
Abstract:

1. Introduction

In this paper, we propose a novel framework for un-

known environment planning of manipulator type robots.

Unknown environment motion planning, by its nature,

requires a sensor based approach. The problem domain of

unknown environment planning, when compared to model

based approaches, is notoriously harder (NPHARD) in

terms of demanding technical depth especially for difficult

cases. The framework we propose herein is a sensor based

planner composed of a sequence of multiple MBPs (Model

Based Planners) in the notion of cognitive planning using

realtime rehearsal. That is, one can use a certain model

based planner as a tactical tool to attack location specific

problems in overall planning endeavor for an unknown

environment. The enabling technology for the realtime

rehearsal is a sensitive skin type sensor introduced in the

paper. We demonstrate the feasibility of solving a difficult

unknown environment problem using the introduced

sensor based planning framework.

Keywords: sensor based planning, randomized sampling,

unknown environment motion planning, collision avoi-
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Unknown environment motion planning is one of the

most daunting tasks in path planning study. Sensor based

approaches have been the dominant trends in the study of

unknown environment planning for decades. When it

comes to unknown environment planning, a planner calls

for continuous perception and planning, thereby closing

the loop between sensation and actuation. For instance,

SLAM (Simultaneous localization and Motion planning)

is one of the trends to solve mobile robot navigation

problems in unknown environments.

In manipulator planning especially for unknown envi-

ronments, similar notion is applicable to solve difficult

cases. For instance, in [1], Lee and Choset promoted the

GVG concept to HGVG to solve higher order unknown

environment planning problems. The main point of study

is to introduce a new roadmap (HGVG) construction me-

thod by which a systematic roadmap of free configuration

space can be incrementally constructed using line-of-sight

sensor data.

Another example is introduced in [2], where simul-

taneous path planning with free space exploration is pro-

posed using a skin type sensor. In their approach, a robot is

assumed to be equipped with a sensitive skin.

The roadmap approach proposed by Yu and Gupta [3]

solves sensor-based planning problems for articulated ro-

bots in unknown environments. They incrementally build

a roadmap that represents the connectivity of free c-spa-

ces. But the usefulness of collision sensor attached on

the end-effector is uncertain to detect all the possible

collisions.

Sensor based planners have been advanced by numero-

us technological breakthroughs in sensor technology inclu-

ding laser scanner, vision sensor, proximity sensor, etc. De-

spite of advanced today’s sensor technologies, unknown

environment planning still falls short of a fullfledged solu-

tion especially to tackle difficult cases. On the other hand,

model based planners are also limited in their capability to

deal with certain cases of planning problems due to the

absence of realtime environment mapping capability.

Sensitive skin [3] proposed by Lumelsky and inno-

vated thereafter by Chung and Um [5] poses itself as a tool

to bridge the gap between the model based planning and

unknown environment planning domains. It is unique in

that it can either report impending collision with any part

of the body at any moment or impart a realtime environ-

ment mapping capability during the course of planning

operation. Endowed with such uniqueness, sensitive skin

will result in a SLAM capability for many degrees of

freedom robotic manipulators.

In addition,

We also believe that if a sensor

based planner utilizes model based planning strategy in

case sensitive manner, majority of the planning problems

can be resolved (See Figure 1).

To that end, we propose a novel framework of sensor

based planning constituting the totality as a sequence of

model based planners using a sensitive skin and realtime

rehearsal in cognitive sense.

The notion of

cognitive sense of planner imparts the decision capability

so that the planner can select the best strategy case by case

in each local area to increase the probability of overall

convergence (See Figure 2).

For instance, if the perceived local area at a step is with

a reasonably open space, one can choose PRM [4] or RRT

[7] for fast sampling with evenly distributed sample

points. But importance sampling or adaptive sampling [8]

can be selected for path findings in areas with difficulties.

For better results in narrower passages with many degrees

of freedom, bridge test algorithm [9] can be selected for

more effective path search.

we believe that the sensitive skin is unique

in that many advanced strategies studied in the model

based planning problem domain can be utilized to solve

unknown environment planning problems, including pro-

blems with difficult cases.

In each step of sequence, one

can use a particular model based planer tailored to attack

location specific problems perceived by the realtime

sensing capability of a skin type sensor.
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Fig. 1. Sensitive skin as a tool to bridge the gap of two

planning domains.

Fig. 2. Concept of sensor based planning framework.

The new framework proposed in this paper is to host

multiple MBPs as tactical tools within which the best local

algorithm will be eclectically selected based on spatial

examination. Therefore, of importance in the proposed

planner is the cognitive sense of spatial perception for the

optimality in the MBPselection process.

When the planning expands its scope to perception and

action, sampling and path finding problems will fall into

a cognitive problem domain. In recent literatures, eviden-

ced often is a trend of the probabilistic motion planning

expanding its scope from planning to perception and

action in c-space for better manipulability. As detailed in

[10], for example, the planner moves the mobile base to

a less clustered area to obtain better manipulability to

achieve higher success ratio in grasping path planning. In

[11], next best view search is discussed to increase the suc-

cess ratio in which the constructed 3D spatial information

of a work space is utilized.

In the framework we propose, for demonstration pur-

pose, global planning objective is rather simple and simi-

lar to that of the potential field planner, thus the robot is

simply biased toward a goal seeking the shortest path,

while the local planning objective is divided into percep-

tion and action objectives as below.

Perception objective:

Action objective:

Obtain environmental affordance.

In crowded area, increase traversability.

In less crowded area, increase manipulability and obser-

vability.

The environmental affordance we measure is the

spatial distribution of sampled spaces. To that end, the

realtime rehearsal via a sensitive skin type sensor takes

place to generate a local c-space map and to examine the

spatial distribution affordance. Increased manipulability

and observability as well as traversability result in proba-

bilistically higher reachability to the goal position. In

order to meet the action objective, we propose an action

schema of multiple MBPs, among which the best suitable

one will be exercised.

In summary, the robotic action selection will occur as

the action schema in local area, which is cognitively con-

nected to the perception stage by the affordance relations.

Before we discuss the proposed framework, the details of

the IPAskin sensor are discussed in section II, followed by

the algorithm with simulation results in III.

2. IPASkin sensor
The enabling technology for the realtime rehearsal

is a sensitive skin type perception sensor, namely IPA

(Infrared Proximity Array) skin sensor from DINAST

(Figure 3). Included in Figure 4 are some demonstration

pictures of the IPA skin sensor capability. The 3D depth

measurement capability of the sensor is shown in pictures

at upper left and right corners. With this capability, the

proposed framework enables instantaneous 3D virtual

map generation for locally sensed areas. Lower left side

picture depicts a test for finger tracking function of the IPA

sensor to demonstrate a realtime operation capability.

Finally the one on the lower right corner is the recons-

tructed 3D surface map of a human face to show precision

surface modeling capability of the IPAsensor.

From the unknown environment planning standpoint,

the IPA skin sensor is unique in that it can impart a col-

lision shield (See Figure 5) to an entire manipulator so that

the IPA equipped robot can sample an arbitrary c-space in

realtime, thereby perform realtime collision check in

work space. One example of an IPA sensitive skin equip-

ped robot is shown in Figure 6.

In summary, IPA sensor endows the reatlime rehearsal

capability to a multi-DOF robotic manipulator with

following features.

1. Collision shield

2. Realtime workspace mapping

Fig. 3. IPA skin sensor, sensing range.
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depending on applications at the cost of resolution loss.

Active retina principle can also be adopted for regional

magnification for high variant areas. In addition, IPA

sensitive skin is equipped with a fish eye lens with image

dewarping capability, thus imparting complete hemi-

sphere coverage for maximum sensibility (Figure 3).

Prevention of crosstalk between sensor modules is one

concern when multiple IPA sensitive skin sensors are put

together for a collision shield. For instance, IR light emit-

ted from one sensor can be seen by another IPA module as

an object, which results in a false alarm. In order to

prevent crosstalk, a higher level control logic is in need for

robust sensing and 3D mapping. Figure 7 shows the firing

diagram based on groups of sensors that has little or no

correlation in sensitivity due to geometric configuration.

The higher level controller will drive each group of sen-

sors in sequence to prevent crosstalk based on the firing

diagram in. The firing diagram will result in 50% increase

in sampling time due to the sequential IR light emission.

Frequency modulation can be used for minimum loss in

sampling time if more groups of sensor are needed.

Table 1. IPA sensitive skin sensor specification.

Fig. 7. Multiple Sensor Firing Diagram for crosstalk

prevention.

2.2. Cross talk prevention between modules

3. RRT-Cabomba planner
The planner we propose to implement the concept in

Figure 2 and to maximize the usefulness of the IPA sen-

sitive skin is a RRT variant, namely RRT-Cabomba. The

planner resembles how a natural aquatic cabomba stret-

ches in water (Figure 9). RRT-Cabomba searches an un-

known space based on local probing via the IPA skin and

develops a local map in a virtual workspace perceived in

sensing range. In each local virtual workspace, RRT-

Cabomba grows RRT to examine spatial distribution.

Depending on the result of the spatial distribution,

RRT-Cabomba will determine which MBPis the most suit-

able for the sensed local area. Search completeness in local

area will be granted as long as each MBP used is a com-

plete planner, but the global search completeness has yet to

be proved as a whole. The sensor model (Figure 8) used for

Fig. 4. IPA skin sensor demonstration.

Fig. 5. The concept of collision shield.

Fig. 6. IPA sensitive skin installation on Adept robot.

2.1. IPAsensitive skin sensor specification.

IPA sensitive skin is a DSP technology based smart

sensor with sensor array of about 0.3 million sensors in

synch with each other. At the moment, the refresh rate of

the sensor is 20 ms for realtime operation. The sensor itself

is compact in size, thus can comply with any surface

configuration with a 3D realtime surface modeling power

to support advanced motion planning capability. Detailed

sensor spec is in Table 1.

The frame rate of the IPA sensitive skin is adjustable
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Description

Size

Sensing range

Sensing rate

Measurement error

Viewing angle

S

±

pecification

6.5cm x 4.5cm x 4cm

350mm

20Hz at 640*480 resolution

8mm at 350mm

hemi-sphere complete coverage
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simulation is similar to the IPA sensitive skin depicted in

Figure 3, but in 2D plane.

RRT-Cabomba Natural cabomba

In summary, the RRT-Cabomba is a planner with the

following logic.

1.

Sense a local workspace.

2.

Generate a local virtual environment with measured

3D depth information.

3.

Grow an RRT in local virtual environment established

in step 2.

4.

Measure the spatial distribution of the grown local tree.

Determine which MBP is the most suitable for the

sensed area.

5.

Move the robot to the next position depending on the

MBPstrategy chosen at step 4.

6.

Check if the goal position is reached. If not, loop back

to step 1.

In step 1, we apply a global algorithm such that the

cabomba tree is steered toward the goal position by

controlling the sensing direction biased toward the goal

position. Steering toward a goal generally, but not always,

yields faster convergence to the goal at the cost of being

entrapped at local minima. Sensor data collection is neces-

sary to build a complete local environment model to fully

grow a c-space RRT in each movement.

Fig. 8. Sensor model.

Fig. 9. RRT-Cabomba.

Sensor data collection

Virtual workspace generation

Realtime rehearsal

Cognitive decision

Advance the robot

Convergence check

RRT-cabomba

In step 2, piecewise information from each sensor is

put together to form a complete virtual environment.

Cartesian coordinate with orientation of each sensor on the

manipulator body is obtained forward kinematics. Ob-

tained data of each sensor are then mapped and projected

in a virtual environment for workspace object construction

followed by a realtime rehearsal. Growing a c-space RRT

with respect to a constructed local workspace provides the

result of realtime rehearsal for collision in workspace, and

at the same time, generates sampled nodes in c-space. We

utilize order standard distance distribution as a mea-

sure of spatial distribution in Step 4 as detailed below.

where is the sampled nodes of joint and is the

mean value of . , if larger than , signals an open

c-space, or crowded space otherwise. The value of

is determined empirically. In our case, 0.3 yields reason-

able performance (maximum value is 0.5). For step 5, in

our simulation, we only use following two MBPs for open

and crowded cases.

(Open c-space): Move to a node closest to the

mean values of sampled nodes.

(Crowded c-space): Move along the axis with

largest standard deviation in c-space.

For , as mentioned earlier, moving to a mean

value of offers probabilistically best location for next

via

nth

MBP #1

MBP #2

Fig. 10. RRT-Cabomba for difficult area path search test.

Fig. 11. Comparison between original and one with bug

algorithm.

MBP #1

i th mean

i N threshold

threshold

i

� �

�

�

� �

�

�

i

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 5,     N° 1     2011

( )�
�

��
N

i

meaniN
N 1

21
���

RRT-cabomba switching

to bug algorithm

in crowded area

Original RRT-cabomba

Articles 33



move in terms of maneuverability for each joint, thus may

increase reachability as well. The is chosen for

reasonable traversability, but can be replaced with variety

of other MBPalgorithms feasible for specific needs in each

local area.

One execution example of RRT-cabomba is shown in

Figure 10.

Here we use the identical sensor model as the physical

IPA skin sensor, hemisphere frontal sensing range with 3

DOF (x, y, ) mobility.

One big drawback of RRT-Cabomba is not being able

to handle local minima problems effectively due to the

global steering algorithm. Global steering mechanism in a

completely unknown environment is still a daunting and

not a fully addressed issue. Therefore, in this study, we

focus more on reasonable search results for a completely

unknown environment with RRT-Cabomba planner in

conjunction with the IPA skin sensor, leaving the global

completeness of the algorithm a future work. As for the

algorithm complexity, since RRT-Cabomba uses mixture

of local algorithms depending on the situation, the com-

plexity varies as the planner changes. For instance, if the

local planner selected is the RRT planner, than it has the

same complexity of RRT in the local area. However,

although c-space construction is known to be polynomial

in the geometric complexity for unknown environments,

the proposed algorithm effectively generates c-space map

as the robot explores the environment. Therefore the c-

space construction is not the bottleneck of the algorithm.

In order to demonstrate the versatility of the RRT-

Cabomba, in this case to tackle the local minima problem,

we change the to the bug algorithm. The bug

algorithm proposed by Dr. Lumelsky [12] and improved

thereafter has a unique property of global convergence in

2D and 3D unknown environments. For higher order

manipulator path problems, one can utilize algorithms

introduced in [8], [9], [13]. These algorithms deal with

difficult cases in higher order path problems.

In step 4, if is smaller than , we switch the

local strategy to the bug algorithm. Shown in Figure 11 and

Table 1 is the results of the previous RRT-Cabomba and the

one with the bug algorithm. No significant statistical diffe-

rence is evidenced in running performance.

Notice though that the second planner follows the wall

of the first obstacle it encountered because of the bug algo-

rithm engaged in crowded areas. In order to demonstrate

the local minima avoidance capability of the RRT-Cabom-

MBP #2

Table 1. Results of two algorithms

Local minima avoidance with bug algorithm

MPB #2

�

� �N threshold

ba, another simulation set is prepared. Shown in Figure 12

is an execution example with the bug algorithm as the

second MBP. As demonstrated in the figure, a group of

MBPs in conjunction with realtime rehearsal produces

reasonable results in a difficult unknown environment

case.

One limiting factor of the RRT-Cabomba from the

implementation perspective in real world is the realtime

rehearsal for advancing a manipulator without interruption

when continuous motion is needed. In order to perform the

realtime rehearsal, however, virtual world generation with

3D-depth measure of a local area followed by a realtime

rehearsal with RRT in local area has to take place with zero

time lag. In the previous simulation with a computer

equipped with an Intel Core 2 CPU at 2.13 GHz and 2Gb

RAM, each foot step takes 3.7 second in average, meaning

the robot in the real world has to wait for 3.7 second in each

step motion for path search. This bottleneck can be tackled

with several improvements in implementation such as

faster computer, smaller step size, distributed simulation

and so forth. However, the algorithm needs to be signifi-

cantly improved for a full scale, 6 DOF robotic manipu-

lator operating in a completely unknown environment.

A novel manipulator path search framework with

a sensitive skin type sensor for a completely unknown

environment planning, especially for difficult cases with

local minima, has been investigated. To that end, a novel

IPA sensitive skin has been developed and demonstrated

its capabilities in the paper.

The proposed algorithm, RRT-Cabomba, provides

a unique solution for difficult unknown environment plan-

Fig. 12. Local minima avoidance with bug algorithm as

a crowded area search strategy.

Table 2. Local minima avoidance simulation.

4. Conclusion
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Algorithm

Search time

Total collision

nodes

Total collision

free nodes

Total No.

of nodes

Original RRT

- Cabomba

125 s

6838

21218

28056

RRT-Cabomba

with bug algorithm

155 s

5892

21162

27054

Algorithm

Search time

otal collision nodes

otal collision free nodes

Total No. of nodes

T

T

Total foot steps

RRT-Cabomba

with bug algorithm

187 s

11512

25562

37074

50

Articles34



Journal of Automation, Mobile Robotics & Intelligent Systems

ning cases by merging sensor based planning and model

based planning ideas for maximum synergy. In RRT-

Cabomba, multiple MBPs can be employed to tackle local

area specific planning problems. Cognitive decision

making has been studied with realtime rehearsal for each

step motion to eclectically select the best possible local

strategy in each step. For the feasibility test of the propo-

sed algorithm, a series of simulations has been performed

and the results are shared in the paper.

Time-lag in simulation due to expensive calculations

would be a bottleneck for a real world implementation, but

for the proof of the usefulness, the concept of realtime

distributed simulation of the proposed algorithm is under

investigation at the moment. In addition, real world imple-

mentation with IPA sensitive skin is under consideration

for future work.
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