
Abstract:

1. Introduction

2.

In this paper, we propose a new optimization algo-

rithm for soft computing problems, which is inspired on

a nature paradigm: the reaction methods existing on che-

mistry, and the way the elements combine with each other

to form compounds, in other words, quantum chemistry.

This paper is the first approach for the proposed method,

and it presents the background, main ideas, desired goals

and preliminary results in optimization.

Keywords: natural computing, novel optimization me-

thod, chemical reactions paradigm.

Several works have proved the relevance of compu-

ting techniques to solve diverse kinds of problems, inclu-

ding forecasting, control and pattern recognition among

others [1], [2], [3].

These techniques not only comply with their objec-

tive, but they also pro mote the creation of new ways to

give solutions and improve the actual methods as well

[4],[5], [6].

One of the main difficulties when designing the struc-

ture of a solution method is the tuning of the parameters;

which are the key to the success of these applications. The-

se parameters will vary depending on the complexity of

the problem and the method used to find the solution; and

in some cases, they stem from our own ability to conceptu-

alize the problem itself, taking in account, the inputs of the

system and the expected output values.

Due to these facts, several optimization strategies ba-

sed on nature paradigms have arisen. From Ant Colony

Optimization, to Particle Swarm Optimization among

others, these strategies had emerged as an alternative way

to solve problems [7], [8], [9], [10], [11], [12], [13].

For this work, we will be observing the process in

which the different elements existing in nature are created,

behave and interact with each other to form chemical

compounds.

The structure of this paper is the following. Section 2

shows a brief description of the chemical method that

inspired this investigation; section 3 describes the pro-

posed method and first approach; section 4 shows the

preliminary experiment results; in section 5 we describe

the current and future work and section 6 shows some

references.

Chemical Paradigm
In order to have a better understanding of the process

that we intend to model, we present some general defi-

nitions [14],[15].

Chemistry is the study of matter and energy and the

interaction between them, including the composition, the

properties, the structure, the changes which it undergoes,

and the laws governing those changes. A substance is

a form of matter that has a defined composition and cha-

racteristic properties. There are two kinds of substances:

elements and compounds.

An element is a substance that cannot be broken down

into simpler substances by ordinary means. It is apparent

from the wide variety of different materials in the world

that there are a great many ways to combine elements.

Compounds are substances formed by two or more

elements combined in definite proportions through a che-

mical reaction. There are millions of known compounds,

and thousands of new ones are discovered or synthesized

each year.

A chemical reaction is a change in which at least one

substance changes its composition and its sets of proper-

ties; they are classified into 4 types.

Acombination reaction is a reaction of two reactants to

produce one product. The simplest combination reactions

are the reactions of two elements to form a compound.

After all, if two elements are treated with each other, they

can either react or not.

The second type of simple reaction is decomposition.

This reaction is also easy to recognize. Typically, only one

reactant is given. A type of energy, such as heat or electri-

city, may also be indicated. The reactant usually decompo-

ses to its elements, to an element and a simpler compound,

or to two simpler compounds.

Binary compounds may yield two elements or an ele-

ment and a simpler compound. Ternary (three-element)

compounds may yield an element and a compound or two

simpler compounds. These possibilities are shown in the

Figure 1.

Type 1: combination reactions: (B+C BC).

Type 2: decomposition reactions: (BC B+C).

�

�

Fig. . Decomposition possibilities.1
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Type 3: substitution reactions: (C +AB AC + B).

Type 4: double-substitution reactions: (AB + CD CB

+AD).

�

�

Elements have varying abilities to combine. Among

the most reactive metals are the alkali metals and the

alkaline earth metals. On the opposite end of the scale of

reactivities, among the least active metals or the most

stable metals are silver and gold, prized for their lack of

reactivity. Reactive means the opposite of stable, but

means the same as active.

When a free element reacts with a compound of diffe-

rent elements, the free element will replace one of the

elements in the compound if the free element is more reac-

tive than the element it replaces. In general, a free metal

will replace the metal in the compound, or a free nonmetal

will replace the nonmetal in the compound. A new com-

pound and a new free element are produced.

Double-substitution or double-replacement reactions,

also called double-decomposition reactions or metathesis

reactions, involve two ionic compounds, most often in

aqueous solution. In this type of reaction, the cations sim-

ply swap anions. The reaction proceeds if a solid or a cova-

lent compound is formed from ions in solution. All gases

at room temperature are covalent. Some reactions of ionic

solids plus ions in solution also occur. Otherwise, no reac-

tion takes place.

Just as with replacement reactions, double-replace-

ment reactions may or may not proceed. They need a dri-

ving force. In replacement reactions the driving force is

reactivity; here it is insolubility or co-valence.

3.

4.

Modeling the Chemical Paradigm

Preliminary experimental results
Figure 2 shows the De Jong’s first function also called

the sphere model, which is continuous, convex, unimodal

Now that we have described the natural paradigm that

we intent to mimic, the next step is to define the general

structure of our optimization algorithm; which, initially

will be developed in 5 phases: a combination algorithm,

a decomposition algorithm, a substitution algorithm,

a double-substitution algorithm and the final algorithm,

which will be the combination of all the previous four.

The steps to consider in this optimization method will

be as follows:

1. First, we need to generate an initial pool of elements/

compounds.

2. Once we have the initial pool, we have to evaluate it.

3. Based on the previous evaluation, we will select some

elements/compounds to “induce” a reaction.

4. Given the result of the reaction, we will evaluate the

obtained elements/compounds.

5. Repeat the steps until the algorithm meets the criteria

(desired result or maximum number of iterations is

reached).

In order to start testing the phases of the algorithm, we

will be applying these to the following (but not restricted

to) functions: De Jong's and Rosenberg's functions [16],

[12].

and is represented by the equation:

(1)

The domain is given by:

(2)

And has a global minimum represented by:

( ) = 0; ( ) = 0; = 0 : . (3)

The fist approach to solve this equation is given by

applying a minimization algorithm based on the decom-

position reactions.

The main idea of this particular algorithm is, given

a random set of initial numbers, decompose each one into

smaller numbers in a way that can be represented by a bi-

nary tree, where each ensuing node will be decomposed as

well into smaller numbers, to lead the result into the mini-

mum of the function.

To start from the simplest option, in these early experi-

ments all decomposed elements are considered to have the

same value, and they are given by:

Decomposed_Element( )=Element/ (4)

where is the element index and is the number of de-

composed elements generated. Because the resulting va-

lues are the same for each decomposed element, only one

will be selected to be evaluated in the function.

Let’s consider an initial pool of 5 elements (randomly

generated); each one will be decomposed in 3 sub ele-

ments throughout 10 iterations. Table 1 shows the final

and average values of the best and worst result reached by

the algorithm throughout 30 experiments.

f x x i i n

Fig. 2. De Jong's First function in 2D.
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Table 1. Worst and best results throughout 30 experiments

evaluating the first De Jong’s Function.
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Experiment

number

1

13

Minimum

Value

3.799e-14

7.829e-09

Average

value

1.656e-06

0.341

Comments

Best result

Worst result



Fig. 5. Plot of the average and standard deviations per

iteration in 30 experiments evaluating the De Jong’s first

function: the sphere model.

Fig. 6. The weighted sphere model in 2D.

f x x i i n

Table 3. Worst and best results throughout 30 experiments

evaluating the first De Jong’s Function.

Figure 6 shows the axis parallel hyper-ellipsoid, also

known as the weighted sphere model. It a continuous,

convex and unimodal function and is represented by the

equation:

(5)

The domain is given by:

(6)

And has a global minimum represented by:

( ) = 0; ( ) = 0; = 0 : . (7)

The Table 3 shows the final and average values of the

best and worst result reached by the algorithm throughout

30 experiments.

Figure 7 shows the minimized values trough the 10

iterations of experiment number 28, which reached the

minimum value overall the 30 experiments.

Figure 3 shows the minimized values trough the 10

iterations of experiment number 1, which reached the mi-

nimum value overall the 30 experiments.

In Figure 4 we can see the behavior of the algorithm

along the 30 experiments, where every experiment is

represented by “Cycles” of 10 iterations each.

Table 2 shows the standard deviation calculated by

iteration throughout 30 experiments.

Figure 5 shows the plot of the average and standard

deviations calculated per iteration in 30 experiments.

Fig. 3. Minimum value reached in experiment no. 1.

Fig. 4. Minimum values reached 30 experiments.

Table 2. Standard deviation per trial in 30 experiments

evaluating the first De Jong’s Function
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Trial

1

2

3

4

5

6

7

8

9

10

Standard Deviation

0.769404299

0.085489367

0.009498819

0.001055424

0.000117269

1.30E-05

1.45E-06

1.61E-07

1.79E-08

1.99E-09

Experiment

number

28

23

Minimum

Value

8.85E-17

7.91-13

Average

value

7.00-05

0.62

Comments

Best result

Worst result



Fig. 7. Minimum value reached in experiment no. 28,

evaluating the weighted sphere model.

Fig. 8. Minimum values reached 30 experiments evalua-

ting weighted sphere model.

Table 4. Standard deviation per trial in 30 experiments

evaluating the weighted sphere model.

In Figure 8 we can see the behavior of the algorithm

along the 30 experiments, where every experiment is re-

presented by “Cycles” of 10 iterations each.

Table 4 shows the standard deviation calculated by ite-

ration throughout 30 experiments.

Figure 9 shows the plot of the average and standard

deviations calculated per iteration in 30 experiments,

evaluating the weighted sphere model.

Fig. 9. Plot of the average and standard deviations per

iteration in 30 experiments evaluating the weighted

sphere model.

Fig. 10. The Rosembrock’s Valley in 2D.

f x x i i n

Table 5. Worst and best results throughout 30 experiments

evaluating the Rosembrock’s Valley Function.

Figure 10 shows the Rosembrock’s Valley function,

also known as banana function or the second function of

De Jong. The global optimum lies inside a long, narrow,

parabolic shaped flat valley. It is represented by the

equation:

(8)

The test area is usually restricted to hypercube:

(9)

And has a global minimum represented by:

( ) = 0; ( ) = 1; = 1 : . (10)

The Table 5 shows the final and average values of the

best and worst result reached by the algorithm throughout

30 experiments.
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Trial

1

2

3

4

5

6

7

8

9

10

Standard Deviation

1.525

0.056

0.0020

7.75e-05

2.87e-06

1.06e-07

3.93e-09

1.45e-10

5.40e-12

2.00e-13

Experiment

number

24

30

17

(Iteration 2)

Minimum

Value

0.99966

0.99997

6.88e-06

Average

Value

1.053

1.013

1.23

Comments

Best final result

Worst final result

Best result

(Minimum value)



Figure 11 shows the minimized values trough the 10

iterations of experiment number 24, which reached the

minimum final value overall the 30 experiments..

In Figure 12 we can see the behavior of the algorithm

along the 30 experiments, where every experiment is

represented by “Cycles” of 10 iterations each.

As we can see in Table 5 and Figure 12, the last value

reached in each experiment, may not be the “best value”

found by the algorithm.

Figure 13 shows the behavior of trial with the mini-

mum result through the 30 experiments. In this experi-

ment, the final value was 0.9997, but the minimum value

(6.88e-06) was found in iteration no. 2.

Fig. 11. Minimum value of experiment no. 24, evaluating

the Rosembrock’s Valley Function.

Fig. 12. Minimum values reached in 30 experiments

evaluating Rosembrock’s Valley Function.

Fig. 13. Experiment 17, which had the minimum value in

30 experiments.

Table 6 shows the standard deviation calculated by

iteration throughout 30 experiments.

Figure 14 shows the plot of the average and standard

deviations calculated per iteration in 30 experiments,

evaluating the Rosembrock’s Valley Function.

.

Table 6. Standard deviation per trial in 30 experiments

evaluating the Rosembrock’s Valley Function.

Fig. 14. Plot of the average and standard deviations per

iteration in 30 experiments evaluating the Rosembrock’s

Valley Function.

5. Conclusions
In this paper, we introduced the first stage of a new

optimization method that tries to mimic the chemical reac-

tions. The was applied

in 3 benchmark functions to evaluate the first develop-

ment phase of the optimization algorithm. This

by itself finds or guides the result

to a certain minimum value, but, due the nature of some

functions, it is necessary to introduce the second phase of

this optimization method: The

, which will be able to guide the algorithm to find

an optimum value when it is not necessarily the “smallest”

one. At the time, more functions are being evaluated to

pursue the tuning of the algorithm itself

Decomposition Reaction Method

Decompo-

sition Reaction Method

Combination Reactions

Method
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Trial

1

2

3

4

5

6

7

8

9

10

Standard Deviation

13.443

0.796

0.205

0.024

0.004

0.0014

0.0012

0.00053

0.00018

6.44e-05
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