inter-

val tends to zero when the width of the corresponding

argument interval tends to zero.As a consequence, cutting

the interval into smaller intervals improves the result of

the inclusion function (see [24], [11]). For instance using

Eq. (3), ([0,2]) gives a result of [ 1,5], whereas a cal-

culation of ([0,1]) ([10,2]) gives an interval of

[0,4] which is better than ([0,2]).

Outer-approximation of sets may be achieved by a uni-

on of non-overlapping boxes or . Subpaving

combined with direct image evaluation and inverse image

evaluation algorithms are the building stones of the boun-

ded-error state estimation algorithm.
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3. Dealing with subpavings

The vehicle configuration in the global frame is deno-

ted by = ( ) where ( ) are the coordinates of the

middle of the segment joining the two steering wheels and

specifies the orientation of a local frame attached to the

vehicle with respect to the global frame.

To estimate and handle the sets implied in our prob-

lems, we use the concept of boxes as bounded confi-

gurations: a box [ ] is composed of 3 intervals

[ ]=[ ] [ ] [ ]. A subpaving [11] is a union of non-over-

lapping boxes. In the following sections, a description of

the operations performed to calculate the subpaving is

provided.

The principle of localization consists of testing the bi-

nary relevance of each box according to the data returned

by the sensors. Firstly we verify if a box (or a part of it) is

compatible with the measurement: if the answer is positive

the box is kept, else the box is discarded. If only a part of

the box is compatible with the measurement, then the box

is cut into smaller boxes making it possible to improve the

solution description (see Section 2.3). In order to make the

operations more efficient, two different models are used to

order the description and the storage of these boxes (see

Section 4). The set of vehicle configurations is either re-

presented as a list in which overlapping boxes are present,

or as a binary tree which avoids overlapping boxes. In the

tree representation, each node has the description of a box

and the box located at the root of the tree contains all the

boxes in the tree.

The binary tree is constructed by dichotomy: a box is

cut into two children boxes by interval bisection (one

dimension of the box is bisected). These boxes have the

same subintervals length in one dimension and a copy of

all the other dimensions. We chose to cut the box according

to the largest length. For instance, cutting the root box [ ]

among dimension lead to two boxes named [ ] and [ ]

(corresponding respectively to the right and the left

children [ ]):

(5)

The Figure 1 gives a two dimensions example of

a subpaving calculation for a set bounded on

[0;5] [0;5].

Starting from a root [0;5] [0;5] the extrema of are

calculated to reduce the box. Here we find [0.1;4] [0;3.8]

(Figure 1.1). The bisection takes place using the largest

length dimension. The two studied boxes are [0.1;2.05]

[0;3.8] and [2.05;4] [0;3.8] (Figure 1.2). In order to re-

duce the boxe’s length, we calculate the extrema of for

each box. On the right child, the box is reduced to [2.05;4]
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Fig. 1. Binary tree and list representation of a set of configurations.
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[2;3.8] because the interval [2.05;4] [0;2] is empty.

Similar operations are done for the left child which is

reduced to [0.1;2.05] [0;3.7]. Each box is then bisected

again. This bisection is done until it meets one of the three

following criteria:

1 - a box is completely inside , in this case the box is

kept,

2 - a box is not contained by , in this case the box is

deleted,

3 - the bisected box reaches the minimum length, in this

case the box is kept.

The actual configuration of the vehicle is included into

a leaf node. For prediction steps (in the localization pro-

cess), a complex tree organization of the subpavings is not

needed. When only the leaf nodes are required to describe

the subpavings, the boxes can be organized as a list of

nodes. Doing that reduces the number of nodes and thus

the quantity of memory and calculation needed.Afunction

TREE_TO_LIST (Algorithm 1) is recursively called to

visit the tree until a leaf node is found. This leaf node is

placed in the list. The described algorithm has been used

here to calculate the list of Figure 1.5 from the tree in

Figure 1.4.

To reduce the number of leaf nodes (which increases

during the prediction step) and thus to reduce the calcula-

tions, the overlapping boxes have to be deleted. For this

purpose, the BUILDSP algorithm generates a set of non-

overlapping boxes ordered as a binary tree. BUILDSP

starts from possibly overlapping boxes ordered as a list.

The Algorithm 2 (BUILDSP), deduced from the ex-

planation in [12], reduces the number of pavings and the

future calculations. Algorithm 2 starts (in the first call)

with a box [ ] that contains all the box in the list “List”.

On line 2-9, [ ] is reduced to eliminate all the areas that

are not useful. This is necessary, on each recursive call, in

order to bind the set as close as possible (see Figure 1.2).

Line 10-12, Algorithm 2, BUILDSP tests if [ ] is

included in one box in the list. If yes, or [ ] is smaller

than (line 13), then the box is kept. If this is not the case

[ ] is cut among its larger dimension: it builds [ ]

and [ ] (Line 14, Algorithm 2). The list of boxes is

then divided into two sub-lists: List contains the boxes

3.5. Converting a tree into a list

3.6. Converting a list into a tree (and eliminating

overlapping boxes)
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x
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partially or totally in [ ] , List contains the boxes

partially or totally in [ ] (Line 15-24, Algorithm 2).

The function BUILDSP is then called recursively for the

two boxes [ ] and [ ] with their associated lists

(Line 25-26, Algorithm 2). Finally, BUILDSP deletes the

two sublists (right and left) and returns a tree.

The Algorithm 3 (called by Algorithm 2) calculates the

box that includes a list of boxes. Starting from an empty

box (line 1), the algorithm increases the bounding box

according to the boxes in the list (lines 2 9).

Subpavings are used in a number of operations that are

involved in the localization process.

The prediction step uses the data provided by the odo-

meters mounted on the rear wheels of our experimental

platform (see Section 7 for a description of the sensors).

A non-linear discrete-time state-space model is consi-

dered to describe the evolution of the configuration of

the vehicle

= ( , , ) (6)

where is a known two-dimensional control vector

which is assumed constant between the times indexed by

and +1. is an unknown state perturbation vector that

accounts for the uncertain description of reality by the

model.

is a subpaving of in which the robot is guaranteed

to be. Integrating the odometric data is done by creating

the subpaving that includes = ( ) where is a known

non-linear function. , the set that is consistent with

sensor data provided at time knowing 1, could be

calculated using

(7)

with the state vector added to the bounded error

on the measurement. can be deduced from data sent

by the incremental coder which are in binary format: the

actual position of the coder for the right wheel belongs to

x
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x x

4.1. Prediction step

x

x f x u v

u

v

f f

[u v] u v

[u v]

childleft right

childright

childleft childright

k

k k k k

k

k

k k

à

4. Localization process

4.1.1. Odometric data integration

�

 �

1

1

k

k

X

Y X

X

k k

�3

�

�
�

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 15

VOLUME 5,     N° 2     2011

X =k k �1 f x u v( , , ) with

= Xf u v( , ).k k�  �1 1 �

x 	 Xk k�  �1 1,

u v [u v]� 	 �



[ 1, 1] and [ 1, 1] for the left wheel. Kno-

wing the coder resolution , the angular displacements

of the left and right wheels are given by

(8)

As cannot be represented exactly, it is bounded. We

can deduce the longitudinal motion and rotational

motion by integrating the measurement errors on the

wheels radius and on the distance between the two rear

wheels 2 :

nt nt nt nt

n

s

R

e

r r l l

coder
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�
�

��

(9)

(10)

where is the measurement error on the wheel radius and

the measurement error on the distance between the two

rear wheels. These parameters are made larger than usual

to allow for the wheel slipping.

The classical evolution model, described in [28], [17],

is considered:

R

e
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(11)

Applying bounded parameters on (12) for each box

[ ] the bounded evolution of the vehicle is

described by the following inclusion function:

(12)

An outer-approximation may be calculated

using the IMAGESP (IMAGE SubPaving) algorithm

[11], because the set of boxes is described by

a subpaving and an inclusion function for the prediction

function is available.

The IMAGESP algorithm (Algorithm 5) may be

decomposed into three steps:

x

f

	 X

X

X

k k

k k

k k

�  �

 �

�  �

1 1

1

1 1

4.1.2. IMAGESP

Mincing the subpavings (line 1,Algorithm 5)

The boxes of the list OldList are bisected until their

width in all dimensions is lower than a specified precision

parameter . This step is detailed in the Algorithm 4

(function Mince). For each dimension of the paving (lines

3,7,11, Algorithm 4), if the length is higher than the

specified value , the box is bisected. A new box is then

added at the end of the list of boxes and will be considered

by the mince function later.

The images of the resulting boxes are then evaluated

using the inclusion function for and the Profil/Bias

library. According to Eq. (2), the union of these images is

guaranteed to contain ( ,[ ]). When decreases,

the image subpaving gets closer to the optimal

subpaving. However the price to be paid is an increased

prediction computing time.

The images are merged to get a subpaving guaranteed

to contain the configuration of the vehicle (line 6,

Algorithm 5). This last step builds a subpaving (a set of

non-overlapping boxes) represented as a binary tree. It

reduces the number of boxes that will have to be used in

further steps. Furthermore, the list List is no longer useful

and is deleted.

The estimation step integrates the data provided by the

sonars of the experimental platform.

�

�

� �

Calculating the inclusion function (line 2-4Algorithm 5)

Merging the subpaving (line 5-6Algorithm 5)

f

f u v

4.2. Estimation step
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4.2.1. Sonar data prediction

The measurement equation at time for the -th sonar

can then be described as

(13)

with the noise measurement [ ] = [ ( ([ ])),

( ([ ]))] and ( ([ ])) the smallest distance between

the sensor positioned at ([ ]) and the nearest segment

located inside the emission cone ( is the half aperture

cone). The computing of [ ] = ( ([ ])) is given in

Algorithm 6. For each wall of the environment (see line

1,2,3, Algorithm 6), the smallest distance between the

wall and a box is computed whilst taking into account the

robot uncertainty in which the sensor is guaranteed to be.

The segments are defined by their extremities ( and ).

The aperture cone extremities are described by the two

vectors and . More details of this function are repor-

ted in [20], [12], [11].

All measurement equations (13) may then be gathe-

k i

w

n

k,i i

i i

i

i

S
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h s x

h s x h s x

s x

r h s x

a b

u u

min []

1 2

red to form [ ]. Algorithm 6 allows an easy calculation

of [ ] but it is a rather crude description of the range

measurement process. Measurements resulting from mul-

tiple reflections of the transmitted wave, for instance, may

not be explained by this model. Nevertheless, experimen-

tal results show us that such a simulation provide good

enough localization results.

Each of the sonars of the vehicle provides a range

measurement. To the -th measurement , an interval

[ ] = [ , ] may be associated. All [ ],

measurements are gathered to form [ ]. The output [ ],

available at time , can be taken into account by updating

(the previous localization set obtained during the

prediction step) into an outer approximation

(14)

Since is described by a union of boxes, may

be obtained as a union of boxes using the SIVIA (Set

Inversion Via IntervalAnalysis) algorithm [11].
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4.2.2. SIVIA

Starting from the root of the binary tree provided by

the BUILDSP algorithm during the prediction step, each

box of the tree is evaluated using [ ] = ( ([ ])) as

following:

• If [ ] [ ] then any [ ] is thus consistent with

the measurements and noise bounds and [ ] is proved

to be in (line 8 Algorithm 7). [ ] is kept in the

solution list.

• If [ ] [ ] = then there is no in [ ] that is

consistent with the measurements and noise bounds

and [ ] does not belong to (line 11 Algorithm 7).

[ ] is eliminated.

• If [ ] [ ] and if [ ] < , then the box is too

little to be cut. At least one configuration in [ ] is

consistent with the measurements and noise bounds

and due to its small dimension, [ ] is kept (line 14

Algorithm 7).

r h s x

r y x x
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• If [ ] [ ] and if [ ] , the same tests are

applied to the right and left children (if they do not

exist they are calculated).

For ultrasonic range measurements, it sometimes

occurs than more than 50% of the data collected turn out to

correspond to outliers. These outliers may correspond to

an outdated map of the environment, to sensor failures, to

people moving in the environment, etc.As a consequence,

the set characterized by SIVIA may very frequently turn

out to be empty. To solve this problem, a robust variant

(Algorithm 9) of the correction step has to be used. This

variant keeps any [ ] which is consistent with at least

measurements among the available.

At the beginning of a correction step, the number of

outliers is unknown and should be calculated. A first

approach would be to characterize the set of all that are

r y x

x x

x

min � � � � �

	

k

o S

k

4.2.3. Robustness to outliers
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consistent with outliers, starting with =0 and increa-

sing by one until the solution becomes non-empty (line

1-5 inAlgorithm 8). Once such a nonempty set is obtained,

and if the number of outliers is smaller than - ,

one add a number of outliers to increase robust-

ness against undetected outliers (lines 6-10). However

this causes deterioration in the precision of the localiza-

tion. In order to deal with the outliers, the function SIVIA

should have a new parameter : the number of outliers

that have to be considered. This alters the algorithm accor-

dingly and leads to the Rob_SIVIAalgorithm presented in

Algorithm 9.

� �
�

� n security

security

n

S

o

This new algorithm looks like the Algorithm 7, but it

considers the sonar simulations one by one (line 5-14) to

determine the number of consistent measurements (line 9)

and erroneous measurements (line 11). If there are too

many erroneous data, the tree is not a solution (line 15-17).

If there are enough consistent data or if the minimum

precision is reached (line 18-22), the tree is kept. If none of

these cases occur then the current box is cut and the tests

are repeated on each of the new boxes.

Finally,Algorithm 10 resumes the localization process

using the presented algorithms.
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5. Complexity study
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In this section, the complexity of the localization

process is studied according to each algorithm presented

in the precedent parts.

During the prediction (Algorithm ), the functions

TREE_TO_LIST and IMAGESPare used.

This function iterates over the nodes of the tree and

creates a list of elements (with =

2 1 in the worst case scenario). Thus the complexity of

this algorithm is ( ).

IMAGESP is summarized in Algorithm and uses the

functions MINCE and BUILDSP.

The MINCE function (Algorithm ) starts from a list of

elements and bisects these boxes into 2 boxes until

their dimensions become smaller than e. In the worst case,

the number of operations is equal to the number of nodes

of a binary tree with leaves. Thus, the

complexity of this algorithm is ( ).

BUILDSP, presented in Algorithm 2, can be summarized

as:

line 2 calls the function Bounding (Algorithm )

which iterates over the list of boxes ( ( ))

lines 10-12 and lines 17-24 show two iterations over

the list of boxes ( (2 ))

lines 25-26, two recursive calls of BUILDSP

lines 27-28, the lists are deleted, two iterations over the

list of boxes ( (2 ))

Consequently, the list of boxes is visited 5 times at

each recursive call. The recursive calls are done until the

leaves of the tree are reached. Consequently, the

number of recursive calls is:

(15)

Two lists of boxes are created by BUILDSP. Each list

contains the boxes that cover a part of the considered

space. In the worst case, each list contains all the boxes of

the initial list.

The complexity of the BUILDSP function is (

) which can be simplified to ( ).

According to theAlgorithm :

line 1 uses the function Mince (Algorithm ) that has a

complexity of ( ),

lines 2-4, iterate over the list of boxes (complexity of

( )) ,

line 5 uses the function Bounding (Algorithm ),

which iterates over the list of boxes (complexity in

( )) ,

line 6 uses the function BUILDSP, which has a

5.1. Prediction step

The TREE_TO_LIST function complexity

The IMAGESPfunction complexity

The MINCE function complexity

The BUILDSPfunction complexity

Complexity of the prediction step
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complexity of ( ),

Line 7: the list is deleted ( ( )).

In addition, according to Algorithm , during

prediction step a call of TREE_TO_LIST and delete(tree)

is done. Each of them has a complexity in ( ).

Knowing that = 2 1 , we can replace

by in the above complexity. Then, we can

notice that the main part of the prediction step complexity

is due to BUILDSP. Finally, the overall complexity of the

prediction step is ( ).

During the estimation step (see Algorithm ), the

function Robust_localization (Algorithm ) is called up-

on. Next, Robust_localization uses the function Rob_SI-

VIA. Rob_SIVIA may be broken down into 2 main steps:

line 5-14, calls of sonar simulation,

lines 25-26, two recursive calls of Rob_SIVIA.
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The number of recursive calls of the function Rob_SI-

VIA depends on the number of boxes of the binary tree.

Thus Rob_SIVIA will be called a maximum of

times and the complexity of Rob_SIVIA is in

(see Algorithm 6), where is the

number of the walls. As Rob_SIVIA is called time by

the Robust_localization function, the complexity of the

estimation step is in .

The BUILSP algorithm has high complexity and is

realised during each prediction step ten to a thousand

times between each estimation step. The goal of the

BUILSP algorithm is to reduce further calculation (to

decrease the number of boxes and to eliminate overlap-

ping boxes). Nevertheless, the use of BUILSP is not

mandatory in the prediction step.

To decrease the calculation time of the prediction step,

the BUILSP algorithm was moved outside of the predic-

tion step and was only done before each estimation step.

This means that BUILSP is moved after the prediction

loop from the IMAGESP algorithm to between line 7

and 8 of Algorithm 10. It reduces the prediction step

complexity to and increases the estimation step

complexity to . Jointly

with this modification, the TREE_TO_LIST step and the

deletion of the tree are moved after each estimation step

(rather than before each prediction step). In return, the

number of boxes to be taken into account during the pre-

diction step increases, and overlapping boxes are present.

However, the whole calculation time decreases during the

prediction step as well as during the complete localization

process. Such an improvement was already applied in

[26, 25, 14].

The number of nodes of the binary tree is the

biggest when the number of leaf nodes is the

biggest. In such a case the tree is well balanced. is

the biggest when the leaf nodes have the smallest

�
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6. Toward a real-time computing

6.1. First improvement

6.2. Tuning of the parameter
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dimensions (lower than ).

Assuming that the bounding box of the studied set is

[ ] = [ ] [ ] [ ] and that defines the precision

parameter (any dimension of any box can be divided by 2

until its size is lower than ), the maximum number of

boxes is:

(16)

where is the smallest integer greater or equal to

and is the width of the box .

We can experimentally determine the maximum

number of boxes allowed to achieve a real time

computing. Next we need to maintain a number of boxes

lower or equal to in order to maintain a real time:

(17)

Thus, can be deduced from:

(18)

or equivalently by the following cubic function:

(19)

Equation (19) has at least one solution among the real

numbers. We retain the smallest value of if there is more

than one solution.

By considering that the three added boxes (the three

“1”) in Eq. (18) do not significantly modify the calculation

time, we obtain the following approximation:

(20)

We can now adapt the value to the embedded com-

puting power. Unfortunately, a high value leads to a poor

(imprecise) localization. This is the price paid for having

a slow embedded computer.

(Figure 2-a) is a generic electric vehicle

developed in the laboratory and equipped with an embed-

ded electronic system, actuators and sensors. This multi-

sensor platform has sufficient computing power to execu-

te the algorithm autonomously. Nevertheless, a Client/

Server architecture with wireless communication enables

high computing power calculations to be sent to a distant

computer. It allows the user to quickly add his own algo-

rithms so as to test his theoretical works.

An experimental platform is necessary for an experi-

mental validation of algorithms. However, real scale plat-

form is generally expensive to buy and maintain and

�
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inc inc inc inc

boxesleaves

x y

n

Minitruck

7. Experimental validation

moreover time-consuming [32, 4]. Most of the platforms

based on a reduced model, do not support time consuming

algorithms [31].

The platform (Figure 2-a) does not have

these disadvantages, the 400 Mhz Intel Xscale processor

(480 Mips) allowing the user to run consuming computing

programs directly on the platform. Furthermore, the

possibility of accessing a distant computer still increases

the computing power of the platform. In addition,

Minitruck has advantages of low development cost, low

maintenance demand, a small size and reduced weight.

There is also the possibility of doing indoor as well as

outdoor experiments with a low electrical consumption.

The platform embeds different kinds of sensors: ultra-

sound sonars, odometers and a camera with the possibility

of easily adding other sensors.Aclient-server architecture

was chosen with a powerful distant workstation. The com-

munication is ensured by a wireless connection and a high

level protocol that we defined. All the vehicle actuators

and sensors are accessible through the wireless network.

The vehicle also embeds a data server which can accept

requests and commands from one or more distant work-

stations.

Minitruck

(a) Minitruck

(b) The sensors

Fig. 2. Location of the sensors and uncertainty of the

sonar measurements.
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7.2. Experimental platform

7.2.1. Mechanical considerations

7.2.2. Electronic considerations

To reduce the development cost of the platform, an

existing mechanical base of a vehicle model reduced to

1/20 was used. With small size, 50 cm length by 22 cm

width, and a weight of less than 4 kg, the platform allows

easy experimentation indoors as well as outdoors. The

experimental platform can easily be carried everywhere.

The propulsion is provided by an electric motor (D.C.

motor) assembled on a reducer and a differential bridge on

the aft wheels. The vehicle is able to go forward and

backward and can reach speeds of up to 10 meters per

second because of a three gears gearbox. The vehicle

direction control is done by a numerical servo-motor on

the front wheels. It is able to turn the wheels from -35° to

+35°. Two other servo-motors are used to control the

motor speed through a power module and the gearbox.

For the power supply of the vehicle, two batteries

NiMh of 3300 mAh are used : one is soley for the electric

motor and the other is used for electronic purposes. Du-

ring our experiment, the autonomy of the vehicle was

about an hour depending on the speed and the command to

the servo-motors.

The embedded computer is based on an Intel Xscale

PXA270 processor which has a 32 bits core clocked at 400

mHz. Sold by the GUMSTIX company (www.gumstx.

com), it provides a complete Linux system based on the

2.6 Linux kernel. It integrates 128 MB SD-RAM, 4 MB

stratoflash and the possibility to add a MMC card (Multi

Media Card). It has several I/O peripherals (80 I/O pins

including 2 serial links, a wi-fi connection, I2C bus, SPI

bus, USB, etc.). In addition, another processor, an Atmel

128, is available and is used to connect the incremental

coders and the servo-motors. Figure 3 gives a synopsis

presenting how the various embedded modules are con-

nected to the Intel Xscale and the Atmel. The embedded

computing power is sufficient to implement on-board ba-

sic tasks like collision avoidance, Kalman filtering locali-

zation, path tracking, automatic parking [27], etc. Tasks

needing more computing power can be deported on a dis-

tant computer using a client-server architecture. In this ca-

se, the exchanged information is reduced to the sensor

data from the experimental platform and to the command

from the distant computer.

Fig. 3. Flowchart of the hardware.

7.2.3. Proprioceptive sensors

7.2.4. Exteroceptive sensors

Overview

The digital optical coders HEDS 5540, developed by

Hewlett-Packard, have a 500 points per turn angular

resolution. Basically, a beam goes through a disc (Figure

4), and two sensors detect the beam crossing. These two

sensors are needed to find the rotation direction. Counting

the electric crenels, for the right wheel and for the

left wheel deduces the angular displacement, see Eq. (8).

Due to the vehicle wheel radius of r=4 cm, incremental

coders give a half-millimeter-length precision, which is

considered sufficient given the mechanical precision.

They give information about the vehicle movements.

These movements are measured by an incremental coder

assembled on each rear wheel unit.

The platform is equipped with ten ultrasound sonars

that give back information about the distance between

them and any obstacle located in their aperture cone. The

Polaroid Ultrasonic Ranging module is popular in the

field of robotic sensor technology. Both its high current

consumption (150mA) and its large size are not well

adapted for a reduced model platform. The SFR08 of

Devantech (see Figure 5) were chosen because of their

small size (43x20x17 mm), their price (less than 60

Euros), their low consumption (50 mA during the shoot

and 3 mA in standby) and because they integrate all the

electronic treatments. Fixed around the vehicle, nine of

the sensors are in the truck cab and sweep the front and the

sides of the vehicle. A tenth sensor is placed on the rear of

the cab and sweeps the rear of the vehicle. The sensor’s

orientation and position are presented on Figure 2b).

Minimum sensing distance

Each ultrasonic module uses a transmitter resonator

and a receiver resonator, both calibrated at a frequency of

40 kHz. Considering the Fresnell zone [18], a close field in

which high wave perturbation makes it highly improbable

to detect any obstacle, we find:

(21)

where D=16 mm is the sensors diameter,

nt nt

Fig. 4. An incremental coder.

r l
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is the wavelength, =340 m.s the sound speed and =40

kHz is the resonator frequency. Thus, the sensor will not

be able to detect any obstacles below =7.5 mm.

During the emission, the SFR08 send out an eight

cycle burst at 40 kHz and is not able to detect any echo

because the sensor processor does not check the reception

resonator while it commands the emission resonator. Due

to the sound speed, we can deduce that the sensor is blind

below (including the

Fresnell zone).

In practice, the smallest distance the SFR08 succeeded

in detecting is 2.9 cm between the sensor and an obstable.

To this distance, we have to add the distance between the

external grid of the resonator and the membrane: 0.5 cm.

Thus, the minimum distance measured by the sensor is 3.4

cm. If the obstacle is closer than 3.4 cm then the calculated

distance is at least 3.4 cm. In fact the SFR08 consider the

first echo received after a time that corresponds to 3.4 cm.

Practice and theory give the same result. Consequently,

the measurement returned by the sonar simulator (see

Section 5.2) should be bigger than or equal to 3.4 cm.

During the reception, the SFR08 can listen to an echo

for a maximum of 65 ms. Its maximum sensing distance is

(65 ms*346 m/s)/2=11 m. Experimentation was done to

find the maximum distance the sensor is able to detect.

To this purpose, we proceeded to take samples of 100

measurements, increasing the distance gradually. At 5

meters, the sonar could never detect the obstacle. The wai-

ting time set by the manufacturer provides a maximum

sensing distance of 11 meters, much further than the 5

meters the SFR08 is actually capable of. We chose to

reduce this waiting time to 35 ms, which gives a theore-

tical maximum sensing distance of 5 meters, to reduce the

measurement time. Consequently, the measurement retur-

ned by the sonar simulator should be lower than or equal

to 5 m.

Several experiments were done to find the sensor’s

properties. The sensor was placed at 200 cm from the cei-

ling of the room to approach ideal conditions and we

proceeded to 1000 measurements.

The distribution gives an average of 200 cm with an

error of 2 cm (1%), the repartition of these data is shown in

Figure 6.

v f

l

Fig. 5. SFR08 sensor and angle beam.

�1

0

Maximum sensing distance

Measurement errors

In ideal conditions, the sensors detect the distance with

an error of about ± 1% (Figure 6). In addition to this error,

the temperature variation in the sound speed causes an

error in calculating the distance. Eq. (22) gives the sound

speed depending on the sound speed at 0°C

( =331.3 m.s ) and on the temperature of the environ-

ment in degrees Celsius.

(22)

If we consider a temperature of 20°C in the calculation

and if the real temperature is 25°C, an error of 1% on the

result has to be added. Thus, the total uncertainty

(Figure 2) on the distance measurements may be consi-

dered to be 2% of the result.

In the second experiment we considered real condi-

tions: the vehicle was placed on the ground at a distance of

200 cm from a wall. Figure 7 presents a distribution in

logarithmic scale of 2000 sonar measurements. We notice

that several shorter distances were detected by the sensor.

They are mainly due to reflections from the ground. Over-

all, almost 100 measurements were done under 190 cm.

That means that 5% of measurements have an error of mo-

re than 5%. These experiments were done several times,

showing that the data calculated by the sensor largely

Fig. 6. Sonar data distribution.

Fig. 7. Other experiment.
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depends on the environment (floor, walls). The measure-

ment error is set to 6% (5% + 1% in order to take into

account the temperature change). Thus, =6% in Equa-

tion (13).

An obstacle is detected if it is in the emission cone of

the sensor. This aperture cone depends on the incidence

angle between the sensors and the object, the material of

the object and its distance from the sensor. Experimenta-

tion showed that a maximal half aperture cone of 22° can

be considered. It is the largest angular deviation for which

a useful signal could be collected. This is consistent with

the 3 dB beam width that can be obtained from Figure 5.

Using data obtained from the experimental platform

Minitruck, the bounded error state estimation method was

employed to solve the localization problem. The model

uncertainties (Equations (9), (10) and (13)) are taken as

=5 mm, =5 mm and =0.05 . The parameter was

automatically calculated using Eq. (20).

�

�

� � � �

Aperture cone

7.3. Experimental results

r e

During this experiment, Minitruck moved in a corridor

of our laboratory at a low speed (10 cm/s) (see Figure 8).

The curved solid line in Figure 9 represents the vehicle

trajectory as provided by the odometric data alone. This

predicted trajectory deviates from the actual trajectory.

Such a localization error is due to an error in the initial

configuration, the wheels slipping on the ground during

Fig. 8. Minitruck in its environment.
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Fig. 9. Position of Minitruck as evaluated from odometric data alone.

Fig. 10. Projections onto the (X,Y)-plane of 26 subpavings.
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the experiment and inaccurate values of the distance bet-

ween the rear wheels and of their diameter. On a forty-

meter course, the error on the arrival point is almost four

meters.

Sonar measurements were collected each second.

Unfortunately, a large part of this data has to be considered

as erroneous and does not correspond to any charted ele-

ment. The presence of outliers is due not only to the uncer-

tainty of the results returned by the sensors but also to

foreign elements not represented on the map which were

in the field of the sensors at the time of measurements,

such as people walking in the corridor and uncharted

elements.

Thus, the correction step should only consider the

relevant part of telemetric measurements, and be robust to

the presence of outliers. In average, about 20 to 30 % of

the measurements had to be considered as erroneous.

In this experiment, the initial configuration of

is only known to satisfy [26,0 m;26,5 m],

[0,8 m;1,0 m] and [350,10].

Figure 10 displays the projection onto the ( )-plane

of 26 estimated configuration subpavings taken during the

tracking of . Despite the large amount of erro-

neous data, a relatively precise localization is provided,

often with a precision of about 20 cm.

At the end of this experiment, the final configuration is

well estimated (Table 1). The actual configuration is re-

presented on Figure 10 and contained in the last subpaving

provided.

These results show the ability of the bounded-error

localization technique to work in real time in a real envi-

ronment.

([ ])

(.) [ ]

Mini-

truck x y

X,Y

Minitruck

Table 1. Actual configuration and estimated configuration

subpaving provided by the bounded-error localization

technique.

f x

f x

	 	
� 	

8. Conclusion
In this paper, we presented in detail the bounded-error

implementation and algorithms used to localize a mobile

robot equipped with sonars. The algorithms of IMAGESP

and BUILDSP for the prediction step, and the algorithms

of SIVIA for the estimation step were provided. A com-

plexity study of these algorithms was carried out. Further-

more, we gave a tuning of the parameter that allows us to

achieve a real time localization. The final experiment pro-

vides results that show the ability of the bounded-error

state estimation to solve the localization problem in real

time. Further works will concern an acceleration of the

estimation step (the most time consuming part of the algo-

rithm) so as to enhance the localization precision on the

slowest of computers.
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