
Abstract:

1. Introduction

In wireless mobile sensor networks, periodic calcula-

tion of coverage is very important, since mobile sensors

can be moved adequately to current needs, thus increasing

the coverage. Those moves require the execution of

navigation tasks. Global network central algorithms for

those tasks are very costly regarding energy consumption

and computational resources. Considerations presented

herein pertain to the best algorithms for a network of

numerous small mobile sensor nodes used for monitoring

of large terrains. Localized algorithms suggested in this

paper help calculate the coverage on-line and locally with

the involvement of neighboring nodes only. Furthermore,

localized collaborative navigation is presented. It enables

yielding position estimation with no GPS use and ensures

improvement rather than deterioration over time. It uses

multi-sensor fusion algorithms based on optimization and

a distributed iterative extended Kalman Filter.

Keywords: wireless, mobile sensor network, coverage,

navigation.

There are two major problems regarding wireless mo-

bile sensor networks, i.e. whether a network has adequate

coverage of monitoring area and whether a network is able

to rearrange sensor-nodes to fulfill the specific require-

ments of coverage. The ability to self-deploy and self-

configure is of critical importance for mobile sensor net-

works because of the unattended nature of intended

applications. The network should be able to dynamically

adapt its topology to meet application-specific require-

ments of coverage and connectivity. In static networks,

topology control is achieved by controlling the transmis-

sion power or sleep/wake schedules of densely deployed

nodes. In contrast, mobile sensor networks can exploit

control over node positions to affect network topology

thus eliminating the need for over-deployment and

increasing the net area sensed. A key challenge posed by

this objective is the typically global nature of the desired

network properties, one of which is coverage of a network.

A wireless sensor network is a collection of sensors

that offer the ability to communicate with one another and

the ability to sense the environment around them, but have

limited computational and battery capacity, e.g. solar-

powered autonomous robots. These considerations con-

cern the best algorithms for a network of numerous small

mobile sensor nodes used for monitoring of large terrains,

including those used in safety applications. This paper

attempts to select the best solution to how a wireless mo-

bile sensor network could take advantage of its mobility to

improve its coverage by self-deployment of sensors con-

suming as little power as possible. Power consumption is

of critical importance in such networks. Topology control

algorithms that reduce energy consumption have been an

area of thorough research and numerous works, many of

which are presented in [1]. Our paper describes selected

techniques for evaluation of both coverage and locali-

zation of nodes, focusing on those presenting a distributed

method and requiring as low energy consumption and as

little computation resources as possible. The remaining

sections are organized as follows: Section 2 provides the

theoretical framework of coverage, Section 3 describes

evaluation of sensor field exposure, Section 4 contains

a short review of existing works concerning algorithms

for coverage calculation, Section 5 presents the distribu-

ted algorithm for minimal exposure path evaluation,

Section 6 pertains to navigation problems in mobile sen-

sor network, Section 7 presents distribution multi-sensor

fusion algorithm for navigation and Section 8 presents

performance analysis of location estimates. The last sec-

tion provides some conclusions and gives suggestions for

future work.

-

sensing ability diminishes as distance increases;

sensing ability improves as the sensing time

(exposure) increases (due to noise effects).

2. Calculation of coverage
One of the fundamental problems regarding sensor

networks is the calculation of coverage. Exposure is direc

tly related to coverage in that it is a measure of how well an

object, moving on an arbitrary path, can be observed by

the sensor network over a period of time. The minimal

exposure path is a path between two given points such that

the total exposure acquired from the sensors by traversing

the path is minimized [2]. The path provides information

about the worst-case exposure-based coverage in the

sensor network. Exposure can be defined as an integral of

a sensing function that generally depends on the distance

between sensors on a path from a starting point and

a destination point . The specific sensing function

parameters depend on the nature of the sensor device and

usually have the form , with K typically ranging from

1 to 4.

Generally speaking, sensors have broadly diversified

theoretical and physical characteristics. Most sensor

models share two facets:

With this in mind, for a sensor , the general sensing

model at an arbitrary point can be expressed as

follows:
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(1)

where is the Euclidean distance between the sensor

and the point , and positive constants and are sensor

technology-dependent parameters.

d(s,p)

s p K�

3. Sensor Field Intensity and Exposure

4. Algorithms for coverage evaluation

In order to introduce the notion of exposure in sensor

fields, the Sensor Field Intensity for a given point in the

sensor field should be defined. Sensor field intensity can

be defined in several ways. Two models are presented for

the sensor field intensity: All-Sensor Field Intensity and

Closest-Sensor Field Intensity.

Exposure for an object in the sensor field during the

interval [ ] along the path is defined [3] as:

(2)

where:

All-Sensor Field Intensity for a point in the field is

defined as the effective sensing measurements at point

from all sensors in . Assuming there are n active sensors,

s , s ,…s , each contributing with the distance-dependent

sensing the function can be expressed as:

( ) = ( ) (3)

Centralized method algorithm requires sensor nodes

not only to perform the exposure calculation and shortest-

path searching in the sensor network, but also to know the

topography of the network. Both functionalities, parti-

cularly discovering the network topography, may require

extensive computation resources and energy consumption.

Communication, required to discover the network topo-

graphy, is the major energy consumer in wireless sensor

networks. Therefore, it is important that a localized mini-

mal exposure path algorithm is developed so that sensors

can estimate the network's minimal exposure path without

having to know the entire network's topography. In such

a localized algorithm, the number of messages sent across

the network and the computation performed at each node

should be kept at the minimum level.

Most research conducted so far has focused on redu-

cing the design and maintenance (including deployment)

costs or increasing the sensor network's reliability and

extending its lifetime. However, another crucial problem

is to determine how successfully the sensor network mo-

nitors the designated area. This is one of the most impor-

tant criteria for evaluating the sensor network's effective-

ness [4]. Another problem is the navigation of mobile

nodes in order to improve coverage of the network. We re-

view several techniques of coverage estimation and a few

techniques for localization and navigation of mobile sen-

sor-nodes in order to move it to improve the coverage of

the sensor network. Coverage in a mobile sensor network

can be evaluated as optimization problem for best case or

worst-case coverage. The best-case coverage involves

p
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two approaches: maximum exposure path and maximum

support path. The worst-case coverage has another two:

maximum breach path and minimum exposure path [5].

For safety applications, the latter two approaches are

chosen. Maximum breach path is not a unique one, since it

finds a path such that the exposure at any given time does

not exceed a given value. Therefore, the minimum expo-

sure path is chosen, since it attempts to minimize the expo-

sure acquired throughout entire measured time interval.

Determining such a path enables the user to change the

current location of some nodes to increase the coverage.

The authors of [6] suggest that the problem should be

transformed to a discrete by generating x square grid

and limit the existence of the minimal exposure path only

along the edges and diagonals of each grid square. Each

edge is assigned a weight calculated by special function

using numerical integration. The solution produced by the

algorithm approaches optimum at the cost of run-time and

storage requirements. [7] discusses an algorithm for a net-

work that initially deploys a fixed number of static and

mobile nodes and then static nodes find the coverage holes

and mobile nodes are relocated to the targeted localiza-

tions to increase coverage. In the next section, we present

the distributed local algorithm, which do not present limi-

tation of fixed number of nodes. The authors of [8] deve-

loped distributed algorithms for self-organizing sensor

networks that respond to directing a target through a re-

gion and discussed self-organizing sensor networks cap-

able of reacting to their environment and adapting to

changes. It can also evaluate coverage of the network in

a different way. They described an innovative application:

using the sensor network to guide the movement of a user

equipped with a sensor that can communicate with the net-

work across the area of the network along a safest path.

Safety is measured as the distance to the sensors that de-

tect danger. The protocols for solving this problem imple-

ment a distributed repository of information that can be

stored and retrieved efficiently when needed.

In [9], the author proposes a virtual force algorithm

(VFA) as a sensor deployment strategy to enhance the

coverage after initial random placement of sensors. For

a given number of sensors, the VFA algorithm attempts to

maximize the sensor field coverage. A discreet combina-

tion of attractive and repulsive forces is used to determine

virtual motion paths and the rate of movement for the

randomly placed sensors. Once the effective sensor posi-

tions are identified, a one-time movement with energy

consideration incorporated is carried out and the sensors

are redeployed to these positions.

The best solution for the objective set forth in these

considerations is the localized algorithm for minimum

exposure calculation proposed by Veltri and others [10].

It ensures low costs of communication and computation in

the wireless sensor network without the necessity to

determine the entire network's topography and does not

require a fixed and limited number of nodes. In this

algorithm, only neighboring nodes need to be updated

with information and minimum path can be calculated on-

line in an easy and efficient manner.

n n

5. Localized algorithm for minimum
exposure calculation

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 5,     N° 1     2011

n

1

Articles 59



factors and used the following formula to calculate the

heuristic value for node with respect to the sender node :

(4)

where:

- distance between the sender and its neighbor ,

- maximum communication radius,

- number of hops that the message has currently

been transmitted (assume starts with 1)

- positive constant

To balance the above two unrelated values, both are

normalized, where the first term rewards nodes that are far

away from the sender and the second term penalizes

neighbor if it is further to the destination than the sender

node , (the case in which the second term is negative). The

constant reflects how rapidly the weight is shifted from

picking a neighbor remote from a sensor to picking

a neighbor close to the destination. The method tends to

pick a sensor closer to the destination as , the number of

hops, increases to prevent the message from being circu-

lated endlessly throughout the sensor network.

The algorithm for localized approximation of mini-

mum exposure path consists of 4 steps:

the sensor that is closest to the starting coordinate

sends a Search message to the node that is determined

on the basis of the above heuristic value;

when this Search message reaches its destination

sensor (the sensor closest to the ending coordinate),

the sensor calculates the minimum exposure path

using a Voronoi-based approximation algorithm and

the network's topological information it receives. (The

Voronoi-based approximation algorithm gives the

near-optimum exposure path within a Voronoi cell

without using the grid-based method requiring exten-

sive computational resources and hence reduces the

computation requirements);

next, the algorithm selects the sensor in the location

that most probably contains the minimum exposure

path and sends a Forward message to this sensor.

When the appropriate sensor receives the Forward

message, it sends a Search message back to the desti-

nation sensor to acquire more information on the sen-

sor network's topography that is needed by the Voro-

noi-based approximation algorithm;

this process is repeated until no sensor node requires

any further topological information or no locations

look promising in comparison to the current minimum

exposure path calculated.

The minimum exposure path approach is very useful

in the network's evaluation. Once the minimum exposure

path is known, the user can manipulate sensors in the net-

work or add sensors to the network to increase coverage.

The problem arising after the calculation of the net-

work's coverage is how to navigate nodes effectively in

order to move some of them and improve this coverage
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6. Algorithms for navigation in mobile
sensor network

The following assumptions were made:

sensor nodes do not possess the necessary knowledge

to compute the shortest path locally and hence rely on

forwarding messages to their neighbors using a shor-

test-path heuristics;

a sensor node stores topological information it re-

ceives and forwards the topological information it

knows;

the Voronoi diagram-based minimum exposure path

approximation algorithm is used to further reduce the

computation (of exposure) at each sensor node.

To use the Voronoi diagram to estimate the minimum

exposure path, grid points are placed along Voronoi edges,

and grid points on the same Voronoi cell are fully

connected (see Fig.1).

The weight of an edge between two Voronoi grid

points is the single-sensor optimal solution weight for the

sensor corresponding to the Voronoi cell. However, this

weight only applies if the shortest path lies entirely within

the Voronoi cell. If the path strays beyond the Voronoi cell,

a straight line is used to weight the edges. Furthermore, the

single-sensor optimum solution is used to bound areas to

search; if the single-sensor optimum solution between two

points is larger than an already found estimated solution,

those two points are not investigated during subsequent

iterations of the localized algorithm.

Two types of messages, Forward messages and Search

messages, are passed among sensors in the sensor net-

work. Search message - the receiving node will search

locally. Forward message - the receiving node will for-

ward it to a neighboring sensor. To reduce the costs of

communication and computation on the wireless sensor

network, a heuristic method was applied to rapidly come

to a solution that is hoped to be close to the best possible

answer. A sensor node selects its neighbor node as the

recipient of the message. It would pick the node that has

potentially large number of distinct neighbors so that it

can quickly learn the network topography or it is close to

the destination. In [10], the authors combined these two

�

�

�

Fig. 1. Voronoi diagram for sensor network. Circles repre-

sent sensors, ellipses a starting point and a destination

point.
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[11]. Czapski [12] suggested a fully adaptive routing

protocol for the wireless sensor network taking advantage

of the nature of sensed events to localization of individual

nodes. In [13], the authors described techniques enabling

the incorporation of GPS measurements with an IMU

sensor. A complementary filter known as the Kalman

Filter (KF) provides the possibility to integrate values

from the two sources whilst minimizing errors to provide

an accurate trajectory of the vehicle. The following GPS

and INU data is post-processed by an Extended KF (EKF).

In [14], the authors described a multiple sensor fusion-

based navigation approach using an interval analysis (IA)-

based adaptive mechanism for an Unscented Kalman

filter (UKF). The robot is equipped with inertial sensors

(INS), encoders and ultrasonic sensors.An UKF is used to

estimate the robot's position using the inertial sensors and

encoders. Since the UKF estimates may be affected by

bias, drift etc., an adaptive mechanism using IA to correct

these defects in estimates is suggested. In the presence of

landmarks, the complementary robot position information

from the IA algorithm using ultrasonic sensors is used to

estimate and bound the errors in the UKF robot position

estimate.

Using GPS system is costly and power consuming and

known collaborative methods of localization based on

positions of neighboring nodes also consume plenty of

energy and are not precise. In our paper, we consider

a network with a dynamically changing number of nodes.

Each node can move according to its own kinematics and

there is no correlation between them, but their initial

positions are known. The task of a navigation algorithm is

to estimate the position of each node at all instances in

a globally fixed coordinate system. There should be two

kinds of measurements: the displacement of each node

between two time instances (from inertial unit) and the

distance between any two nodes within a certain range at

each time instance (from RF measurements). The multi-

modal fusion problem can be presented as a graphical

model, where nodes represent variables and links repre-

sent constraints. The problem is to estimate the values of

the variables - representing nodes, given the constraints -

representing the links. For estimation of a single value for

each variable as the best solution, this can be formed as

a maximum a posteriori (MAP) estimation problem.

The standard Kalman Filter approach with a distribu-

ted iterative EKF formulation provides excellent accuracy

and convergence. In the distributed approach, the location

of each node estimates an independent computational unit

requiring very limited communications overhead to ex-

change intermediate location estimates with neighbors.

This formulation enables practical implementations with

minimum location accuracy reduction. Using a standard

EKF algorithm, the state vector of each node can be

estimated in parallel. However, since the estimation re-

sults of one node are strongly dependent on the estimated

locations of the other nodes, one pass through the algo-

rithm is not sufficient to accurately estimate the locations

of entire network. To solve this problem, Wu and others

[15] proposed an iterative distribution algorithm, in

which:

7. Iterative distribution algorithm

�

�

�

�

each node estimates its state by using its inertial

navigation unit (INU) observation;

each node obtains RF distance measurements from all

the remaining nodes;

each node exchanges its state estimate with all the

remaining nodes;

the RF distance measurements are used to re-estimate

each node's state by EKF.

After multiple iterations of the last two steps, the state

of each node will converge to its optimization point. In this

manner, the locations of the entire sensor network can be

accurately estimated in parallel with virtually no

redundant computation and with minimal inter-node

information exchange.

The algorithm estimates limit errors in position esti-

mations by continuous fusion of new INU measurements

and previously fused location estimations. Position dis-

placements can be determined with MEMS-based INUs

and the distance between two nodes can be measured

by time-of-arrival TOA-based radio frequency distance

measuring sensors. The main underlying assumption of

the EKF approach is that the node state can be modeled as

a multidimensional Gaussian random variable. This as-

sumption is justified by the fact that an INU measurement

gives highly peaked unimodal distribution. The final

distribution of the state, after considering the ranging con-

straints, exhibits a dominant mode (the correct solution)

close to the INU peak. Since the distance measurement is

not a linear function of the locations, the standard Kalman

Filter approach with a distributed iterative EKF formu-

lation that provides excellent accuracy and convergence

was used. Since the INU measures the location offset,

which is directly proportional to velocity, the filter will

have nearly no lag. Moreover, the authors made a few

assumptions regarding the node motion and use a simple

constant velocity model for prediction, enabling flexible

implementation that accepts asynchronous sensor inputs.

They postulated the integration of two sensors: INU and

distance sensor to estimate absolute and relative positions

of sensor nodes. INU sensors prevent geometric ambi-

guities and distance sensors reduce the drift rate of the

individual INUs by a factor of by providing mutual

constraints on possible position estimates of collabo-

rating nodes. Collaborative navigation gives improve-

ments of performance in drift-rate reduction and resetting

errors of location estimates even after a dynamic change

of system conditions.

Considerations of error reduction effects expected

when multiple nodes collaborate to determine their

locations.

If and are vectors representing the INU-derived

estimates of the locations of nodes and respectively

and is the estimate of the distance from to (TOA

measurement), then the location of node can be estima-

ted by the average of INU in node or by: .

If and have independent errors of size and the

error of is negligible as compared to it, then this average

is statistically optimum and has the reduced error of

2. The error can be further reduced when additional

�

� �
�

� �
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8. Calculating errors
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nodes collaborate in RF distance measurements. The error

of an average of independent and identically distributed

measurements with common error ! is: ;

If = and 1 (5)

are identically distributed measurements with common

standard deviation then:

= (6)

For a -sized network with direct communication,

a given node has independent INU location estimates.

One estimate is from its own INU; the remaining 1 are

based on the INU location estimates of the remaining 1

nodes, the inter-node distance measurements and the

previously fused location estimates. A combination of

independent INU estimates provides a 1!/ error im-

provement. This improvement is independent of the spe-

cific multi-sensor data fusion algorithm employed, pro-

vided the fusion algorithm is formulated in a way that

leverages the principles of averaging independent sensor

estimates. It is also independent of specific noise model of

the underlying sensor (INU or otherwise) that is used to

obtain the base position estimate. In practice, instead of

requiring the relative location of B from A, only the dis-

tance between them is needed for the scaling result to hold.

The use of continuous INU measurements and previously

fused location estimates virtually eliminates geometric

ambiguities like flips, translations, and rotations.

The derivation of the error-scaling law assumes that

the ranging measurement error is negligible compared to

that of the inertial measurement to achieve the 1!/

improvement.

The analysis presented in [16] shows that the scaling

law improvement is quite insensitive to distance measu-

rement errors and that its effect should hold quite well

even as the distance measurement error approaches that of

the inertial sensors. Reasonable values of INU and ran-

ging error result in a deviation from the ideal scaling

behavior by only a few percent, while a typical worst-case

combination yields at most an 11 percent deviation.

When nodes with independent self-location estimates

come within range of one another for distance measure-

ment, the errors of all their location estimates are imme-

diately reset to lower values. Reset error levels are inde-

pendent of the history of ranging activities among the

nodes and long-term error growth is insensitive to splitting

or joining of the group. The errors in incremental node

displacement estimates contribute to the errors in the

location estimates in an additive fashion. Let and

be real displacement and estimated by INU displacement

of node made between and respectively. The addi-

tive uncertainty associated with this estimate is denoted

with a common variance . The location estimates

of node at time are given in [17]

(1) = + (7)

n

n
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8.1. Sensitivity to Distance Constraint Error

8.2. Resetting errors of all location estimates

i i

i

i i i i

1

2

If at time node joins a group of 1 other nodes,

then, using the independent averaging assumption, the

location estimate of node becomes

( ) = (1) + (8)

where is the highly accurate location of node relative

to node enabled by distance measurement.

Although the position uncertainty of a node in a small

group may grow while the groups are separated, it is

immediately reset to the appropriate lower value when the

groups merge to form a larger group.

Analytical prediction of these multi-sensor fusion

algorithms should be checked using some simulations. In

[17], the authors gave a few formulas for the evaluation of

the algorithms' performance. Absolute and relative RMS

errors can be calculated using the results of Monte Carlo

simulations. The absolute RMS error vector of the entire

network at will be

( ) = ( ) ( )) (9)

where ( ) = ( ), ( ) , ( ) , ( ), ( ) (10)

are the estimated locations and real locations, respecti-

vely, of the node in the Monte Carlo run; and is the

total number of the runs.

The relative averaged RMS error can be defined as

( ) = ( ( ) ( )) (11)

where and are the estimated distance and real

distance, respectively, between nodes and at time

from the run.

Calculation of exposure is one of fundamental pro-

blems in wireless ad-hoc sensor networks. This paper

introduced the exposure-based coverage model, formally

defined the exposure and analyzed several of its proper-

ties. An efficient and effective algorithm for minimum

exposure paths for any given distribution and

characteristic of sensor networks was presented. The

minimum exposure path algorithm developed as a locali-

zed approximation algorithm was chosen for planned

network of numerous small mobile sensor nodes used for

monitoring of large terrains. The algorithm works for

arbitrary sensing and intensity models and provides an

unbounded level of accuracy as a function of run time.

It works even after a few nodes of network are damaged

and requires minimum consumption of energy. The

second problem arising after the calculation of the

network's coverage is to move some of the nodes in order

to improve this coverage and to navigate nodes effectively

(also in GPS-denied areas). Position displacement can be

determined with micro-electromechanical system-based

INUs. As the author of [18] convinces us, for many navi-

gation applications, improved accuracy/performance is

t i n
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8.3. Evaluation of performance
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not necessarily the most important issue, but meeting

performance at reduced cost and size is definitely vital.

In particular, small navigation sensor size enables the

introduction of guidance, navigation, and control into

applications previously considered out of reach. In recent

years, three major technologies have enabled advance-

ments in military and commercial capabilities. These are

Ring Laser Gyros, Fiber Optic Gyros, and Micro-Electro-

Mechanical Systems (MEMS). The smallest INUs

presented have the size of 3.3 cc. Distributed fusion of

multiple independent sensors using the suggested navi-

gation algorithms can exploit the complementary nature

of each sensor-nodes characteristics for overall improve-

ments in system accuracy and operational performance

without sacrificing operational flexibility, estimating both

absolute and relative positions for the members of a mo-

bile sensor network by continuously fusing pair-wise

inter-node distance measurements and the position dis-

placement measurements of individual nodes. The bene-

fits of the collaborative error reduction can be realized

without use of anchor reference nodes and also with as few

as two sensor nodes.

It is likely that progress in computing and sensing

technologies will soon determine new criteria for algo-

rithms of mobile sensor-nodes and, therefore, in our future

works, we plan to make adequate simulations with both

algorithms working simultaneously on sensor nodes with

different environment parameters.
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