
Abstract:

1. Introduction

The most prevalent P2P application today is file sha

ring, both among scientific users and the general public.

A fundamental process in file sharing systems is the search

mechanism. The unstructured nature of real-world large-

scale complex systems poses a challenge to the search me

thods, because global routing and directory services are

impractical to implement. This paper presents a new ant-

colony algorithm, Adaptive Neighboring-Ant Search

(AdaNAS), for the semantic query routing problem

(SQRP) in a P2P network. The proposed algorithm incor

porates an adaptive control parameter tuning technique

for runtime estimation of the time-to-live (TTL) of the ants.

AdaNAS uses three strategies that take advantage of the

local environment: learning, characterization, and explo

ration. Two classical learning rules are used to gain ex

perience on past performance using three new learning

functions based on the distance traveled and the resources

found by the ants. The experimental results show that the

AdaNAS algorithm outperforms the NAS algorithm where

the TTL value is not tuned at runtime.
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Although popular for other uses, the World Wide Web
is impractical for user-to-user file sharing as it requires
centralized infrastructure such as an HTTP server. In the
past decade, a new class of networks called
(P2P) systems began to spread as a solution to the increa
sing demand of file sharing among Internet users. In P2P
networks, the users interconnect to offer their files to one
another [1]. The participants, called , may connect
and disconnect freely, and do so constantly, which triggers
frequent changes in the network structure [2].

One of the main advantages is that peers are equal in
terms of functionality and tasks which are developed. This
produces high fault tolerance and auto-organization: peers
form unstructured networks with an acceptable connec
tivity and performance. The

(SQRP) consists in deciding, based on a set of key
words, to which neighbor to forward the query to search
files related with the keywords [2], [3].

The lack of global structure caused that flooding-based
search mechanisms have been mainly employed. Flood
ing-based mechanisms are simple, but unfortunately
generate vast amounts of traffic in the network and may
produce congestion on Internet. Existing approaches for

SQRP in P2P networks range from simple broadcasting
techniques to sophisticated methods [1], [4], [5]. The
latter includes proposals based on [6]
that are specifically suited for handling routing tables
in telecommunications. There exist few algorithms used
for SQRP, including SemAnt [3] and Neighboring-Ant
Search (NAS) [7], the latter based on the former. In this
work we propose an algorithm as an extension to NAS,
called the Adaptive Neighboring-Ant Search (AdaNAS).
AdaNAS is hybridized with three local strategies: lear
ning, structural characterization and exploration. These
strategies are aimed to produce a greater amount of results
in a lesser amount of time. The time-to-live (TTL) para
meter is tuned at runtime based on the information acqui
red by these three local strategies.

ant-colony systems
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2. Background

A P2P network is a distributed system that can be mo
deled mathematically as a , = ( ), where is
a set of and x is a set of (symmetrical)

. For more information on graph theory, we
recommend the textbook by Diestel [8]. Each peer in the
network is represented by a node (also called a ) of
the graph. The direct communications among the peers are
represented by the connections (also called the ) of
the graph. We denote by the number of nodes in the
system and identify the nodes by integers, = 1, 2, 3, ..., .
Two nodes that are connected are called ; the set
of all neighbors of a node is denoted by ( ). The number
of neighbors of a node is called degree and is denoted by

. Two nodes and are said to be connected if there exists
at least one sequence of connections that begins at , tra
verses from node to node through the connections of the
graph, and ends at . Such sequences of connections are
called routes or paths and the number of connections tra
versed is the length of the route.

For the purpose of analyzing the structure and behavior
of complex systems modeled as graphs, numerous charac-
terization functions have been proposed [9]. There are two
main types of these functions: those based on global infor

In order to place the research in context, this section is
divided in four parts. The first part models a P2P network
with graph theory, and in the second part we continue with
structural characterization. The third part describes the
basic ant-colony algorithms for SQRP algorithms and the
last part explains parameter tuning and adaptation.

2.1. Graph Theory

2.2. Structural Characterization using Degree

Distribution
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mation that require information on the entire graph simul
taneously and those based on local information that only
access the information of a certain node and its neigh
borhood

.
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( ) at a time.
The degree of a node is a local measure of network.

( ) denotes the number of nodes that have degree ,
normalized by . The measure of can be interpreted as
the probability that a randomly chosen node has degree .
The values of for [0, 1] (supposing that there
can only be at most one connection between each pair of
distinct nodes) form the of the graph.
Whereas the degrees themselves are local properties, ob
taining the degree distribution is a global computation.

The degree distribution is widely used to classify net
works according to the that produce
such distributions.Among the first and most famous gene
ration models are the of Erdös
and Rényi [10], and Gilbert [11] that yield a binomial dis
tribution that at the limit, approaches the Poisson distribu
tion and most of the nodes in the graph have similar
degrees [12].

In the past decade, another type of generation models
became popular as various studies revealed that the degree
distribution of some important real-world networks (in
cluding the WWW, the Internet, biological and social
systems) was not Poisson distribution at all, but rather
a power-law distribution [13], [14], [15], ( ) ~ with
values of typically ranging between two and three. The
models that produce such distributions are called

network models. The notable structural property in
networks with power law distribution is the presence of
a small set of extremely well-connected nodes that are
called , whereas a great majority of the nodes has
a very low degree [16], [17]. This property translates into
high fault tolerance under random flaws, but high
vulnerability under deliberate attack [14].

Metaheuristics offer solutions that are often close to
the optimum, but with a reasonable amount of resources
used when compared to an exact algorithm. Unfortuna-
tely, the metaheuristics are usually rich in parameters. The
choice of the values for the parameters is nontrivial and in
many cases the parameters should vary during the runtime
of the algorithm [18], [19].

The process of selecting the parameter values is known
as tuning. The goal of offline tuning is to provide a static
initial parameter configuration to be used throughout the
execution of the algorithm, whereas online tuning, also
known as or , is the process
of adjusting the parameter values at runtime. We design
a discrete model for adaptation based on the proposed by
Holland in 1992 [20]. We assume that the system takes
actions at discrete steps = 1, 2, 3,..., as this assumption
applies to practically all computational System. The pro
posed model is described in section four.
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In this section we present the problem focused in this
work. First, we describe the semantic query routing pro
blem (SQRP) as a search process. Then, strategies for
solve SQRP are shown including our proposed algorithm

��

2.3. ParameterTuning andAdaptation

3. SQRP Search Strategies

which uses an adaptive strategy for adjusting an important
parameter for the search process: TTL.

SQRP is the problem of locating information in a net
work based on a query formed by keywords. The goal in
SQRPis to determine shorter routes from a node that issues
a query to those nodes of the network that can appropria
tely answer the query by providing the requested informa
tion. Each query traverses the network, moving from the
initiating node to a neighboring node and then to a neigh
bor of a neighbor and so forth, until it locates the requested
resource or gives up in its absence. Due to the complexity
of the problem [2], [3], [5], [21], [22], [23], solutions
proposed to SQRPtypically limit to special cases.

The general strategies of SQRP algorithms are the
following. Each node maintains a local database of docu
ments called the . The search mechanism is
based on nodes sending messages to the neighboring nodes
to query the contents of their repositories. The
are messages that contain keywords that describe searched
resource for possible matches. If this examination pro
duces results to the query, the node responds by creating
another message informing the node that launched the
query of the resources available in the responding node. If
there are no results or there are too few results, the node
that received the query forwards it to one or more of its
neighbors. This process is repeated until some predefined
stopping criteria is reached. An important observation is
that in a P2P network the connection pattern varies among
the net ( ), moreover the connec
tions may change in time, and this may alter the routes
available for messages to take.

The most popular technique for searching in P2P sys
tems is flooding, where each message is assigned a posi
tive integer parameter known as the (TTL) of
the message. As the message propagates from one node to
another, the value of TTL is decreased by one by each for
warding node. When TTL reaches zero, the message will
be discarded and no longer propagated in the system. The
main disadvantage of flooding is the rapid congestion of
the communication channels [24]. Another widely used
search strategy is the [21]. A random walk in
a graph is a route where the node following the initiating
node is chosen uniformly at random among its neighbors.

Wu [23] propose an algorithm called .
The main idea in the AntSearch algorithm is using phero
mone values to identify the free-riders, prevent sending
messages to those peers in order to reduce the amount of
redundant messages. The estimation of a proper TTL value
for a query flooding is based on the popularity of the re
sources. Wu use three metrics to measure the per
formance of the AntSearch. One is the

for a query with a required number of results, :
a good search algorithm should retrieve the number of
results over but close to . The second one is the

that defines the total amount of query messages divi
ded by the number of searched results; this metric measure

3.1. SQRPDescription

3.2. SQRPAlgorithms
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itself. The rule evaluates the length of the shortest
known route that begins with the connection ( ) from the
current node to a node that contains good results for the
query . The form in which the algorithm operates is ex
plained in detail later in Sections 4 and 5

In this section, we present a multi-agent model in order
to describe the adaptive behavior ofAdaNAS.

The environment is the P2P network, in which two
stimuli or inputs are observed:

: the occurrences of the documents being searched,
: the degree of the node .

The environment has the following order to send sti-
muli: observing has a higher priority than observing .
AdaNAS is an ant-colony system, where each ant is mo-
deled as an agent.AdaNAS has four agent types:

The is accountable for attending the users'
queries and creating the ; moreover it
updates the pheromone table by means of evaporation.
There is a for each node in the net and it stays
there while the algorithm is running.
The uses the learning strategies for ste
ering the query and when it finds resources creates the
backward ant. It finishes the routing process when its
TTL is zero or the amount of found resources is en
ough that is denoted by then, it creates an .
The is responsible for informing to

the amount of resources in a node found by the
. In addition, it updates the values of some

learning structures that are the bases of the
which will be explaining later (Section 4.2.3).

The drops pheromone on the nodes of the
path generated by the . The amount of
pheromone deposited depends on quantity of found
resources ( ) and number of edges traveled ( )
by the .

The system is subdivided into four parts: the structures
to adapt to the environment (called ), the

adaptation plan , the memory , and the operators .
Typically, has various alternative states , , ,...
among which one is to be chosen for the system, according
to the observations made on the environment. On the other
hand, is typically a set of rules, one or more which can be
applied. These rules apply the operations in the set . An
operator is either a deterministic function, denoted as ( ,

) , or a stochastic function to a probability distri
bution over a set of states for selecting . The memory
permits the system to collect information on the condition
of the environment and the system itself, to use it as a base
for the decision making. The observations of the environ
ment are taken as stimuli that trigger the operators.

The routing process implemented in the
is required to be adaptive, thus is defined in function of
this agent. The possible states for are five:

-
.

-

-

-

-

4. AdaNAS Model

4.1. The General Model
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how many average query messages are generated to gain
a result. Finally, search latency is defined as the total time
taken by the algorithm.

Algorithms that incorporate information on past search
performance include the SemAnt algorithm [3], [25] that
uses an ant-colony system to solve SQRPin a P2Penviron
ment. SemAnt seeks to optimize the response to a certain
query according to the popularity of the keywords used in
the query. The algorithm takes into account network para
meters such as bandwidth and latency. In SemAnt, the que
ries are the ants that operate in parallel and place phero
mone on successful search routes. This pheromone evapo
rates over time to gradually eliminate old or obsolete infor
mation. Also Michlmayr [3] considers parameter tuning
for the SemAnt algorithm, including manual adjustment of
the TTL parameter from a set of possible values 15, 20, 25,
30, 35 and concludes that 25 is the best value for the para
meter. The adjustment of the TTL is made without simul
taneous tuning of the other parameters.

NAS [7] is also an ant-colony system, but incorporates
a local structural measure to guide the ants towards nodes
that have better connectivity. The algorithm has three main
phases: an evaluation phase that examines the local repo
sitory and incorporates the classical lookahead technique
[4], a transition phase in which the query propagates in the
network until its TTL is reached, and a retrieval phase in
which the pheromone tables are updated.

Most relevant aspects of former works have been in
corporated into the proposed NAS algorithm. The frame
work of AntNet algorithm is modified to correspond to the
problem conditions: in AntNet the final addresses are
known, while NAS algorithm does not has a priori know
ledge of where the resources are located. On the other
hand, differently to AntSearch, the SemAnt algorithm and
NAS are focused on the same problem conditions, and
both use algorithms based onAntNet algorithm.

However, the difference between the SemAnt and NAS
is that SemAnt only learns from past experience, whereas
NAS takes advantage of the local environment. This
means that the search in NAS takes place in terms of the
classic local exploration method of Lookahead [4], the
local structural metric DDC[26] which measures the diffe
rences between the degree of a node and the degree of its
neighbors, and three local functions of the past algorithm
performance. This algorithm outperforms methods propo
sed in the literature, such as Random-Walk and SemAnt
[7].

The proposed algorithm in this work,
(AdaNAS) is largely based on the NAS

algorithm, but includes the adaptation of the TTL parame
ter at runtime, in addition to other changes. The mecha
nism that may extend the TTL for an ant is called the

. It incorporates information on past queries relying
on the learning strategies included in AdaNAS, basic cha
racteristics of SQRP and a set of parameters that are adjus
ted according to the results found when using the

3.2.2. SemAnt

3.2.3. Neighboring-Ant Search

3.2.4. Adaptative Neighboring-Ant Search
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: No route has been assigned and the is
at the initial node. The ant can be only activated
when the send it a query and can only
receive once time each stimulus.

: Aroute has been assigned and TTL has not reached
zero.

: TTLis zero.
: used the survival rule to extend

TTL.
= : Terminal state is reached by the .

The Figure 1 shows the AdaNAS adaptive model.
According to the stimuli -the number of documents found
(dotted line, ) and degree of the node (solid line, ) - an
operator is selected. The line style for state transitions
follows that of the stimuli: dotted line for transitions pro
ceeding from and solid for .

The memory is basically composed of four struc
tures that store information about previous queries. The
first of these structures is the three dimensional phero
mone table . The element is the preference for mo
ving from node to a neighboring node when searching
by a keyword . In this work, we assume that each query
contains one keyword and the total number of keywords
(or ) known to the system is denoted by .

The pheromone table = is split into bi-dimen
sional tables, j, , one for each node. These tables only
contain the entries for a fixed node and hence have at
most dimensions x ( ) . The other three structures are
also three-dimensional tables = , = and = ,
each splits into local bi-dimensional tables in the same
manner. The information in these structures is of the follo
wing kind: currently being at node and searching for ,
there is a route of distance starting at the neighbor
that leads to a node identified in that contains hits
or matching documents.

The adaptive plans Pare the following:

: Created when a resource is
found; modifies , and .

: Modifies the pheromone table
= when the reached 0 and -

can not to proceed.
: Selects the next node apply-

ing the inherent learning stored in pheromone trails
and in the memory structure = .

: Proceeds when the learning

-
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The backward ant.

The update ant.

The transition rule.

The survival rule.

stored in , and permits to extend TTL and
determines how much TTLmust be extended.

: A variation of tran-
sition rule that eliminates the pheromone and de-
gree effects.

The operators ofAdaNAS are the following:

: ( , ) :
The ant has been just created and documents were found
from the initial node ( ), so updates the
short-time memory ( ) and no change in the agent state of
the system is produced.

: ( , ) :
The ant has been just created and must select a neighbor
node ( ) according with the transition rule ( ), this will
produce a tracked route by the ant ( ).

: ( , ) :
The ant has assigned a route ( ) and documents were
found from initial node ( ), so updates the
short-time memory ( ) and no change in the agent state of
the system is produced.

: ( , ) | , :
When the ant has a partial route ( ), it must select the next
node from the neighborhood ( ), so it applies the
transition rule ( ). The application of the transition rule
can cause than TTLis over ( ) or not ( ).

: ( , )
Idem , but now the ant has TTL= 0 ( ).

: ( , )
The ant is over TTL ( ) and with neighborhood
information ( ), so it applies the survival rule ( ). When

is applied the ant performs its activity in an extended
time to live ( ).

: ( , ) X
The ant is over TTL ( ) and with neighborhood
information ( ), so it decides that the path must end. In
order to reach its final state ( ), the must
create an which performs the pheromone
update ( ).

: ( , )
Idem , but now the ant performs it activity in an
extended time to live ( ).

: ( , ) | ,
In an extended TTL by the modified transition rule ( ),
the ant must choose a vertex from the neighborhood ( )
like the next node in the route. The application of
transition rule can cause than TTL is over ( ) or not ( )
again.

The general model is illustrated in Figure 1 where can
be observed the transitions among states of the

.

An ant-colony algorithm has rules that determine its
behavior. These rules define why the ants construct and
evaluate the solution and why the pheromone is updated
and used. Although the pheromone is the main learning
structure, AdaNAS has three more: , and , for know
the distances toward the nodes that contain in its reposi
tory matching documents. AdaNAS own several behavior
rules: the , the , the
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The transition rule considers two structures to deter-
mine the next state: and . This transition rule is used by
an ant that is searching the keyword and is located in the
node . The rule is formulates in the following Equation 1:

(1)

where is a pseudo-random number, is a algorithm para-
meter that defines the probability of using of the exploita-
tion technique, ( ) is the set of neighbors nodes of , is
the set of nodes previously visited by , and Equation 2,
defined by:

(2)

where is the parameter that defines the degree impor-
tance, defines the distance importance toward the near-
est node with matching documents ( ), intensifies the
local metrics contribution (degree and distance), inten-
sifies pheromone contribution ( ), ( ) is a normali-
zed degree measure expressed in Equation 3:

(3)

and is the exploration technique expressed, in Equation 4:

(4)

where ( i ( ) ) is a roulette-wheel random
selection function that chooses a node i depending on its
probability which indicates the probability of the ant

for moving from to searching by keyword and it is
defined in Equation 5:

(5)

The tables and were described in the previous
section. The exploration strategy is activated when
and stimulates the ants to search for new paths. In case that

, the exploitation strategy is selected: it prefers nodes
that provide a greater amount of pheromone and better
connectivity with smaller numbers of hops toward a re-
source. As is shown in the transition rule, is the inten-
sifier of the pheromone trail, and is the intensifier of the
local metrics, this means that the algorithm will be only
steered by the local metrics when = 0, or by the phero-
mone when = 0. In this work the initial values are = 2
and = 1.

There are two basic update rules in an ant colony algo-
rithm: the evaporation and increment of pheromone. The
evaporation method of AdaNAS is based on the technique

4.2.1. Transition Rule

4.2.2. Update Rules
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used in SemAnt [3], while the increment strategy is based
on the proposed in NAS [7]. Both update rules are
described below.

Pheromone Evaporation Rule, the pheromone evapo-
ration is a strategy whose finality is avoid that the edges
can take very big values of pheromone trail causing
a greedy behavior on the algorithm. Each unit time the
query ant makes smaller the pheromone trail of the node
where the query ant is, by multiplying the trail by the eva-
poration rate , which is a number between zero and one.
To avoid very low values in the pheromone the rule incor-
porates a second term consisting of the product , where

is the initial pheromone value. The Equation 6 expres-
ses mathematically the evaporation pheromone rule.

(6)

, when a
finishes, it must express its performance in terms of phero-
mone by means of an whose function is to
increase the quantity of pheromone depending on amount
of documents found and edges traversed by .
This is done each time that an passes on one
node. The Equations 7 and 8 describe the -

.

(7)

where is the preference of going to when the Forward
Ant is in and is searching by keyword , ( ) is the
amount of pheromone dropped on by a
generated by the and can be expressed like:

(8)

where ( ) is the amount of documents found by the
from to end of its path, and ( ) is

the length of the trajectory traversed by the
from to the final node in its route passing by .

(the backward ant) updates the memory structures
= , = , and = . These structures are used in

the survival rule ( ) to increase time to live. This survival
rule can be only applied when TTL is zero. The survival
rule can be expressed mathematically in terms of the
structures , and as see in Equation 9:

(9)

where ÄTTL( ) is the increment assigned to the TTL
of ant (that is, number of additional steps that the ant will
be allowed to take) when searching for resources that
match to , currently being at node . The number of addi-
tional steps for arriving in the node ( ) is
determined from the shortest paths generated by previous
ants, and is taken when its associated efficiency ( ) is
better than which is a measure of current performance
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of the ant . The auxiliary functions are shown in Equa-
tions10 and 11:

(10)

(11)

where ( ) is the set of neighbors of node i and is the set
of nodes previously visited by the ant . The tables of hits

, of distances , and of nodes were explained in the
previous section. The function ( ) determines which
node that is neighbor of the current node and that has not
yet been visited has previously produced the best efficien-
cy in serving a query on , where the efficiency is measu-
red by ( ).

The is a special case of -
(see Equations 4 and 5) where = 0, = 0 and

= 1. This rule is greedy and provokes the replication of
paths generated by previous ants. This rule takes place
when TTL has been extended canceling the normal t -

. Mathematically can be express in Equations 12
and 13, like:

(12)

where is the , is the current
node in the path, is the searched keyword, is the set of
nodes visited by the and

(13)

where is a parameter that defines the influence of
that is the needed distance for arriving in the known near-
est node with documents with keyword , from passing
by and is the distance intensifier.

AdaNAS is a metaheuristic algorithm, where a set of
independent agents called ants cooperate indirectly and
sporadically to achieve a common goal. The algorithm has
two objectives: it seeks to maximize the number of resour-
ces found by the ants and to minimize the number of steps
taken by the ants. AdaNAS guides the queries toward
nodes that have better connectivity using the local structu-
ral metric degree [26]; in addition, it uses the well known

technique [25], which, by means of data struc-
tures, allows knowing the repository of the neighboring
nodes of a specific node.

The AdaNAS algorithm performs in parallel all the
queries using query ants. The process done by is
represented in Algorithm 1. Each node has only a query
ant, which generates a for attending only
one user query, assigning the searched keyword to the

. Moreover, the realize periodically
the local pheromone evaporation of the node where it is.

In theAlgorithm 2 is shown the process realized by the
, as can be observed all Forward Ants act in

parallel. In an initial phase (lines 4-8), the ant checks the
local repository, and if it founds matching documents then

x

i x

x

H D N

x, i, t

i

t

x, i, t

modified transition rule tran

sition rule W

q

ransi

tion rule

l modified transition rule r

t x

Forward Ant x

w D

t r

i

lookahead

query ant

Forward Ant x

t

Forward Ant query ants

Forward Ant

� 


�

�

�




�

4.2.4. Modified Transition Rule

2

1

d

m

i r,i,t

5. AdaNASAlgorithm

creates a .Afterwards, it realizes the search
process (lines 9-25) while it has live and has not found
documents.

The search process has three sections: Evaluation of
results, evaluation and application of the extension of
TTLand selection of next node (lines 24-28).

: Query ant algorithm

create ForwardAnt ( )
x

pheromone evaporation

, the evaluation of results (lines 10-15)
implements the classical Lookahead technique. That is,
the ant located in a node , checks the lookahead struc-
ture, that indicates how many matching documents are in
each neighbor node of . This function needs three para-
meters: the current node ( ), the keyword ( ) and the set of
known nodes ( ) by the ant. The set indicates
what nodes the lookahead function should ignore, because
their matching documents have already taken into ac-
count. If some resource is found, the creates
a and updates the quantity of found mat-
ching documents.

(lines 16-23) is evaluation and
application of the extension of TTL. In this section the ant
verifies if TTL reaches zero, if it is true, the ant intends to
extend its life, if it can do it, it changes the normal -

modifying some parameters (line 21) in order to
create the .

(lines 24-30) of the search process
phase is the selection of the next node. Here, the

(normal or modified) is applied for selecting the next
node and some structures are updated. The final phase
occurs when the search process finishes; then, the -

creates for doing the pheromone
update.

The Algorithm 3 presents the parallel behavior for
each which inversely traverses the path
given by the . In each node that it visits, it
tries to update the structures and , which will be
used for future queries (lines 7-11). The update is realized
if the new values point to a nearer node (line 7). After that,
it informs to of the initial node of the path how
many documents the found and which path
used (line 13).

The Algorithm 4 presents the concurrent behavior for
each which inversely traverses the path given
by the . In each node that it visits, it updates
the pheromone trail using the Equation 6 (line 5).

In this section, we describe the experiments we carried
during the comparisons of the AdaNAS and NAS
algorithms.

backward ant y

R

query ant w located in the node r

the system is running

the user queries to find R documents with

keyword t

x r,t,R

x r

r

r t

known known

Forward Ant

backward ant

transi

tion rule

modified transition rule

transition

rule

r

For

ward Ant an update ant z

backward ant

Forward Ant

D, H N

ant query

Forward Ant

update ant

Forward Ant

Algorithm 1

1 in parallel for each

2 While do

3 if

then

4

5 activate

6 End

7 apply

8 End

9 end of in parallel

The first section

The second section

The third section

6. Experiments
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Algorithm 2:

1 in parallel for each ( )

2 initialization:

3 initialization:

4

5 if then

6

7 activate

8 End

9 while do

10 = look ahead( )

11 if > 0 then

12 create backward ant y( )

13 activate y

14

15 End

16 if > 0 then

17 = 1

18 Else

19 if ( < ) ( ( )

> 0) then

20 = ( )

21 change parameters:

22 End

23 End

24

25 [ ( ( ))

25

27

28

29 End

30

31 activate

32 kill

33 end of in parallel

6.1. Generation of the test data

Algorithm 3:

1 initialization:

2 in parallel for each

3 for do

4

Forward ant algorithm

( )
> 0

create backward ant y( )
y

< 0 <

=1, =0, =0

+ 1

=
= ( )

add to path( )

create update ant ( )
z

x

A SQRP instance is formed by three separate files:
topology, repositories, and queries. We generated the
experimental instances following largely those of NAS
reported by Cruz [7] in order to achieve comparable
results. The structure of the environment in which is
carried out the process described is called , and
refers to the pattern of connections that form the nodes on
the network. The generation of the topology ( ) was based
on the method of Barabási [27] to create a scale-free
network. We created topologies with 1024 nodes; the
number of nodes was selected based on recommendations
in the literature [3], [28].

The ( ) of each node was generated
using “topics” obtained from ACM Computing Classi
fication System taxonomy (ACMCCS). This database
contains a total of 910 distinct topics. Also the content are
scale-free: the nodes contain many documents in their
repositories on the same topic (identified by keywords)
and only few documents on other topics.

Backward ant algorithm
= 0

( )
= 1 to 1
=

ForwardAnt x r,t,R

La_ results r,t,known

la results

path, la results, t

results results + la results

TTL

TTL TTL

results R and TTL x, results, hops

TTL TTL+ TTL x, results, hops

Known= known r r

TTL = TTLmax, hops= 0

path=r, =r, known=r

Results = get_ local_ documents r

results

path, results, t

TTL and results R

q W

Hops= hops

r

r l x,r,t

r

z x, path, t

et al.

topology

T

et al.

local repository R

hops

backward ant y path, results, t

I path

R path




�

�

�
�

� � �

 
 �

	 	 �

d 2

-

( 1)i �

5

6

7 if then

8

9

10

11 End

12 End

13 Send

14 kill

15 end of in parallel

Algorithm 4:

1 in parallel for each

2 for do

3

4

5

6 End

7 kill

8 end of in parallel

Average hops

Average hits

Average efficiency

6.2. Parameters

6.3. Results

s path

hops hops

D

H

N

results, path path1

update ant z path, t, x

i path

R path

s path

x

queries Q

Q

=
= + 1

Dr, s, t > hops
= hops
= result
= path

( ) to the query ant located in
y

Update ant algorithm
( )

= 1 to 1
=
=

= + ( )

z

For the generation of the ( ), each node was
assigned a list of possible topics to search. This list is limi-
ted by the total amount of topics of the ACMCCS. During
each step of the experiment, each node has a probability of
0.1 to launch a query, selecting the topic uniformly at ran-
dom within the list of possible topics of the node reposi-
tory. The probability distribution of determines how
often the query will be repeated in the network. When the
distribution is uniform, each query is duplicated 100 times
in average.

The topology and the repositories were created static,
whereas the queries were launched randomly during the
simulation. Each simulation was run for 15,000 queries
during 500 time units, each unit has 100 ms. The average
performance was studied by computing three performan-
ce measures of each 100 queries:

, defined as the average amount of links
traveled by a ForwardAnt until its death, that is, reach-
ing either the maximum amount of results required R
or running out of TTL.

, defined as the average number of re-
sources found by each ForwardAnt until its death.

, defined as the average of resour-
ces found per traversed edge (hits/hops).

The configuration of the algorithms used in the experi-
mentation is shown in Tables 1 and 2. The first column is
the parameter, the second column is the parameter value
and the third column is a description of the parameter.
These parameter values were based on recommendations
of the literature [3], [6], [7], [29], [30].

The goal of the experiments was to examine the effect
of the strategies incorporated in the AdaNAS algorithm
and determine whether there is a significant contribution
to the average efficiency. The main objective of SQRP is
to find a set of paths among the nodes launching the que-

i

r, s, t

r, s, t

r, s, t h

i

i

r, s, t r, s, t r, s, t

	 	 �

� � ��

( 1)�

�

�

�
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ries and the nodes containing the resources, such that the
efficiency is greater, this is, the quantity of found resour-
ces is maximized and the quantity of steps given to find the
resources is minimized.

Figure 2 shows the performed during
15,000 queries with AdaNAS and NAS algorithms on an
example instance. NAS starts off approximately at 13.4
hits per query; at the end, the average hit increases to 14.7
hits per query. ForAdaNAS the average hit starts at 16 and
after 15,000 queries the average hit ends at 18.3. On the
other hand, Figure 3 shows the performed
during a set of queries with NAS andAdaNAS. NAS starts
approximately at 17.4 hops per query; at the end, the aver-
age hops decrease to 15.7 hops per query. ForAdaNAS the
average hops starts at 13.7 and after 15, 000 queries the
average hops ends at 9.1. Finally, Figure 4 shows the -

performed during a set of queries. NAS
starts approximately at 0.76 hits per hop; at the end, it
increases to 0.93 hits per hop. For AdaNAS the average
efficiency starts at 1.17 hits per hop and after 15, 000 que-

average hits

average hops

aver

age efficiency

ries the average efficiency ends at 2.
The adaptive strategies of AdaNAS show an incre-

ment of 24.5% of found documents, but the biggest contri-
bution is a reduction of hops in 40%, giving efficiency
approximately twice better on the final performance of
NAS. This observation suggests that the use of degree in-
stead of DDC was profitable. In addition, the incorpora-
tion of the survival rule permits to improve the efficiency,
because it guides the Forward Ants to nodes that can
satisfy the query. Moreover, in future works it will be im-
portant to study adaptive strategies for other parameters as
well as the initial algorithm parameter configuration in
search of further improvement in the efficiency.

Figure 5 shows the results of the different experiments
applied to NAS and AdaNAS on thirty runnings for each
ninety different instances generated with the characte
ristics described in Section 6.1. It can been seen from it
that on all the instances the AdaNAS algorithm outper
forms NAS. On average, AdaNAS had efficiency 81%
better than NAS.

-

-
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Table 1. Parameter configuration of the NAS algorithm.

PARAMETER
�
�
�
�0

0q

R

TTL

W
max

PARAMETER
�
�
�

1

2

0

0

T

q

R

TTL

w

w

w

max

h

d

i

VALUE
0.07
0.07

2
0.009
0.9
10
10
0.5

VALUE
00.07

2
1

0.009
0.9
10
10
0.5
1
1

Global pheromone evaporation factor
Local pheromone evaporation factor
Intensifier of pheromone trail
Pheromone table initialization
Relative importance between exploration and exploitation
Maximum number of results to retrieve
Initial TTL of the Forward Ants
Relative importance of the resources found and TTL

Local pheromone evaporation factor
Intensification of local measurements (degree and distance) in transition rule.
Intensification of pheromone trail in the in the transition rule.
Pheromone table initialization
Relative importance between exploration and Exploitation in the transition rule.
Maximum number of results to retrieve
Initial TTL of the Forward Ants
Relative importance of the hits and hops in the increment rule
Degree's influence in the transition rule
Distance's influence in the transition rule

DEFINITION

DEFINITION

Table 2, Parameter configuration of the AdaNAS algorithm.

Fig. 2. Learning evolution in terms of the number of resources found for AdaNAS and NAS algorithms.
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7. Conclusions
For the solution of SQRP, we proposed a novel algo-

rithm called AdaNAS that is based on existing ant-colony
algorithms, which is a state of art algorithm. AdaNAS
algorithm incorporates parameters adaptive control tech-
niques to estimate a proper TTL value for dynamic text
query routing.

In addition, it incorporates local strategies that take
advantage of the environment on local level; three func-
tions were used to learn from past performance. This com-
bination resulted in a lower hop count and an improved hit
count, outperforming the NAS algorithm. Our experi-
ments confirmed that the proposed techniques are more
effective at improving search efficiency. Specifically the

AdaNAS algorithm in the efficiency showed an improve-
ment of the 81% in the performance efficiency over the
NAS algorithm.

As future work, we plan to study more profoundly the
relation among SQRP characteristics, the configuration of
the algorithm and the local environment strategies emplo-
yed in the learning curve of ant-colony algorithms, as well
as their effect on the performance of hop and hit count
measures.
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Fig. 3. Learning evolution in terms of the length of the route taken for AdaNAS and NAS algorithms.

Fig. 4. Learning evolution in terms of the efficiency (hits/ hop) for AdaNAS and NAS algorithms.

Fig. 5. Comparison between NAS and AdaNAS experi menting with 90 instances.-
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