
Abstract:

1. Introduction

-

In this paper, the implementation of a Parallel Genetic

Algorithm (PGA) for the training stage, and the optimi

zation of a monolithic and modular neural network, for

pattern recognition are presented. The optimization con

sists in obtaining the best architecture in layers, and neu

rons per layer achieving the less training error in a shor

ter time. The implementation was performed in a multi-

core architecture, using parallel programming techniques

to exploit its resources. We present the results obtained in

terms of performance by comparing results of the training

stage for sequential and parallel implementations.
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The recognition of individuals, from their biometric

features, has been driven by the need of security applica

tions, mainly of security such as in surveillance systems

for control of employee assistance, access control security

places, etc. These systems, have been developed with dif

ferent biometrics including face recognition, fingerprints,

iris, voice, hand geometry, and more [15]. Although there

are systems based on classical methods, biometric pattern

recognition developed in the area of artificial intelligence

with techniques such as fuzzy logic, data mining, neural

networks, and genetic algorithms.

Real-world problems are complex to solve and require

intelligent systems that combine knowledge, techniques

and methodologies from various sources. In this case, we

are talking about hybrid systems, and these can be obser

ved in some applications already developed in [6], [13],

[14].

Artificial Neural Networks applied to pattern recogni

tion have proved to give good results. Therefore is com

plex to deal with monolithic neural networks. The use of

modular neural networks can divide the complex problem

into several task smaller, in order to get a efficient system

and good results.

Artificial Neural Networks and Modular Neural Net

works have high potential for parallel processing. Their

parallel nature makes them ideal for parallel implemen

tation techniques; however it's difficult to find optimal

network architecture for a given application. The architec

ture and network optimal parameter selection is the most

important part of the problem and is what takes a long time

to find. Genetic Algorithms (GAs) are search techniques

that used to solve difficult problems in a wide range of

disciplines. Parallel Genetic Algorithms (PGAs) are pa

rallel implementations of GAs, which can provide con

siderable gains in terms of performance and scalability.

PGAs can easily implemented on networks of heteroge

neous computers or on parallel machines like a multicore

architecture.

Dongarra [10] describe several interesting appli

cations of parallel computing. In the coming years, com

puters are likely to have even more processors inside, and

in [3] a description of multi-core processor architecture is

presented. An introduction to Multi-Objective Evolutio

naryAlgorithms can also be found in [8].

The primary goal of this research is to implement an

optimized modular neural network system for multimodal

biometric. In this paper first we describe the implemen

tation of a monolithic neural network optimized with

a PGA, and later the first stage of the modular system that

consist in a modular neural network for only one biome

tric measure, the system is optimized using a PGAmaster-

slave synchronous.

The paper is organized as follows: in the section 2 we

explain relevant concepts include in this research, section

3 defines the problem statement and the method proposed,

section 4 presents the results achieved and finally Section

5 show the conclusions and future work.
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2. Theoretical Concepts
Soft Computing consists of several computing para

digms, including fuzzy logic, neural networks and genetic

algorithms, which can be combined to create hybrid intel

ligent systems, these systems leverage the advantages of

each of the techniques involved [15]. In this research,

we use the paradigms of neural networks and genetic

algorithms.

A neural network is a computational structure capable

of discriminating and modeling nonlinear characteristics.

It consists of a set of units (usually large) of interconnec

ted simple processing, which operate together. Neural net

works have been widely used because of their versatility

for solving problems of prediction, recognition, approach

[6], [15], [12], [24].

These systems emulate, in a certain way, the human

brain. They need to learn how to behave (Learning) and

someone should be responsible for teaching (Training),

based on previous knowledge of the environment problem

[16], [26], 25].

The most important property of artificial neural net

works is their ability to learn from a training set of pat

terns, i.e. is able to find a model that fits the data [22].
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Areview of the physiological structures of the nervous

system in vertebrate animals reveals the existence of a re

presentation and hierarchical modular processing of the

information [18].

Modularity is the ability of a system being studied,

seen or understood as the union of several parts interacting

and working towards a common goal, each performing

a necessary task to achieve the objective [2].

According to the form in which the division of the

tasks takes place, the integration method allows to inte

grate or to combine the results given by each of the cons

tructed modules. Some of the commonly used methods of

integration are: Average, Gating Network, Fuzzy Infe

rence Systems, Mechanism of voting using softmax func

tion, the winner takes all, among others.

In Fig. 1 shows a general diagram of a Modular Neural

Network, in this model the modules work independently

and in the end a form commonly called integrator, per

forms the function of deciding between the different mo

dules to determine which of them has the best solution (in

cluding network of gateways, fuzzy integrator, etc.) [17].

John Holland introduced the Genetic Algorithm (GA)

in 1970 inspired by the process observed in the natural

evolution of living beings [26], [19]. Genetic Algorithms

(GAs) are search methods based on principles of natural

selection and genetics. A GA presents a group of possible

solutions called a population; the solutions in the popula

tion called individuals, each individual is encoded into

a string usually binary called chromosome, and symbols

forming the string are called genes. The Chromosomes

evolve through iterations called generations, in each gene

ration the individuals are evaluated using some measure

of fitness. The next generation with new individuals called

offspring, is formed from the previous generation using

two main operators, crossover and mutation, this repre

sentation is shown in Fig 2.

2.2. Modular Neural Networks

2.3. GeneticAlgorithms
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Fig. . Modular Neural Network.

Fig. . Structure of a Simple GA.

1

2

These optimization techniques are used in several

areas such as business, industry, engineering and com

puter science, also are used as a basis for industrial plan

ning, resource allocation, scheduling, decision-making,

etc. The GA is commonly used in the area of intelligent

systems, some examples of optimization of fuzzy logic

systems and neural networks are shown in [4]. GAs find

good solutions in reasonable amounts of time, however, in

some cases GAs may require hundreds or more expensive

function evaluations, and depending of the cost of each

evaluation, the time of execution of the GA may take

hours, days or months to find an acceptable solution [4],

[19].

Computers with a chip multiprocessor (CMP) give the

opportunity to solve high performance applications more

efficiently using parallel computing. However, a disad

vantage of GAs is that they can be very demanding in

terms of computation load and memory.

The Genetic Algorithms have become increasingly

popular to solve difficult problems that may require con

siderable computing power, to solve these problems deve

lopers used parallel programming techniques, the basic

idea of the parallel programs is to divide a large problem

into smaller tasks and solve simultaneously using multiple

processors. The effort for efficient algorithms has led us to

implement parallel computing; in this way it's possible to

achieve the same results in less time. However, making

a GA faster is not the only advantage that can be expected

when designing a parallel GA. A PGA has an improved

power to tackle problems that are more complex since it

can use more memory and CPU resources [1].

The way in which GAs can be parallelised depends of

several elements, like how the fitness is evaluated and

mutation is applied, if single or multiples subpopulations

(demes) are used, if multiple populations are used, how

individuals are exchanged, how selection is applied

(globally or locally).

Existing different methods for implementing parallel

GAs and can be classified in the next general classes [20]:

Master-Slave parallelisation (Distributed fitness

evaluation),

Our Implementation is based on the Master-Slave

Synchronous parallelisation, and for that reason we des

cribe only this method, other methods can be reviewed in

[4], [19].

Master-slave GAs have a single population. One mas

ter node executes the operator's selection, crossover, and

mutation, and the evaluation of fitness is distributed

among several workers (slaves) processors. The workers

evaluate the fitness of every individual that they receive

from the master and return the results.AMaster-Salve GA

depending on whether it waits to receive the fitness values

-
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-

-

-
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Static subpopulation with migration,

Static overlapping subpopulations (without migration),

Massively parallel genetic algorithms,

Dynamic demes (dynamic overlapping subpopulations),

Parallel Steady-state genetic algorithms,

Parallel messy genetic algorithms,

Hybrid methods.
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memory programming and Distributed memory [5], also

the parallelism can be implemented in two ways, implicit

parallelism, that some compilers perform automatically,

these are responsible to generate the parallel code for the

parts of the program that are parallel, and the explicit pa

rallelism which is implemented using parallel languages,

and the responsible of the parallelism is the programmer,

that defines the threads to work, the code of each thread,

the communication, etc., this last parallelism gets higher

performance.

-

In this case, we focus on the parallel genetic algorithms

for optimizing the architecture of a monolithic neural net-

work and Modular Neural network for recognition of per-

sons based on the face biometry implemented in multi-

core processors.

For determining the best architecture and parameters

for a neural network there is no particular selection crite-

rion, for example the number of layers and neurons per

layer for a particular application is chosen based on expe-

rience and to find an optimal architecture for the network

becomes a task of trial and error. In addition, there are

others methods that with a empirical expression can calcu-

late and determining the architecture of neural network for

a specific problem [23].

The database used for this research is The ORL Data-

base of Faces of the Cambridge University Computer La-

boratory [9]. This database contains ten different images of

40 persons with gestures, for our implementation not apply

any preprocessing for this time, the examples pictures

shown in Fig. 4.

3. Problem Statement

Fig. . Some images of the ORL database, the database is

composed by 400 images, there are images of 40 different

persons (10 images per person).

4

for the entire population before proceeding to the next

generation can be synchronous or asynchronous. In Fig. 3

we show a Master-Slaves Synchronous GA.

The improvement in actual processors is based on the

development of Chip Multiprocessors (CMPs) or Multi-

core processors, thus to increase the efficiency of a pro

cessor, increases the number of cores inside the processor

chip.

Multi-core processors technology is the implementa

tion of two or more “execution cores” within a single pro

cessor, some of the advantages of multi-core architectures

are shown in [10], [7]. These cores are essentially two or

more individual processors on a single chip. Depending

on the design, these processors may or may not share

a large on-chip cache; the operating system perceives each

of its execution cores as a discrete logical processor with

all the associated execution resources [5].

CMPs can achieve higher performance than would be

possible using only a single core. The low inter-processor

communication latency between the cores in a CMP helps

make a much wider range of applications viable candi

dates for parallel execution. The increasing complexity of

parallel multicore processors necessitates the use of

correspondingly complex parallel algorithms.

However to exploit these architectures is necessary to

develop parallel applications that use all the processing

units simultaneously. In order to achieve parallel execu

tion in software, hardware must provide a platform that

supports the simultaneous execution of multiple threads.

Software threads of execution are running in parallel,

which means that the active threads are running simulta

neously on different hardware resources, or processing

elements. Now it is important to understand that the paral

lelism occurs at the hardware level too.

The improvement measure or speedup takes as refere

nce, the time of execution of a program in a mono-proces

sor system regarding the time of execution of the same

program in a multiprocessor or multi-core system, which

is represented as follows:

speedup , (1)

Where is the time it takes to run the program in

a mono-processor system and is the time it takes to run

the same program in a system with execution units.

There are many models of parallel programming, the

two main choices and the most common are Shared-

2.5. Chip Mpltiprocessors (CMPs)
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For the implementation monolithic and Modular, the

database was the same, and the same structure of chromo-

some for optimization.

Neural networks were applied to a database of 40 per-

sons, and we used 5 images per person for training and 5

images per person for test. First, we implemented the tra-

ditional monolithic neural network, and before we imple-

mented a Parallel GA for optimizing layer and neurons per

layer. The training method for the neural network is the

Trainscg (Scaled Conjugate Gradient), with an error goal

of 0.01e-006 and between 100 and 150 generations.

The GeneticAlgorithm was tested in a Multi-core com-

puter with following characteristics: CPU Intel Core 2

Quad 2.4 GHz, Bus 1066 MHz, 8MB of L2 cache, Memo-

ry 6 GBytes DDR2 of main memory, all the experiments

were achieved in the MatLab Version R2009b using the

Parallel computing toolbox.

The Master-Slave Parallel genetic Algorithm was

codified with a binary chromosome of 23 bits, 2 bits for

number of layers, and 7 bits for number of neurons per

layer. The maximum number of layers is 3 and neurons

128, this is shown in Figure 5. The proposed algorithm was

implemented in a Shared Memory Multi-core machine

with 4 cores, taking one core as master and the remaining

cores as slaves.

3.1. Monolithic Neural Network Implementation

Parallel GeneticAlgorithm for Optimization

Fig. . Chromosome representation of the problem.

Fig. . Parallel GA Implementation.

5

6

The Genetic Algorithm has the following characte-

ristics:

Chromosome Size: The number of genes in each indi-

vidual for this application is 23 binary bits.

Population size: Defines the number of individuals that

will compose the population.

Population Size =20

Termination Criteria: Maximum number of genera-

tions for solving the problem.

Max Generations=50

Selection: We used Stochastic Universal Sampling

Selection Prob=0.9

Crossover: The selected individuals have a probability

of mating, acting as parents to generate two new indivi-

duals that will represent them in the next generation.

The crossing point is random with a probability of 0.7.

Mutation: Represents the probability that an arbitrary

bit in the individual sequence will be changed from its

original stat. Mutation Probability 0.8

The flow chart of Fig. 6 shows the parallel GA imple-

mentation. Other methods for solving a Parallel GA can be

seen in [21], [11], [4].

For the modular neural network implementation, we

develop a previous stage of normalization for the database;

this stage is a parallel one like the training stage. To the ori-

ginal database we apply an algorithm for standardize the

size of the image. Depending on the database, if neces-

sary, applies this stage.

In Fig. 7, show the general diagram of the system, the

original database it's distributed in all the slaves available

for normalization to form a new database, that is the input

to the modular neural network. In the system, we have

a synchronization step that execute the master to help coor-

dinate the process in all the slaves.

When we have the inputs of the system, the PGA start

creating a random initial population in the stage of syn-

chronization, the master divides the population and send it

to the slaves (in this case the cores of processor), and the

slaves take a part of the population to evaluate.

In all the Slaves, for each individual of the GA, load the

architecture of the network, read the images and put as

input in the Module that corresponds. The images are pro-

pagate in the network and calculate the error of training.

When finish the part of population the slaves send the re-

sults of evaluation to the master. Master waits to all slaves

finish to collect the entire population and make selection

based on the fitness of all the individuals.

The Master performs the operators of crossover, muta-

tion and generates the new population to be divided and

evaluated in the slaves, until the maximum number of ge-

nerations is reached. We used the method of integration

Gating Network.

The modular architecture consists in dividing the data-

base between the modules or core processors available.

The experimental results achieved with this PGA imple-

mentation presented in the following section.

�

�

�

�

�

�
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4. Results
Different experiments developed to observe the per-

formance of parallel genetic algorithms; the results pre-

sented in this section, the results in time represent the aver-

age time execution of each neural network in the popu-

lation of the PGA.

First, we train the monolithic neural network without

optimization, in sequential form.After manually changing

the architecture for several times, we defined the architec-

ture of the neural network with the expression of Salinas

[23] as follows:

First hidden layer (2 * ( + 2)) = 84.

Second hidden layer ( + ) = 45.

Output layer ( ) = 40.

where corresponds to the number of individuals and m to

the number of images of each of them.

Table 1 shows the average of 20 trainings in sequential

form of the network in a dual-core and quad-core machi-

nes, in this experiment we enabled only one of the cores

available and one thread of execution in the processor for

simulating sequential execution. Fig. 8 shows the usage of

a dual-core machine in the training of the network.

No. Cores Epochs Error Goal Error Total Time

4 150 1.00E-06 0.00178 1:18 min

2 150 1.00E-06 0.00468 1:14 min

4.1. Monolithic Neural Network

�

�

�

k

k m

k

k

Table . Average of 20 trainings in sequential form of the

network for dual-core and quad-core machines.

Fig. . Cores Usage in the sequential training of the network.

1

8

In the experiment of training with implicit parallelism

without optimization all the cores and threads available

are enabled. Matlab R2009b uses as a default the implicit

parallelism for the applications run on it and take all the

cores for execution automatically generating a thread of

execution per processor. The results obtained for Matlab

in a dual-core and quad-core machines shown in the

Table 2.

No. Cores Epochs Error Goal Error Total Time

4 150 1.00E-06 0.00113 1:58 min

2 150 1.00E-06 0.00384 1:41 min

The results show that the execution of serial training of

the network are more efficient that the implicit paralellism

of Matlab, because when a single core is working (Fig. 9)

all the cache memory is available for them.

We optimize the monolithic Neural Network with

a simple GA in the form of implicit parallelism. Table 3

shows the average of 20 training test for 2 and 4 cores.

Figures 10 and 11 show the usage of processor in dual-

core and quad-core machines.

Table . Average of 20 trainings of implicit parallelism

form of the network for dual-core and quad-core

machines.

Fig. . Cores Usage in the implicit parallelism in training

of the network.

2

9

Implicit Parallelism with GAoptimization
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Fig. . General Diagram of the Modular Neural Network System.7

N. Cores

2

4

Ind

20

20

Gen

30

30

Cross

0.7

0.7

Mut

0.8

0.8

Error

3.0121e-004

9.7361e-005

Time/ nework

1:51min

4:10 min

Average time

33 min

83 min

Table . Average of 20 training of implicit parallelism of Simple GA for optimization of the network with for dual-core

and quad-core machines.

3
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In this experiment, we utilize the matlab pool that en-

ables the parallel language features within the MATLAB

language by starting a parallel job, which connects this

MATLAB client with a number of labs. The average re-

sults for 20 executions are shown in table 4. Fig. 12 and 13

show the usage of the processor for training with explicit

parallelism in a dual-core and quad-core machines.

Fig. . CPU Performance Implicit Parallelism with 2 cores.

Fig. . CPU Performance Implicit Parallelism with 4 cores.

Fig. . CPU Performance Explicit Parallelism with 2 cores.

10

11

12

Explicit Parallelism with Parallel GAoptimization

Fig. . CPU Performance Explicit Parallelism with 4 cores.

Fig. . CPU Performance Explicit Parallelism with 2

cores modular neural network.

13

14

Table 5 shows a comparison between all the training

experiments, and observed that.

The results presented in this section are in Table 6 that

shows the average of 10 trainings in sequential form of the

Modular network in a dual-core and quad-core machines.

In the parallel implementation of the modular neural

network utilize the Matlab pool starting a parallel job. The

average results for 10 executions are shown in the Table 7.

Fig. 15 shows the performance of CPU for the parallel

training of a Modular Neural Network.

4.2. Modular Neural Network

VOLUME 5,     N° 1     2011

N. Cores

2

4

N. Cores

2

4

No. Cores

Average time/ network

No. Cores

2

4

N. Cores

2

4

Epochs

150

150

Epochs

150

150

RNA

Modular Network Sequential

GA-RNA

PGA-Modular Network GA. Explicit Parallelism

Sequential GA. Implícit Parallelism GA. Explicit Parallelism

2

1:18 min

Time

2:05 min

2:13 min

4

1:14 min

2

1:58 min

Time

1:40 min

0:58 sec

2

1:03 min

4

1:41 min

Speedup

1.46

3.67

4

0:35 sec

Ind

20

20

Gen

30

30

Error Goal

1.00E-06

1.00E-06

Error Goal

1.00E-06

1.00E-06

Cross

0.7

0.7

Error

0.0005

0.0031

Error

0.00012

0.00025

Mut

0.8

0.8

Error

3.3121e-004

4.5354e-004

Time p/red

2:13 min

2:05min

Time p/red

0:58 min

1:40 min

Time/ nework

1:03min

0:35 sec

Time p/gen

20:11 min

20:49 min

Time p/gen

9:37 min

16:36 min

Average time

21 min

12 min

Table 8. Results of experiments Sequential and Parallel per network and the speedup.

Table . Average of 20 training of explicit parallelism of PGA for optimization of the network with for dual-core and

quad-core machines.

4

Table . Table of Results of experiments Sequential and Parallel per network.5

Table 6. Average of 10 trainings in sequential form of the modular network for dual-core and quad-core machines.

Table 7. Average of 10 training of explicit parallelism of PGA for optimization of the modular network with for dual-core

and quad-core machines.
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Fig. . CPU Performance Explicit Parallelism with 4

cores modular neural network.

15

In Table 8 we show the results of a modular neural net-

work with a sequential training and with a parallel train-

ing, for this experiment modules of the modular network

are trained in parallel, the optimization of the network is

done in about half (dual core) or about a quarter (quad-co-

re) time, we obtain a speedup of 1.46 in a dual core machi-

ne and 3.67 in a Quad core machine. This are the first re-

sults obtained, we continue with experiments.

We have presented the experiments with training of

the monolithic and modular neural network for database

of face; we used different implementations of parallelism

to show that the parallel GA using multi-core processor

offers best results in the search for optimal neural network

architectures in less time.

The genetic algorithms take considerable time to suc

cessfully complete convergence depending of applica

tion, but most of the times achieve satisfactory optimal so-

lutions. Genetic Algorithms can be parallelized to speed-

up its execution; and if we use Explicit Parallelization we

can achieve much better speedup than when using implicit

Parallelization, anyway it's necessary to make more tests.

Multi-core computers can help us solve high perfor

mance applications in a more efficient way by using pa

rallel computation. The future work consists in conside

ring larger size databases and implementing a modular

neural network in a multi-core cluster applying different

techniques of parallel processing
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