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Abstract:
A single‐input single‐output linear system can model
various physical systems. One of the challenges in con‐
trolling practical systems is that the settling point and
settling time cannot be prescribed simultaneously. This
paper presents a novel self‐tuning control (STC) algo‐
rithm for scalar systems that ensures system stability
while allowing both the settling time and settling point
to be predetermined. To evaluate the effectiveness of
the proposed control method, four possible scenarios will
be defined. For each scenario, three different cases will
be examined in the simulation section. Linear quadratic
regulation (LQR) will be used for comparison. MATLAB
software will be employed to test and simulate these
cases. The simulation results will demonstrate that STC is
an optimal solution for scalar linear systems, comparable
to LQR, with the significant advantage of guaranteeing
the achievement of the desired settling point within the
predefined settling time.

Keywords: self‐tuning, optimization, control, preselected
time, preselected state, hamiltonian

1. Introduction
Control methods have been developed to stabi‐

lize practical systems. The control problems include
regulation (stabilization), tracking, and path follow‐
ing. Linear quadratic regulation (LQR), (Proportional
Integral Derivative) PID, and model predictive control
(MPC) are the most popular control methods. These
methods have some advantages and some disadvan‐
tages. One of the most essential parameters in control
systems is deϐining the settling time and settling point.
Some algorithms are developed to predict, determine,
and calculate the settling time or settling point [1–
4]. The predeϐined time algorithms can provide the
upper bound of the settling (stabilization) time before
applying the control signal to the system [5–9]. But
no method provides a way to deϐine the settling time
and settling point simultaneously anddetermining the
accurate settling time is another challenge.

Tuning the control parameters is another chal‐
lenge in control systems. The control parameters
should be tuned to satisfy the control goals. The PID
controller is one of the most common control meth‐
ods, but it has a tuning control parameters problem.
There are somemethods outlined in the literature that
solve this problem [10–14]. Another issue in PID is

that the user cannot deϐine the settling time and be
sure that the system’s output will reach the settling
point at the predeϐined settling time. The LQR tech‐
nique provides an optimal solution by tuning the con‐
trol parameters. However, the settling time of the con‐
trolled system remains an open research challenge.

A self‐tuning control (STC) approach has been
deϐined as a method that predicts/adjusts control
parameters. These methods are known as “parame‐
ter tuners.” The parameter tuners are of two types:
ofϐline and online [15–17]. The main contribution of
the parameter tuners is increasing the control perfor‐
mance. In some cases, the parameter tuners are the
main part of the control method within the control
system. In these cases, the control method is called an
STCmethod. One of the challenges in the STCmethods
is the system’s stability. In the parameter tuners, the
system’s stability is not a problem, since the system’s
stability should be guaranteed by the main control
method. Fuzzy logic is one of the most commonmeth‐
ods used to design the controllers as the parameter
tuner [18]. The main controller in this study is a non‐
singular PID ϐinite‐time sliding mode control (FSMC).
The FSMC guarantees system stability, and the fuzzy
logic system tunes the control parameters. In other
studies [18–20], fuzzy logic is used as the tuner, and
the main controller is PID. In studies [21–24], other
types of tuners have been introduced to adjust the
control parameters, which can be categorized as STC
methods. These works have developed relay feedback
systems for parameter tuning.

The settling time is an important parameter in
the performance of a system. Different stabilization
methods can guarantee various settling times [25–30].
Anasymptoticstabilizationmethodrequiresaninϐinite
amount of time to guarantee stability. However, a
ϐinite‐time method provides stability with a limited
upper‐bound settling time [31]. Fixed‐time stabiliza‐
tion methods are terminal methods that provide an
upper bound on the settling time, independent of
the system’s initial condition [32, 33]. Predeϐined‐
timestabilizationmethodsprovideϐixed‐timestability,
where the settling time is a controller parameter [34].
Preselected‐time control is deϐined as amethodwhere
the settling time is chosen in advance, ensuring that
the system’s state reaches the preselected‐state at the
exact time. The time selected in the preselected‐time
approach canbe considered the settling timewhen the
preselected state (point) is chosen to be very close to
zero.
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In most cases in control systems, it is neces‐
sary to know/deϐine the settling point and settling
time together. Some studies have been published that
present ways of calculating, determining, and deϐining
the settling time and settling point separately, but
deϐining the settling time and settling point together
is an excellent feature for users. In this study, an STC
method will be designed to tune the control parame‐
ter of the scalar systems. The proposed STC method
provides the possibility of deϐining the settling point
and settling time simultaneously. The Hamiltonian
conditions will be used to prove the optimality of the
method. The features of the proposed STCmethod are
as follows:
‐ It is possible to select the settling point (preselected
state) and settling time (preselected time) simulta‐
neously.

‐ It uses a Lyapunov‐based stabilization method.
‐ It is a practicable method that can be used in differ‐
ent applications.

‐ The proposed STC method provides an optimal
solution for single‐input single‐output (SISO) linear
(scalar) systems.

‐ It is a linear predeϐined‐time solution for linear sys‐
tems.

‐ It provides four possible scenarios.
‐ It can be updated for the tracking problem and
(Multi‐Input Multi‐Output) MIMO systems.

‐ It provides an exponential solution without any
unwanted overshoot and lower shoot for scalar sys‐
tems where 𝑦 = 𝑥.

2. Problem Statement
A suitable controller for practical systems should

have the following features.
Consider the following SISO linear scalar system:

ቊ𝑥̇ = 𝑎𝑥 + 𝑏𝑢
𝑦 = 𝑥 , 𝑥 (0) = 𝑥0, (1)

where 𝑥 ∈ ℝ is the system’s state, 𝑦 ∈ ℝ is the
system’s output, 𝑎 ∈ ℝ, 𝑏 ∈ {ℝ− {0}} are the system’s
parameters, 𝑢 ∈ ℝ is the control input, and 𝑥0 ∈ ℝ is
the initial condition of the system. The control input
should guarantee the system’s stability and satisfy the
discussed features. It is assumed that the system’s
state is available for designing the controller. On the
other hand, the system uses the feedback of the state.

Remark 1: In practical and controllable systems,
the system’s parameter 𝑏 is not equal to 0.

The STC will guarantee that the system’s state
reaches a speciϐic point at a predeϐined time, which
will be selected by the system’s user. This speciϐic
point and predeϐined time will be chosen simulta‐
neously. Also, the solution will be optimal, which is
proven by theHamiltonian equations. The nonoptimal
solution of the STC was published in [17] as an ofϐline
self‐tuning controller (OSTC).

In OSTC, two performance criteria [integral of
absolute error (IAE) and integral time absolute error
(ITAE)] are considered for preparing some formulas
to use in tuning the control parameters. In the OSTC
method, some rules are predeϐined, and the control
parameters are tuned accordingly before applying the
controller to the system. However, in STC (online)
methods, the control parameters are adjusted dynam‐
ically while controlling the system.

In this paper, the Hamiltonian equations will be
used to design the optimal solution of the controller.
Considering the system (1) and the following cost
function:

𝐽 = න𝑄𝑥2 + 𝑅𝑢2𝑑𝑡, (2)

where 𝑄 ∈ ℝ≥0 and 𝑅 ∈ ℝ>0 are the weight param‐
eters. The Hamiltonian equation for this system and
cost function is as follows:

𝐻 = 𝑄𝑥2 + 𝑅𝑢2 + 𝜆 (𝑎𝑥 + 𝑏𝑢) , (3)

where 𝜆 is the costate variable. The Hamiltonian con‐
ditions are presented as follows [35–37]:

⎧

⎨
⎩

𝜕𝐻
𝜕𝑥 = −𝜆̇
𝜕𝐻
𝜕𝜆 = 𝑥̇
𝜕𝐻
𝜕𝑢 = 0

. (4)

The STC control inputwill be designedbyusingHamil‐
tonian conditions.

3. Self‐Tuning Controller Design
Considering the SISO scalar linear system of Equa‐

tion (1) and the cost function of Equation (2), in order
to have an optimal self‐tuning solution for these con‐
ditions, the following equation is used:

ቐ
𝑢 = 1

𝑏 (−𝑎𝑥 + 𝑢𝑆𝑇𝐶)

𝑢𝑆𝑇𝐶 = −𝑃𝑥; 𝑃 =
ln൬ 𝑥0𝑥𝑠 ൰

𝑇𝑠

, (5)

where 𝑃 is the STC parameter that is a positive con‐

stant as 𝑃 =
ln൬ 𝑥0𝑥𝑠 ൰
𝑇𝑠

, where 𝑥0 is the initial condition
of the system’s state, 𝑥𝑠 is the settling point (which
we can choose and want to reach at the predeϐined
settling time), and 𝑇𝑠 is the predeϐined settling time.
Figure 1 shows the block diagram of the proposed STC
method.

Remark 2: The concept of the STC method is
that the user can choose the settling point (position)
and settling time together. This is one of the greatest
advantages of this method.

Remark 3: A settling point is a value with the
same sign as the initial condition, less than a positive
initial condition, and greater than a negative initial
condition. This fact causes the system not to have any
unwanted overshoot or lower shoot.

Theorem 1: The scalar linear system (1) will be
stabilized as an optimal solution considering the cost
function (2) by the self‐tuning controller (5).
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Figure 1. Block diagram of the STC method

Proof: The cost function of Equation (2) can be
written as

𝐽 = න𝑄𝑥2 + 𝑅𝑢2𝑑𝑡 = න𝑄𝑥2 + 𝑅𝑏−2(−𝑎𝑥 + 𝑢𝑆𝑇𝐶)
2𝑑𝑡.
(6)

The Hamiltonian equation of system (1) and the cost
function (6) is as follows:

𝐻 = 𝑄𝑥2 + 𝑅𝑏−2(−𝑎𝑥 + 𝑢𝑆𝑇𝐶)
2 + 𝜆𝑢𝑆𝑇𝐶 . (7)

The Hamiltonian conditions of Equation (7) can be
written as

⎧

⎨
⎩

𝜕𝐻
𝜕𝑥 = −𝜆̇ = 2𝑄𝑥 + 𝑅𝑏−2 ൫−2𝑎𝑢𝑆𝑇𝐶 + 2𝑎2𝑥൯ , (𝐴)
𝜕𝐻
𝜕𝜆 = 𝑥̇ = 𝑢𝑆𝑇𝐶 , (𝐵)
𝜕𝐻

𝜕𝑢𝑆𝑇𝐶
= 0 = 𝑅𝑏−2 (−2𝑎𝑥 + 2𝑢𝑆𝑇𝐶) + 𝜆. (𝐶)

(8)
These conditions can be simpliϐied as follows:

from (𝐶) ∶ 𝜆 = −𝑅𝑏−2 (−2𝑎𝑥 + 2𝑢𝑆𝑇𝐶)

⟹ 𝜆̇ = −𝑅𝑏−2 (−2𝑎𝑥̇ + 2𝑢̇𝑆𝑇𝐶) ; (𝐷) (9)

from−(𝐷) = (𝐴)we have

𝑅𝑏−2 (−2𝑎𝑢𝑆𝑇𝐶 + 2𝑢̇𝑆𝑇𝐶)

= 2𝑄𝑥 + 𝑅𝑏−2 ൫−2𝑎𝑢𝑆𝑇𝐶 + 2𝑎2𝑥൯ ; (10)

after a simpliϐication can be written

𝑅𝑏−2𝑢̇𝑆𝑇𝐶 = 𝑄𝑥 + 𝑅𝑏−2𝑎2𝑥. (11)

As 𝑢̇𝑆𝑇𝐶 = −𝑃𝑥̇, and 𝑥̇ = 𝑢𝑆𝑇𝐶 , so we can write

−𝑅𝑏−2𝑃𝑥̇ = 𝑄𝑥 + 𝑅𝑏−2𝑎2𝑥

⟹ −𝑅𝑏−2𝑃𝑢𝑆𝑇𝐶 = 𝑄𝑥 + 𝑅𝑏−2𝑎2𝑥. (12)

After a simpliϐication,

𝑅𝑏−2𝑃2𝑥 = 𝑄𝑥+𝑅𝑏−2𝑎2𝑥 ⟹ 𝑅𝑏−2𝑃2 = 𝑄+𝑅𝑏−2𝑎2.
(13)

The STC parameter will be achieved as follows:

𝑃 = ඨ𝑄
𝑅𝑏

2 + 𝑎2. (14)

As deϐined previously, the STC parameter is equal to

𝑃 =
ln൬ 𝑥0𝑥𝑠 ൰
𝑇𝑠

, and from the Hamiltonian, it is calculated

as 𝑃 = ට𝑄
𝑅𝑏

2 + 𝑎2. These equations can be equal as

𝑃 =
ln ൬𝑥0𝑥𝑠 ൰
𝑇𝑠

= ඨ𝑄
𝑅𝑏

2 + 𝑎2

⟹ 𝑄
𝑅 = ⎛

⎝

൮
ln ൬𝑥0𝑥𝑠 ൰
𝑇𝑠

൲

2

− 𝑎2⎞

⎠

𝑏−2. (15)

This result is the self‐tuning tool that allows us to
deϐine different scenarios. These scenarios will be dis‐
cussed in the next section.

The Lyapunov theory is employed to prove the
stability of the self‐tuning controller. The following
Lyapunov function can be deϐined:

𝑉 = 1
2𝑥

2 ⟹ 𝑉̇ = 𝑥𝑥̇ ⟹ 𝑉̇ = 𝑥 (𝑎𝑥 + 𝑏𝑢) . (16)
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After applying the control input to the system,we have
the following:

𝑉̇ = 𝑥𝑢𝑆𝑇𝐶 ⟹ 𝑉̇ = −𝑃𝑥2

⟹ 𝑉̇ = −2𝑃𝑉 ⟹ 𝑉̇ = −𝜌1𝑉 ≤ 0, (17)

where 𝜌1 = 2𝑃 is a positive value. Therefore, the sta‐
bility of the system is proven by the Lyaponuv stability
theory [38].

To prove the fact that the self‐tuning controller
guarantees that the chosen settling point will be
reached at the predeϐined settling time, we can solve
the system’s differential equation as follows:

𝑥̇ = 𝑢𝑆𝑇𝐶 = −𝑃𝑥 ⟹ 𝑥 (𝑡)

= 𝑥0𝑒−𝑃𝑡 ⟹

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑥𝑠 = 𝑥 (𝑇𝑠) = 𝑥0𝑒−𝑃𝑇𝑠
𝑜𝑟

𝑇𝑠 =
ln൬ 𝑥0𝑥𝑠 ൰

𝑃
𝑜𝑟

𝑃 =
ln൬ 𝑥0𝑥𝑠 ൰
𝑇𝑠

. (18)

Therefore, theorem 1 is proven, and the settling point
will be reached at the settling time by applying the STC
control signal to the system.

The controlled system’s response is 𝑥 (𝑡) =
𝑥0𝑒−𝑃𝑡 , which exhibits exponential behavior and
ensures stability, as lim𝑡→∞ 𝑥 = 0.

Remark 4: Relations in Equation (18) show the
relationship between the predeϐined settling time, set‐
tling point, and STC parameter. These relations can be
used to calculate the proper values of the parameters
by deϐining (selecting) two other parameters.

Remark 5: As evident in Equation (18), the sys‐
tem’s state and control signal of the STC method will
change exponentially. It is provable that for every STC
solution of the SISO linear system, there is an optimal
solutionwith a speciϐied cost function. By the terms of
Equation (15), the weight parameters of the speciϐied
cost function can be calculated.

Remark 6: The presented STC method can be
extended to MIMO linear systems by decoupling the
ϐirst‐order SISO subsystems as follows:

𝐴 = 𝑑𝑖𝑎𝑔 (𝑎1, 𝑎2, … , 𝑎𝑛) = ቎
𝑎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑎𝑛

቏

𝐵 = 𝑑𝑖𝑎𝑔 (𝑏1, 𝑏2, … , 𝑏𝑛) = ቎
𝑏1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑏𝑛

቏
. (19)

4. Different Possible Scenarios
Considering Equation (15), four scenarios can be

envisioned for the proposed STC method. In this sec‐
tion, these scenarios will be discussed.
4.1. First Scenario

The main goal of the STC method is that the set‐
tling point (𝑥𝑠) and predeϐined settling time (𝑇𝑠) occur
simultaneously.

In the ϐirst scenario, the user should select the
settling point, settling time, and weight parameter 𝑅
in the cost function; then the STC will calculate the
control parameter 𝑃 and the weight parameter of 𝑄.
4.2. Second Scenario

The second scenario is similar to the ϐirst one, but
in this scenario, the weight parameter 𝑄 should be
selected by the user, and 𝑅 and 𝑃 will be calculated by
the STC.

Remark 7: In general, the weight parameters of
the cost function can be positive or negative, but in
most cases, a positive value for these parameters is
required. In order to have positive values of the weigh
parameters (𝑄 and 𝑅) in the ϐirst and second scenar‐
ios, one of the following conditions is necessary:

⎧⎪
⎨⎪⎩

𝑇𝑠 < อ
ln൬ 𝑥0𝑥𝑠 ൰

𝑎 อ

𝑜𝑟
𝑥𝑠 < ቚ 𝑥0

𝑒|𝑎𝑇𝑠| ቚ

. (20)

4.3. Third Scenario

In this scenario, the weight parameters of the cost
function 𝑄 and 𝑅 and the settling point 𝑥𝑠 should be
deϐined by the user, and the settling time 𝑇𝑠 and con‐
trol parameter 𝑃 will be calculated by the STC. In this
scenario, the weight parameters should be positive.
4.4. Fourth Scenario

This scenario is similar to the third scenario, but in
this scenario, the settling time and weight parameters
should be selected, and the control parameter and
settling point will be calculated.

In all scenarios, the control parameter will be cal‐
culated by the deϐined condition (other parameters);
then the control parameter will be applied to the sys‐
tem (1). In the previous section, the system stability of
the STC method was proven.

5. Simulations
In this section, three practices will be deϐined and

simulated for every scenario. First, it is necessary to
determine the system’s parameters and the desired
parameters; then the STC will calculate the rest of the
parameters and the value of the cost function.

MATLAB software has been used to simulate the
scenarios with the ode4 solver, and the step time
equals 0.01. The calculations havebeendoneup to two
decimal places.

For all practices, the values of the cost functions
for the STC, LQR, and proportional (P) controllers are
presented, and the results are compared with those of
the LQR and P controllers tuned using the PID block in
Simulink/MATLAB. It is expected that the comparison
results for the STC and LQR will be the same.
5.1. Simulations for the First Scenario

The determined scalar linear system is as follows:

𝑥̇ = −4.5𝑥 + 0.6𝑢, 𝑥 (0) = 10. (21)
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Table 1. Parameters in different practices of the first scenario

Practices Parameters
Selected by the User

Parameters Calculated by
the STC Method

Calculated Values of the Cost
Functions

𝑥𝑠 𝑇𝑠 𝑅 𝑄 𝑃 𝐽𝑆𝑇𝐶 𝐽𝐿𝑄𝑅 𝐽𝑃𝐼𝐷
1𝑠𝑡 8 0.1 10 13268.90 22.31 5.11 × 104 5.11 × 104 5.70 × 104
2𝑛𝑑 0.5 0.5 1 43.47 5.991 428.9 428.9 1015.8
3𝑟𝑑 0.01 1 0.1 7.63 6.908 68.08 68.08 113.57

Figure 2. Simulation results of the first practice of the first scenario

Figure 3. Simulation results of the second practice of the first scenario
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Figure 4. Simulation results of the third practice of the first scenario

Table 2. Parameters in different practices of the second scenario

Practices Parameters
Selected by the User

Parameters Calculated by
the STC Method

Calculated Values of the Cost
Functions

𝑥𝑠 𝑇𝑠 𝑄 𝑅 𝑃 𝐽𝑆𝑇𝐶 𝐽𝐿𝑄𝑅 𝐽𝑃𝐼𝐷
1st –1 2 8.093 0.5 0.8047 263.9 263.9 513.41
2nd –4 0.02 311206.2 100 11.16 720678.15 720678.15 1366900
3rd –0.01 1.5 4.291 0.01 4.143 26.53 26.53 27.1698

Figure 5. Simulation results of the first practice of the second scenario
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Figure 6. Simulation results of the second practice of the second scenario

Figure 7. Simulation results of the third practice of the second scenario

Three practices are deϐined to test the proposed STC
algorithm. The simulation results are presented in
Table 1. Figures 2, 3, and 4 show the simulation
results of the different practices. In the ϐigures, the

selected settling point and settling time are shown.
The P controller has been tuned using the PID
block Simulink/MATLAB. The P controller is tuned as
𝑢𝑃𝐼𝐷 = −𝐾𝑝𝑥, where 𝐾𝑝 = 15.3191 for this scenario.
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Table 3. Parameters in different practices of the third scenario

Practices Parameters
Selected by the User

Parameters Calculated by
the STC Method

Calculated Values of the Cost
Functions

𝑥𝑠 𝑄 𝑅 𝑇𝑠 𝑃 𝐽𝑆𝑇𝐶 𝐽𝐿𝑄𝑅 𝐽𝑃𝐼𝐷
1st 0.5 1 1 0.40 2.6 0.8997 0.8997 6.6644
2nd 0.01 4 0.2 0.42 11.63 0.8022 0.8022 1.4403
3rd 1 0.04 0.2 0.35 1.163 0.08111 0.08111 1.3284

Figure 8. Simulation results of the first practice of the third scenario

Figure 9. Simulation results of the second practice of the third scenario

5.2. Simulations for the Second Scenario

The determined scalar linear system for the sec‐
ond scenario is as follows:

𝑥̇ = 0.01𝑥 + 0.2𝑢, 𝑥 (0) = −5. (22)

The simulation results of the second scenario are pre‐
sented in Table 2. Figures 5, 6, and 7 show the simu‐
lation results of the different practices. In the ϐigures,
the selected settling point and settling time are shown.
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Figure 10. Simulation results of the third practice of the third scenario

Table 4. Parameters in different practices of the fourth scenario

Practices Parameters
Selected by the User

Parameters Calculated by
the STC Method

Calculated Values of the Cost
Functions

𝑄 𝑅 𝑇𝑠 𝑥𝑠 𝑃 𝐽𝑆𝑇𝐶 𝐽𝐿𝑄𝑅 𝐽𝑃𝐼𝐷
1st 4 2 3 –0.23 0.8544 38.39 38.39 62.4464
2nd 0.01 60 10 –1.1 0.1003 0.4563 0.4563 102.9896
3rd 1 1 0.01 –2.982 0.6083 13.05 13.05 16.4667

Figure 11. Simulation results of the first practice of the fourth scenario
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Figure 12. Simulation results of the second practice of the fourth scenario

Figure 13. Simulation results of the third practice of the fourth scenario

The P controller has been tuned using the PID
block Simulink/MATLAB. The P controller is tuned as
𝑢𝑃𝐼𝐷 = −𝐾𝑝𝑥, where 𝐾𝑝 = 15.3191 for this scenario.

5.3. Simulations for the Third Scenario

The selected scalar linear system for this scenario
is as follows:

𝑥̇ = 0.025𝑥 + 2.6𝑢, 𝑥 (0) = 1.5. (23)
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The simulation results are presented in Table 3.
Figures 8, 9, and 10 show the simulation results of the
different practices. In the ϐigures, the selected settling
point and settling time are shown. TheP controller has
been tuned using the PID block Simulink/MATLAB.
The P controller is tuned as 𝑢𝑃𝐼𝐷 = −𝐾𝑝𝑥, where
𝐾𝑝 = 15.3191 for this scenario.
5.4. Simulations for the Fourth Scenario

The determined scalar linear system for the fourth
scenario is as follows:

𝑥̇ = −0.1𝑥 − 0.6𝑢, 𝑥 (0) = −3. (24)

The simulation results are presented in Table 4. Fig‐
ures 11, 12, and 13 show the simulation results of the
different practices. In the ϐigures, the selected settling
point and settling time are shown. TheP controller has
been tuned using the PID block Simulink/MATLAB.
The P controller is tuned as 𝑢𝑃𝐼𝐷 = −𝐾𝑝𝑥, where
𝐾𝑝 = −0.3404252 for this scenario.

For the four possible scenarios, three practices are
deϐined and tested under various conditions. In all
practices across all scenarios, the selected or calcu‐
lated settling time and settling point are accurately
achieved. The STC is compared with the LQR and P
controllers, and the cost function calculations indicate
that the STC achieves the same optimal results as the
LQR while performing signiϐicantly better than the P
controller.

6. Conclusion
This paper presents a new control strategy named

a self‐tuning controller. The proposed STC can sta‐
bilize the scalar linear system. This method can be
updated for MIMO linear systems. The simulation
results show the power of the proposed method. The
STC is comparedwith the LQRmethod, and the results
demonstrate that STC provides an optimal solution for
the system. Also, it can control the system to reach the
settling point at the predeϐined settling time. Future
works can focus on developing a MATLAB toolbox for
the STC method and developing the STC for MIMO
systems and tracking problems.
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