
Abstract:

1. Introduction

Swarm Intelligence is the part of Artificial Intelligence

based on study of actions of individuals in various decen-

tralized systems. The optimization algorithms which are

inspired from intelligent behavior of honey bees are

among the most recently introduced population based

techniques. In this paper, a novel hybrid algorithm based

in Bees Algorithm and Particle Swarm Optimization is

applied to the Knapsack Problem. The Bee Algorithm is

a new population-based search algorithm inspired by the

natural foraging behavior of honey bees, it performs

a kind of exploitative neighborhood search combined with

random explorative search to scan the solution, but the

results obtained with this algorithm in the Knapsack

Problem are not very good. Although the combination of

BA and PSO is given by BSO, Bee Swarm Optimization,

this algorithm uses the velocity vector and the collective

memories of PSO and the search based on the BA and the

results are much better. We use the Greedy Algorithm,

which it's an approximate algorithm, to compare the

results from these metaheuristics and thus be able to tell

which is which gives better results.

Keywords: swarm optimization, PSO, BA, BSO, Knap-

sack Problem.

Evolutionary and meta-heuristic algorithms have been

extensively used as search and optimization tools during

this decade in several domains from science and enginee-

ring to the video game industry, and others.

Many demanding applications that involve the solu-

tion of optimization problems of high complexity, a lot of

these belonging to a special class of problems called NP-

hard have been solved by various methods [8]. Metahe-

uristic algorithms are now considered among the best

tools must to find good solutions with a reasonable invest-

ment of resources.

As described by Eberhart and Kennedy [4] Particle

Swarm Optimization or PSO algorithm is part of the

Swarm Intelligence and is a metaheuristics that use the

social-psychological metaphor; a population of indivi-

duals, referred to as particles, adapts by returning stochas-

tically toward previously successful regions. The PSO

simulate a society where each individual contributes with

his knowledge to the society. These metaheuristics have

proved their ability to deal with very complicated optimi-

zation and search problems.

The behavior of a single ant, bee, termite or wasp often

is too simple, but their collective and social behavior is of

paramount significance. The collective and social beha-

vior of living creatures motivated researchers to undertake

the study of today what is known as Swarm Intelligence

[5]. Two fundamental concepts, self-organization and

division of labor, are necessary and sufficient proper-

ties to obtain swarm intelligent behavior.

The Bee Algorithm or BA [10] is also part of the

Swarm Intelligence and this mimics the honey bees and

who this search their food foraging. This algorithm is ba-

sed on a random search on the neighborhood for combi-

natorial and functional optimization.

The Knapsack Problem is a classical combinatorial

problem [3], [15] can be described as follows: “Imagine

taking a trip to which you can only carry a backpack that,

logically, has a limited capacity. Given a set of items, each

with a weight and a value, determine the number of each

item to include in a bag so that the total weight is less than

a given limit and the total value is as large as possible”,

this problem can be considerate as NP-easy problem but

some studies show that the Knapsack Problem is an NP-

Hard problem [2].

Actually the Knapsack Problem can be modeled by

different ways [16] for example multi-dimensional and

multiple Knapsack problem [1], [14], [17], quadratic

Knapsack problem [6], [13].

In the present paper we introduce the Bee Swarm Opti-

mization or BSO. This algorithm is a hybrid metaheu-

ristic between the PSO and the BA. The BSO use the better

characteristics from both algorithms, the Social Metaphor

from the PSO and the random search in the neighborhood

from the BA, and give us a better result. The experiments

were made on seven types of instances from uncorrelated,

to uncorrelated similar weight. All these instances probe

the algorithm varying the parameters of the profits and the

weight. The algorithms were probed with different me-

thods for generating the initial populations [9] like ran-

dom solutions, uniformly distributed solutions and greedy

base solutions. Another important characteristic is the

fitness's Confidence Interval for saying what metaheuris-

tic with who initial population is better. It was necessary to

have a comparison point for the metaheuristics and was

use the Greedy Algorithm [3], this is a deterministic algo-

rithm who gives an approximate result for the Knapsack

Problem.

2. Knapsack Problem
The Knapsack problem [15] is the typical combina-

torial problem that has been studied since many years ago

and was proved that it is a NP-Hard problem [12]. The ba-

sic problem is the 0-1 Knapsack Problem or Binary

Knapsack Problem and it have a search space of 2 – 1n

APPLICATION OF THE BEE SWARM OPTIMIZATION BSO
TO THE KNAPSACK PROBLEM

Marco Aurelio Sotelo-Figueroa, Rosario Baltazar, Juan Martín Carpio

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 5, N° 1 2011

Articles 101

possible solutions.

The Knapsack Problem can be described as follows:

“there are objects, each of this objects have a profit and

weight, and needs to select those whose sum of their bene-

fits is maximized subject to the sum of the weight of the

same objects should not exceed an amount determined”.

It can be formulated mathematically by numbering each

of its objects or items from 1 to and introducing it to

a vector of binary variables = 1,2,3,..., , where each

variable represented here will take the value 1 or 0 depen-

ding on whether it is selected or not.

The solution to the Knapsack Problem is select a sub-

set of objects from the binary vector , solution vector, that

satisfies the constraint on the equation (2) and the same

time maximize the objective function on the equation (1).

(1)

(2)

where:

represents the profit.

The Knapsack Problem is affected by the relationship

between the profit and the weight of the objects; these

types of instances are the following:

the profits and Weight are distributed

uniformly between one and a maximum number.

(3)

the Weight is distributed uniformly

between one and a maximum number and the profits are

distributed uniformly around the weight and an ratio.

(4)

the Weight is uniformly distri-

buted between one and a maximum number; the profits

are the Weight plus one constant.

(5)

the profits are distributed

uniformly between one and a maximum number and the

Weight is the profits plus one constant.

(6)

the Weight is distributed

uniformly between one and a maximum number and the

profits are the Weight plus one random number between

one and a maximum number.

n

n

x n

x

z

Uncorrelated:

V

Weakly correlated:

V

R

Strongly correlated:

V

K

Inverse strongly correlated:

V

K

Almost strongly correlated:

V

S

j

�

�

�

�

�

�

represents the j-th object.

indicates whether the j object is part of the solution.

is the j-th object profit.

is the j-th object weight.

is the volume or capacity of the knapsack.

j

x

p

w

c

j

j

j

2.1. Types of Knapsack Problem Instances

(7)

the profits and Weight have the same

value and are distributed uniformly between one and

a maximum number.

(8)

the profits are distribu-

ted uniformly between one and a maximum number

and the Weight is distributed uniformly between one and

a maximum number plus a constant.

(9)

Subset-sum:

V

Uncorrelated similar Weight:

V1

V2 K

3. The Greedy Algorithm

4. BeeAlgorithm (BA)

This algorithm gives a intuitive approach considering

the profit and weight of each item, it is know as efficiency

and it's based on the Equation (10) and the main is to try to

put the items with highest efficiency into the Knapsack.

It is necessary sort all the items based on the efficiency,

using the Equation (11), before to apply the Greedy to the

problem.

(10)

(11)

The Bee Algorithm [10] or BA is a bio-inspired meta-

heuristic behavior of honey bees and how they searching

for plant to obtain the necessary pollen for honey pro-

duction.

A colony of bees search in a large territory looking for

new sources of food and begins to thrive on discovering

new food sources. When these sources have much pollen

are visited by large numbers of bees and when the pollen

decreases the number of bees collected from these sources

decreases too.

When season for recollecting pollen start, the colony

sent so many bees, which are called scouts bees to

reconnoiter randomly the territory to inform at the colony

where are the best food sources. Once the harvesting

season starts the colony maintains a certain percentage of

their scout bees in order to detect new and better sources of

food. When scout bees have returned to the colony and

found a better food source than the currently is using the

colony, makes the Dance by means of which transmits the

exact position of the source food and then the colony

began to send more bees to the food source.

Fig. 1. The BA Algorithm applied to the 0-1 Knapsack

Problem.

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles102

VOLUME 5, N° 1 2011

z = p� xj j

n

j = 1

w x� j j c�

p V w Vj j� �[1,]; [1,]

w V p w R w Rj j j j� � � �[1,] [,];

w V p = w Kj j j� �[1,];

p V w = p Kj j j� �[1,];

S U w V p = w S� � �[1,] [1,];; j j j

w V p = wj j j� [1,];

p V w Vj j� � �[1,]; [1,]1 2 K

e =j

� � �

pj

wj

n

j = 1

x =j { If the object is selectedj

0 otherwise

p0

w0

p1

w1

...
pn

wn

get better results from the PSO and use the exploration and

a search radius from the BA to indicate which is where

they look for a better result.

The first thing that the BSO do is update the position of

the particles through the velocity vector and then select

a specified number of particles, in this case it is proposed

to select the best as being the new food supply that the

scout bees discovered, and conducted a search of the area

enclosed by the radius search and if there are a better solu-

tion in this area than the same particle around which are

looking for then the particle is replaced with the position

of the best solution found in the area.

For this metaheuristic to work properly you need

a way to determine what the next and earlier particle posi-

tion, if we cannot determine this then it is impossible to ap-

ply this metaheuristic because you would not know what

the next and previous particle to search in that area.

We defined the next and before solutions like binary

operations, adding and subtracting one number to the so-

lution vector. For example if we have a Knapsack Problem

with 5 elements the solution vector will have 5 spaces and

in each space can be 0 or 1, we can see the example of the

next and before solution vector in the Figure 3.

The algorithm of the BSO applied to the Knapsack

Problem implemented in the present paper is the follo-

wing.

To Test the BSO was used the Generator of Knapsack

Test Instances [11]; it requires the number of elements and

the coefficients range to generate a test instance. Were ge-

nerate the seven types of test instances described, and was

use the same parameters for each metaheuristic to find

which of this are better for the Knapsack Problem. Each

metaheuristic was run 100 times for obtaining their aver-

age and standard deviation, and was use that data for cal-

culating the Confidence Interval at the 97% of confidence.

We use 3 different Initial Population, this because is

importance [9] of start with a good solution the metaheu-

Fig. 3. Example of the previous and next solution vector.

Fig. 4. The BSO Algorithm applied to the 0-1 Knapsack

Problem.

7. Experiments

5. Particle Swarm Optimization (PSO)

6. Bee Swarm Optimization (BSO)

The Particle Swarm Optimization [4], [7] or PSO is

a Bio-inspired metaheuristic in flocks of birds or schools

of fish. It was developed by J. Kennedy and R. Eberthart

based on a concept called social metaphor, this metaheu-

ristics simulates a society where all individuals contribute

their knowledge to obtain a better solution, there are three

factors that influence for change in status or behavior of an

individual:

The Knowledge of the environment or adaptation

which speaks of the importance given to the expe-

rience of the individual.

His Experience or local memory is the importance

given to the best result found by the individual.

The Experience of their neighbors or Global memory

referred to how important it is the best result I have

obtained their neighbors or other individuals.

In this metaheuristic each individual is called particle

and moves through a multidimensional space that repre-

sents the social space or search space depends on the di-

mension of space which depends on the variables used to

represent the problem.

For the update of each particle using something called

velocity vector which tells them how fast it will move the

particle in each of the dimensions, the method for upda-

ting the speed of PSO is given by equation (12), and it is

updating by the equation (13).

(12)

(13)

where:

is the velocity of the i-th particle

is adjustment factor to the environment.

is the memory coefficient in the neighborhood.

is the coefficient memory.

is the position of the i-th particle.

is the best position found so far by all particles.

is the best position found by the i-th particle

The Bee Swarm Optimization or BSO is a hybrid me-

taheuristic population between the PSO and the BA. The

main idea of BSO is based on taking the best of each me-

taheuristics to obtain better results than they would obtain.

The BSO use the velocity vector and the way to upda-

ting it, equation (12), and applies the social metaphor to

�

�

�

�

�

�

�

�

�

�

v

x

B

B

i

i

Global

Local

�

�

�

0

1

2

Fig. 2. The PSO Algorithm applied to the 0-1 Knapsack

Problem.

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 103

VOLUME 5, N° 1 2011

v = * v + x B x Bi i i Global i Local� � � � �0 1 2() + ()

x = x + vi i i

ristics, the initial population use were the followings:

we use the GreedyAlgorithm.

we use the number generator

uniformly distributed.

we use the random number generator of

Java.

We determinate the size of the Knapsack obtaining the

average size of the instance and considerate it average like

the size of the elements and multiply it by 20 for conside-

rate 20 elements.

Parameters Values

Elements 50

Coefficients Range [0,100]

Parameters Values

Elements 50

Iterations 100

Elements for Neighborhood 10

Search Radio 3

Parameters Values

Elements 50

Iterations 100

1

0.5

0.8

�

�

�

Greedy:

Uniformly Distributed:

Random:

Table 1. Parameters used in the Generator of Knapsack

Test Instances.

Table 2. Parameters used in the BA.

Table 3. Parameters used in the PSO.

�

�

�

0

1

3

Table 4. Parameters used in the BSO.

Parameters Values

Elements 50

Iterations 100

Elements for Neighborhood 10

Search Radio 3

1

0.5

0.8

In this work we show the results obtained by testing

each Type Instances with the different metaheuristics and

the three different kinds of initial population, we show the

Average profit, the Best profit and Worst profit, their fit-

ness's Standard Deviation for each metaheuristic and their

fitness's Confidence Interval. We also show the metaheu-

ristics behavior through their graphic. In the graphics the

red squares represent the results obtained by the Greedy

Algorithm, the blue dots represent the Initial Population

based on the Greedy, the green triangles represent the

Initial Population Uniformly Distributed and the yellow

diamonds represent the Initial Population Random.

To test the Uncorrelated instance the Knapsack size

was defined at 1037. We can see the results of each meta-

heuristic with different initial populations in the Table 5

and their behavior in the Figures 5, 6 and 7. The result

provide by the Greedy Algorithm was 1751 and as can be

seen the BA gives the worst results, always equal or under

the Greedy's result, while the PSO and BSO gives better

results but the Standard Deviation from the BSO is smal-

ler than the PSO and theirAverage from the BSO is better.

�

�

�

0

1

3

8. Results

8.1. Uncorrelated

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles104

VOLUME 5, N° 1 2011

Table 5. Results obtained from the Uncorrelated Knapsack Problem.

Metaheuristic

PSO

BA

BSO

Initial Population

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Average

1753.79

1751.39

1750.96

1751

1397.43

1440.25

1753.52

1753.07

1752.65

Best

1758

1758

1758

1751

1522

1550

1758

1758

1758

Worst

1751

1725

1716

1751

1291

1296

1751

1733

1733

�

2.29

6.51

6.3

0

51.08

50.66

2.1

4.12

4.74

Confidence Interval

[1753.08, 1754.49]

[1749.39, 1753.38]

[1749.02, 1752.89]

[1751.00, 1751.00]

[1381.75, 1413.10]

[1424.70, 1455.79]

[1752.87, 1754.16]

[1751.80, 1754.33]

[1751.19, 1754.10]

Fig. 5. Graphic behaviors of BA metaheuristics apply to the Uncorrelated problem.

Fig. 6. Graphic behaviors of PSO metaheuristics apply to the Uncorrelated problem.

Fig. 7. Graphic behaviors of BSO metaheuristics apply to the Uncorrelated problem.

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 105

VOLUME 5, N° 1 2011

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles106

8.2. Weakly correlated

To test the Weakly Correlated instance, the Knapsack size was defined at 914. We can see the results of each metaheuristic

with different initial populations in the Table 6 and their behavior in the Figures 8, 9 and 10. The result provide by the Greedy

Algorithm was 1044 and as we can see the BA gives the worst results, only with the initial population based on the Greedy

improve the Greedy's result, the BSO and PSO gives better results but the BSO improve the PSO's results and gives a smaller

Standard Deviation.

Table 6. Results obtained from the Weakly Correlated Knapsack Problem.

Fig. 8. Graphic behaviors of BA metaheuristics apply to the weakly correlated problem.

Fig. 9. Graphic behaviors of PSO metaheuristics apply to the weakly correlated problem.

VOLUME 5, N° 1 2011

Metaheuristic

PSO

BA

BSO

Initial Population

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Average

1049.83

1040.34

1040.03

1046

965.14

973.1

1050.87

1045.18

1045.19

Best

1053

1053

1053

1046

987

1006

1053

1053

1053

Worst

1046

1027

1023

1046

941

957

1046

1038

1033

�

2.11

5.52

6.14

0

9.23

9.46

1.77

3.71

4.14

Confidence Interval

[1049.18, 1050.48]

[1038.64, 1042.03]

[1038.14, 1041.91]

[1046, 1046]

[962.30, 967.97]

[970.19,976.00]

[1050.32, 1051.41]

[1044.04, 1046.31]

[1043.91, 1046.46]

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 107

Fig. 10. Graphic behaviors of BSO metaheuristics apply to the weakly correlated problem.

Table 7. Results obtained from the Strongly Correlated Knapsack Problem.

Fig. 11. Graphic behaviors of BA metaheuristics apply to the strongly correlated problem.

8.3. Strongly correlated

To test the Strongly Correlated instance, the Knapsack size was defined at 1026. We can see the results of each meta-

heuristic with different initial populations in the Table 7 and their behavior on the Figures 11, 12 and 13. The result provide by

the GreedyAlgorithm was1332 and as we can see the BAgives the worst results, only with the initial population based on the

Greedy improve the Greedy's result, the BSO and PSO gives better results but the BSO improve the PSO's results and gives

a smaller Standard Deviation.

VOLUME 5, N° 1 2011

Metaheuristic

PSO

BA

BSO

Initial Population

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Average

1345.82

1328.83

1331.78

1332

1265.39

1276.78

1345.8

1337.16

1337.24

Best

1346

1343

1336

1332

1295

1296

1346

1346

1346

Worst

1342

1314

1317

1332

1245

1260

1342

1326

1331

�

0.67

6.28

4.69

0

10.42

7.99

0.8

3.46

3.47

Confidence Interval

[1345.61, 1346.02]

[1326.90, 1330.75]

[1330.33, 1333.22]

[1332, 1332]

[1262.19, 1268.58]

[1274.32, 1279.23]

[1345.55, 1346.04]

[1336.09, 1338.22]

[1336.17, 1338.30]

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles108

Fig. 12. Graphic behaviors of PSO metaheuristics apply to the strongly correlated problem.

Fig. 13. Graphic behaviors of BSO metaheuristics apply to the strongly correlated problem.

Table 8. Results obtained from the Inverse Strongly Correlated Knapsack Problem.

8.4. Inverse strongly correlated

To test the Inverse Strongly Correlated instance was define the Knapsack size at 1182. We can see the results of each

metaheuristic with different initial populations in the Table 8 and their behavior in the Figures 14, 15 and 16. The result

provide by the Greedy Algorithm was 1051 and we can see the BA gives the worst results, only with the initial population

based on the Greedy improve the Greedy's result, the BSO and PSO gives better results but the BSO improve the PSO's results

and gives a smaller Standard Deviation.

VOLUME 5, N° 1 2011

Metaheuristic

PSO

BA

BSO

Initial Population

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Average

1051.34

1036.42

1034.65

1051

1011.7

1003.55

1051.87

1044.81

1044.01

Best

1052

1052

1049

1051

1036

1021

1052

1052

1052

Worst

1051

1017

1021

1051

998

990

1051

1038

1033

�

0.47

5.86

5.82

0

7.06

5.84

0.33

3.99

3.79

Confidence Interval

[1051.19, 1051.48]

[1034.62, 1038.21]

[1032.86, 1036.43]

[1051, 1051]

[1009.53, 1013.86]

[1001.75, 1005.34]

[1051.76, 1051.97]

[1043.58, 1046.03]

[1042.84, 1045.17]

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 109

Fig. 14. Graphic behaviors of BA metaheuristics apply to the inverse strongly correlated problem.

Fig. 15. Graphic behaviors of PSO metaheuristics apply to the inverse strongly correlated problem.

Fig. 16. Graphic behaviors of BSO metaheuristics apply to the inverse strongly correlated problem.

VOLUME 5, N° 1 2011

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles110

8.5. Almost strongly correlated

To test the Almost Strongly Correlated instance was define the Knapsack size at 124. We can see the results of each

metaheuristic with different initial populations in the Table 9 and their behavior in the Figures 17, 18 and 19. The result

provide by the GreedyAlgorithm was 1524 as we can see the BAgives the worst results, only with the initial population based

on the Greedy improve the Greedy's result, the BSO and PSO gives better results but the average from the PSO is better than

the BSO while the Standard Deviation from the BSO is smaller than the PSO.

Table 9. Results obtained from the Almost Strongly Correlated Knapsack Problem.

Fig. 17. Graphic behaviors of BA metaheuristics apply to the almost correlated problem.

Fig. 18. Graphic behaviors of PSO metaheuristics apply to the almost correlated problem.

VOLUME 5, N° 1 2011

Metaheuristic

PSO

BA

BSO

Initial Population

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Average

1554.62

1538.19

1541.33

1552

1491.92

1501.51

1554.97

1550.06

1550.84

Best

1555

1555

1555

1552

1508

1517

1555

1555

1555

Worst

1552

1521

1529

1552

1474

1488

1554

1542

1543

�

0.78

6.39

5.54

0

7.38

6.73

0.17

5.01

4.83

Confidence Interval

[1554.37, 1554.86]

[1536.22, 1540.15]

[1539.62, 1543.03]

[1552, 1552]

[1489.65, 1494.18]

[1499.44, 1503.57]

[1554.91, 1555.02]

[1548.52, 1551.59]

[1549.35, 1552.32]

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 111

Fig. 19. Graphic behaviors of BSO metaheuristics apply to the almost correlated problem.

Table 10. Results obtained from the Subset-sum Knapsack Problem.

Fig. 20. Graphic behaviors of BA metaheuristics apply to the subset-num problem.

8.6. Subset-sum

To test the Subset-num instance was define the Knapsack size at 960. We can see the results of each metaheuristic with

different initial populations in the Table 10 and their behavior in the Figures 20, 21 and 22. The result provide by the Greedy

Algorithm was 949 and in this instance the PSO and the BSO gives the same results with Standard Deviation zero, better that

the Greedy's result, and the BAapproaching to this results.

VOLUME 5, N° 1 2011

Metaheuristic

PSO

BA

BSO

Initial Population

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Average

960

960

960

959.82

959.85

959.99

960

960

960

Best

960

960

960

960

960

960

960

960

960

Worst

960

960

960

959

958

959

960

960

960

�

0

0

0

0.38

0.38

0.1

0

0

0

Confidence Interval

[960, 960]

[960, 960]

[960, 960]

[959.70, 959.93]

[959.73, 959.96]

[959.95, 960.02]

[960, 960]

[960, 960]

[960, 960]

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles112

Fig. 21. Graphic behaviors of PSO metaheuristics apply to the subset-num problem.

Fig. 22. Graphic behaviors of BSO metaheuristics apply to the subset-num problem.

Table 11. Results obtained from the Uncorrelated Similar Weight Knapsack Problem.

To test the Uncorrelated Similar Weight instance was define the Knapsack size at 200118. We can see the results of each

metaheuristic with different initial populations in the Table 11 and their behavior in the Figures 23, 24 and 25. The result

provide by the GreedyAlgorithm was 1558 as we can see the BAgives the worst results, only with the initial population based

on the Greedy equals the Greedy's result, the BSO and PSO gives better results but the average from the BSO is better than the

PSO while the Standard Deviation from the PSO is smaller than the BSO.

8.7. Uncorrelated SimilarWeight

VOLUME 5, N° 1 2011

Metaheuristic

PSO

BA

BSO

Initial Population

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Greedy

Uniformly Distributed

Random

Average

1563.79

1562.18

1561.38

1558

1303.6

1312.81

1563.72

1562.22

1562.28

Best

1564

1564

1564

1558

1406

1404

1564

1564

1564

Worst

1558

1548

1551

1558

1243

1242

1558

1551

1548

�

1.03

3.15

3.63

0

35.45

35.8

1.23

3.35

3.26

Confidence Interval

[1563.47, 1564.10]

[1561.21, 1563.14]

[1560.26, 1562.49]

[1558, 1558]

[1292.71, 1314.48]

[1301.82, 1323.79]

[1563.34, 1564.09]

[1561.19, 1563.24]

[1561.27, 1563.28]

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles 113

Fig. 23. Graphic behaviors of BA metaheuristics apply to the uncorrelated similar weight problem.

Fig. 24. Graphic behaviors of PSO metaheuristics apply to the uncorrelated similar weight problem.

Fig. 25. Graphic behaviors of BSO metaheuristics apply to the uncorrelated similar weight problem.

VOLUME 5, N° 1 2011

Journal of Automation, Mobile Robotics & Intelligent Systems

Articles114

9. Conclusions
There are many metaheuristics to solve the Knapsack

Problem; in this work we introduce the Bee Swarm

Optimization which is a hybrid metaheuristic between the

Bee Algorithm and the Particle Swarm Optimization. The

experiments were designed with the same parameters for

the three metaheuristics to give them the same charac-

teristics in order to be equal between them, and the initial

population was generated by a pseudorandom number

generator, the generator provide by Java, a uniformly dis-

tributed generator and a greedy generator, using the Gre-

edyAlgorithm.

After applying the BSO, with the three initial popu-

lation, to the different instances tests we can see that these

metaheuristics give a small Confidence Interval and in

most cases its Confidence Interval is better that the PSO's

and BA's. In the worst case the Confidence Interval is the

same that the PSO's. In the Uncorrelated instances, Sub-

set-sum and Uncorrelated similar weight, the results were

similar between PSO and BSO, and in the Weakly corre-

lated instances and Strongly correlated the results were

better for BSO than for PSO. Finally in the Inverse Stron-

gly correlated and Almost Strongly Correlated the results

were much better for BSO than for PSO.

We can see in all the graphics the metaheuristic beha-

vior, and we can observe that the BAis the worst metaheu-

ristic because it always yields a highly variable result, be-

cause of this it's Standard Deviation is so high, only with

the Greedy base initial population gives the same result

that the provide by the Greedy Algorithm or improve it

a little. The PSO yields more consistent results, it's graphs

show that this metaheuristic in the most of the cases gives

good results.

We can conclude that have a good initial population

for the metaheuristics is essential to have good results and

we can say that the BSO is an effective metaheuristic to

solve the Knapsack Problem, with all the initial popula-

tion used, because each time that it's runned, it gives

a good solution, and this solution is better that the solu-

tions obtained by the other metaheuristics. Overall the

results present a low Standard Deviation and thus a short

Confidence Interval.

- Instituto Tecnológico de León,

Av. Tecnológico S/N, 37290, León, Guanajuato, México.

E-mails: masotelof@gmail.com,

charobalmx@yahoo.com.mx,

jmcarpio61@hotmail.com .

* Corresponding author

AUTHORS

Marco Aurelio Sotelo-Figueroa*, Rosario Baltazar,

Juan Martín Carpio

References

[1] Forrest J.J.H., Kalagnanam J., Ladanyi L., “A Column-

GenerationApproach to the Multiple Knapsack Problem

with Color Constraints”,

, 2006, pp. 129-134.

[2] Garey Michael R., David S. Johnson,

I, 1979.

INFORMS Journal on Compu-

ting

Computers and

Intractability: A Guide to the Theory of NP-Complete-

ness

[3] Kellerer H., Pferschy U., Pisinger D.,

, Stringer, Berlin, 2004.

[4] Kennedy J., Eberhart R.C., “Particle Swarm Optimi-

zation”. In:,

, vol. 4, 1995, pp. 1942-1948.

[5] Kennedy J., Eberhart R.C., , Aca-

demic Press, EUA, 2001.

[6] Kiwiel K. C., “Breakpoint searching algorithms for the

continuous quadratic knapsack problem”,

, Spriger-Verlag, 2008, pp. 473-491.

[7] Maurice C., , ISTE Ldt,

USA, 2006.

[8] McDuff-Spears W.,

,

Thesis of Master of Science in Computer Science,

George Mason University, Virginia, 1989.

[9] Parsopoulus K.E., Vrahatis M.N.,

,

, ,

, 2002, pp. 216-221.

[10] Pham D., Ghanbarzadeh A., Koç E., Otris S., Rahim S.,

Zaidi M., “The bee algorithm - a novel tool for complex

optimization problems”

, 2006.

[11] Pisinger D., “Core Problems in Knapsack Algorithms”,

, vol. 47, 1999, pp. 570-575.

[12] Pisinger D., “Where Are The Hard Knapsack pro-

blems?”, , vol. 32,

2005, pp. 2271-2282.

[13] Pisinger D., Rasmussen, A. Sandvik R., “Solution of

Large Quadratic Knapsack Problems Through Aggres-

sive Reduction, ,

INFORMS, 2007, pp. 280-290.

[14] Shahriar A. Z. M. ., “A multiprocessor based heu-

ristic for multi-dimensional multiple-choice knapsack

problem”, , 2008, pp. 257-280.

[15] Silvano M., Toth P.,

, John Wiley and Sons , New

York USA, 1990.

[16] Yamada, T., Watanabe K., and Kataoka, S., Algorithms

to solve the knapsack constrained maximum spanning

tree problem,

, Taylor & Francis Ltd, 2005, pp. 23-34.

[17] Zemel E., “An O(n) Algorithm for the linear multiple

choice Knapsack problem and related problems”,

, North Holland, 1984, pp.

123-128.

Knapsack Pro-

blems

IEEE International Conference Neural Net-

works

Swarm Intelligence

Math. Pro-

gram

Particle Swarm Optimization

Using neural networks and genetic

algorithms as Heuristics for NP-complete problems

Initializing the par-

ticle swarm optimizer using nonlinear simplex method

Advances in Intelligent Systems Fuzzy Systems Evolu-

tionary Computation

, Intelligent Production Machi-

nes and Systems

Operation Research

Computers & Operation Research

INFORMS Journal on Computing

et al

J. Supercomput

Knapsack Problem, Algorithms and

Computer Implementations

International Journal of Computer Mathe-

matics

Infor-

mation Processing Problems

VOLUME 5, N° 1 2011

